国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

含水率對玉米果穗抗壓特性的影響

2018-02-28 05:53李心平耿令新姬江濤
農(nóng)業(yè)工程學報 2018年2期
關(guān)鍵詞:玉米芯脫粒抗壓

李心平,熊 師,耿令新,姬江濤

?

含水率對玉米果穗抗壓特性的影響

李心平,熊 師,耿令新,姬江濤

(河南科技大學農(nóng)業(yè)裝備工程學院,洛陽 471003)

為研究玉米果穗的抗壓特性及破裂機理,探索含水率對玉米果穗抗壓特性的影響,該文先分析了玉米果穗的生物特性,然后選取2個品種的玉米果穗,含水率處理至5個標準,在電子萬能試驗機上進行了靜態(tài)壓縮試驗。試驗結(jié)果表明:玉米芯含水率對玉米果穗抗壓特性有極大影響,含水率低于13%時,隨著含水率的降低果穗抗壓能力小幅度增強;含水率在13%~25%內(nèi),隨著含水率的增加果穗抗壓能力增強;含水率高于25%后抗壓能力急劇減弱;含水率為25%時玉米果穗抗壓能力最強;玉米果穗的破裂是由內(nèi)向外逐步破裂的過程,在受壓過程中,芯髓最先破裂,隨后木質(zhì)環(huán)形體破裂,木質(zhì)環(huán)形體是玉米果穗抗壓的主要部位;玉米果穗在受壓過程中存在籽粒脫落的現(xiàn)象,對玉米果穗施加的載荷值低于610 N不僅可以防止果穗斷裂而且有利于脫粒。該研究結(jié)果可為玉米不斷芯脫粒的進一步研究提供參考。

水分;農(nóng)作物;壓力;玉米果穗;抗壓特性;含水率;試驗

0 引 言

玉米果穗的不斷芯脫粒是在玉米的脫粒過程中保持玉米芯完整不斷裂。相對于市面上斷芯的玉米脫粒機,不斷芯脫粒能夠簡化清選環(huán)節(jié),精簡清選裝置,降低脫粒機械的復雜程度,減少功耗,從而提高脫粒機械的可靠性同時降低成本,而且還可以最大程度地回收玉米芯,減少玉米芯在脫粒過程中的損耗,方便玉米芯后續(xù)的加工利用,玉米果穗的不斷芯脫粒是玉米脫粒機械的重要發(fā)展方向[1-6]。

國內(nèi)外對玉米脫粒的研究主要集中在籽粒特性和脫粒裝置等方面。張新偉等[7]得出了玉米種子內(nèi)部機械裂紋產(chǎn)生與擴展的微觀機理;蔡超杰等[8]對發(fā)現(xiàn)種子玉米生物力學特性對籽粒破損率、未脫凈率和含雜率有較大影響;高連興等[9]利用籽粒破損強度、果柄強度和脫粒作用力等試驗研究含水率對種子玉米脫粒性能的影響機理;張翔等[10]對立式軸流玉米單穗種子脫粒機進行了參數(shù)優(yōu)化;Petkevichius等[11]研究玉米果穗的脫粒過程發(fā)現(xiàn)高含水率玉米果穗的脫粒損傷明顯高于中等含水率的果穗;Folarin等[12]開發(fā)了新型玉米脫粒機;Steponavicius等[13]通過脫粒試驗發(fā)現(xiàn)脫粒滾筒的慣性矩增大對脫粒過程的影響是積極的。玉米果穗在脫粒過程中會受到脫粒部件的擠壓、撞擊等外力作用,這些外力會導致玉米籽粒的損傷和玉米果穗的破裂。果穗的破裂直接影響不斷芯脫粒的效果,而有關(guān)玉米果穗破裂方面的理論研究比較薄弱,國內(nèi)外鮮有玉米果穗抗壓特性方面的文獻見諸報道。

對玉米果穗抗壓特性進行研究,可以為脫粒部件的形狀尺寸、脫粒部件對果穗作用力的大小等參數(shù)設(shè)計提供依據(jù)[14-18]。本文主要研究玉米果穗的抗壓特性及破裂機理,分析應力—應變規(guī)律以及壓縮破壞特征[19-24]。通過不同含水率下的壓縮試驗,探究含水率對玉米果穗抗壓特性的影響,分析適合玉米果穗不斷芯脫粒的含水率最優(yōu)值、玉米果穗的抗壓峰值力等參數(shù)特性。

1 玉米果穗生物特性

玉米果穗是由玉米芯和玉米籽粒組成,玉米芯是玉米脫去籽粒后的果軸,一般占玉米果穗總干重的20%~30%。玉米芯自內(nèi)向外由芯髓、木質(zhì)環(huán)形體和穎殼三部分組成[25]。玉米果穗是一種由多胞層次狀生物復合材料組成的多結(jié)構(gòu)物體,其物理力學性質(zhì)取決于化學組成與物理構(gòu)造特點。圖1為玉米果穗構(gòu)造形成示意圖。

如圖1所示,玉米芯主要由纖維素、淀粉、木質(zhì)素和少量的灰分組成[26],木質(zhì)環(huán)形體由纖維素鏈狀分子形成單位晶胞,單位晶胞又形成纖維素基本纖絲,基本纖絲再聚集形成微纖絲后鑲嵌在木質(zhì)素和果膠所組成的基體中,然后形成片層結(jié)構(gòu),再由多個片層同心地形成木質(zhì)環(huán)形體[27],結(jié)構(gòu)密實,質(zhì)地堅硬,因此木質(zhì)環(huán)形體堅固而且強度大。芯髓是由纖維素形成的纖絲與淀粉顆粒相互嵌套組成基體,然后形成網(wǎng)狀結(jié)構(gòu),再由多個網(wǎng)狀體相互聚集形成芯髓,網(wǎng)狀結(jié)構(gòu)的特征導致其結(jié)構(gòu)疏松,內(nèi)部間的連接不緊密。穎殼是由淀粉顆粒包裹在纖維素周圍組成基體,然后形成絲狀結(jié)構(gòu),再由多條絲狀體相互排列聚集形成穎殼,穎殼則比較松軟,是一個一個地連接在木質(zhì)環(huán)形體表面,相互之間獨立沒有連接,穎殼之間通過緊密地排列形成了玉米芯穩(wěn)定的表面。

圖1 玉米果穗的構(gòu)造

2 材料與方法

2.1 試驗材料與設(shè)備

選取2個玉米品種作為試驗材料,手工采摘,通過自然晾曬將籽粒含水率處理至5個標準[28],每個籽粒含水率均允許上下浮動3個單位(±0.3%),同時測出對應的玉米芯含水率,結(jié)果見表1。每個品種每一含水率均準備8個完好無損的玉米果穗,從中隨機抽取6個果穗作為試驗樣本。

表1 試驗材料參數(shù)

主要試驗設(shè)備有DNS系列電子萬能試驗機,美國帝強十二型水分測試儀和DSC-W630型相機(索尼有限公司生產(chǎn))。DNS系列電子萬能試驗機由試驗機主機和計算機組成,示值誤差為±0.5%,試驗機主機結(jié)構(gòu)如圖2所示;負荷傳感器采用CLY型、精度為0.02、量程為10 kN的力傳感器。電子萬能試驗機和負荷傳感器均由長春機械科學研究院有限公司生產(chǎn)。美國帝強十二型水分儀由DICKEY-john公司生產(chǎn),示值誤差為±0.5%。

1.上橫梁 2.上壓盤 3.玉米果穗 4.下壓盤 5.負荷傳感器 6.活動橫梁

2.2 試驗方法

試驗時,將玉米果穗放在壓縮夾具下壓盤工作面中央,點擊開始按鈕后,活動橫梁開始向上移動。當壓縮夾具上壓盤接觸到玉米果穗后,活動橫梁以5 mm/min的速度均勻緩慢地向上移動,同時計算機開始記錄位移-力、位移-應力的數(shù)據(jù)。試驗設(shè)定的斷裂敏感度為最大值的80%,因為數(shù)值下降至最大值的80%時,玉米果穗已經(jīng)完全破裂,滿足試驗結(jié)束的要求。當達到斷裂敏感度時,活動橫梁停止,試驗自動結(jié)束,計算機輸出載荷、應力的數(shù)據(jù)以及相應的圖像。用相機拍下玉米果穗破裂過程中外部變化的照片,然后將果穗沿徑向切開,觀察其內(nèi)部變化,記錄玉米果穗的破壞形式,然后進行下一次試驗,每個品種每一含水率均進行6次試驗。為觀察記錄玉米果穗的內(nèi)部破裂過程,每個品種每一玉米芯含水率均額外選取一個果穗從中間徑向切開,把切開的玉米果穗放到下壓盤上進行試驗,以果穗徑向截面為觀測窗口,用相機連續(xù)拍下果穗壓縮試驗的全過程。

2.3 試驗因素和指標

選取玉米品種、玉米芯含水率為試驗因素,由于最大載荷能夠直觀顯示玉米果穗所能承受的最大壓力,最大應力是玉米果穗抗壓強度的量化表示,因此把玉米果穗受到的最大載荷和最大應力作為試驗指標,采用雙因素隨機區(qū)組試驗,如表2所示。

為研究玉米芯含水率對玉米果穗受壓過程中載荷與應力的影響,以玉米各品種為母體、以玉米芯含水率為因素用MATLAB軟件對表2進行一元非線性回歸分析,對數(shù)據(jù)進行擬合,回歸擬合后得到(玉米芯含水率)與(玉米果穗最大載荷)和(玉米果穗最大應力)的對應函數(shù)關(guān)系,回歸分析結(jié)果見表3。

由表3可知,玉米芯含水率對2個品種玉米果穗的最大載荷和最大應力影響很大,回歸擬合的決定系數(shù)均在0.97以上。對回歸方程的顯著性及回歸系數(shù)的顯著性檢驗,其檢驗結(jié)果均為顯著或極顯著。

表2 玉米果穗壓縮試驗結(jié)果與處理

表3 回歸分析結(jié)果

注:為玉米芯含水率,為玉米果穗最大載荷,為玉米果穗最大應力。

Note:is water content of corn cob,is maximum load of corn ear,is maximum stress of corn ear.

3 結(jié)果與分析

3.1 玉米芯含水率對玉米果穗抗壓特性的影響分析

3.1.1 玉米芯含水率對玉米果穗塑性的影響

玉米果穗完全破裂時的應變值為果穗的破裂應變,2個玉米品種的果穗破裂應變與玉米芯含水率的關(guān)系如圖3所示。為方便表述,2個品種的玉米芯含水率均按10.5%、16.5%、24.5%、29.5%、33.5%區(qū)分。玉米芯含水率10.5%的玉米果穗破裂應變最小,表明其塑性變形過程最短,說明低含水率下的玉米果穗塑性弱;玉米芯含水率24.5%的玉米果穗破裂應變最大,表明其塑性變形過程最長,說明玉米芯含水率為24.5%時玉米果穗塑性最強;隨著含水率的增加,破裂應變值先增加后減小,說明隨著玉米芯含水率的增加,玉米果穗的塑性先增強后減弱。

圖3 玉米芯含水率與玉米果穗破裂應變的關(guān)系

3.1.2 玉米芯含水率對玉米果穗應力與載荷的影響

圖4a表明含水率低于13%時,玉米果穗最大應力隨含水率的減小而增大,且曲線較為平緩,說明其抗壓強度隨含水率的減小而緩慢的增大;圖4b表明含水率低于13%時,玉米果穗所能承受的最大載荷隨含水率的減小而緩慢的增大。由于在低含水率下,玉米果穗塑性弱,其抵抗外力作用的形變能力弱,因此低含水率下的抗壓性能總體較弱。但隨著含水率的減小,玉米果穗的抗壓強度緩慢增強,導致玉米果穗抗壓能力小幅度增強。

圖4a表明在13%~25%的含水率區(qū)間內(nèi),玉米果穗最大應力隨含水率的增加而增大,說明玉米果穗抗壓強度隨含水率的增加而提高、但變化速度較緩;圖4b表明在13%~25%的含水率區(qū)間內(nèi),玉米果穗所能承受的最大載荷隨含水率的增加而提高、但變化速度較緩。

a. 玉米芯含水率與玉米果穗破裂最大應力的關(guān)系

a. Relationship between water content of corn cob and maximum stress in the rupture of corn ear

b. 玉米芯含水率與玉米果穗破裂最大載荷的關(guān)系

研究發(fā)現(xiàn),較低含水率段內(nèi)的含水率對其塑性影響較大,隨著含水率的增加其塑性增強,使玉米果穗抵抗外力作用的形變能力增強,壓縮過程中產(chǎn)生了較為明顯的塑性變形;同時果穗抗壓強度也隨含水率的增加而增加,從而提高了玉米果穗的抗壓能力。

由圖4a可知,含水率高于25%后,玉米果穗最大應力隨含水率的增加而降低且變化速度較快,說明玉米果穗抗壓強度隨含水率的增加而急劇減?。挥蓤D4b可知,含水率高于25%后,玉米果穗所能承受的最大載荷隨含水率的增加而降低且變化速度較快。高含水率段玉米果穗抗壓強度減弱嚴重,同時玉米果穗的塑性也在降低,導致玉米果穗抵抗破裂的能力變?nèi)?,降低了玉米果穗的抗壓能力?/p>

由圖4可知,在含水率為25%時,玉米果穗的最大應力和最大載荷均達到峰值,說明玉米芯含水率25%的玉米果穗抗壓能力最好。

3.2 玉米果穗受壓過程中的破裂分析

3.2.1 玉米果穗內(nèi)部變化與破裂機理

分析比較果穗在試驗過程中的徑向切面照片可知,不同品種不同含水率的玉米果穗在壓力作用下破裂的內(nèi)部過程均相似,破裂過程如圖5所示。

圖5a顯示壓盤開始接觸果穗;隨著壓力的不斷增大,如圖5b所示,玉米果穗開始破裂,芯髓最先出現(xiàn)裂紋;圖5c~圖5d顯示裂紋逐漸變長變寬,裂紋從芯髓部分向上、下2個方向同時擴展,逐漸接近木質(zhì)環(huán)形體;圖5e~圖5f顯示順著裂紋擴展的方向,木質(zhì)環(huán)形體逐漸破裂,裂縫快速變大,果穗被壓扁,變形明顯。

圖5 玉米果穗破裂過程

在玉米果穗豎直方向施加壓力后,如圖6所示,外加壓力作用在籽粒上后分為指向玉米芯的力1和側(cè)向壓力2。1順著籽粒傳遞到穎殼深處,并繼續(xù)傳遞到木質(zhì)環(huán)形體。在初始階段,壓力一直由木質(zhì)環(huán)形體承受,并沒有作用到芯髓上,芯髓受到了木質(zhì)環(huán)形體的保護。但隨著壓力的逐漸增加,玉米果穗開始出現(xiàn)變形,同時木質(zhì)環(huán)形體也開始出現(xiàn)微弱變形,逐漸地由圓形變?yōu)闄E圓狀。此時木質(zhì)環(huán)形體傳遞的力環(huán)向作用于芯髓四周,該環(huán)向分布的力可正交分解為豎直方向的壓力3和水平方向的張力4。在3的擠壓和4的拉伸作用下,芯髓內(nèi)部間的連接遭到破壞,芯髓中部開始出現(xiàn)裂紋,隨著力的增大,裂紋縫隙變寬,向上下2個方向擴展,因此裂紋一般都是豎直方向的。裂紋擴展接近木質(zhì)環(huán)形體后,木質(zhì)環(huán)形體與裂紋接觸處最為脆弱,當壓力超過木質(zhì)環(huán)形體的破裂極限值時,木質(zhì)環(huán)形體與裂紋接觸的地方破裂,從而使裂紋從內(nèi)部一直擴展到果穗外部。

注:F為施加的壓力,kN;F1為指向玉米芯的力,kN;F2為側(cè)向壓力,kN;F3為豎直壓力,kN;F4為水平張力,kN。

圖7反映了不同玉米芯含水率下應力與應變的關(guān)系,5種含水率的曲線走勢比較相似,分析應力-應變曲線可知[29-30]:隨著應變的增加,應力逐漸增大,玉米果穗發(fā)生塑形變形,應力到達峰值后開始減小,曲線呈鋸齒形波動,進入屈服階段。在玉米果穗徑向切面的壓縮試驗過程中,當芯髓出現(xiàn)裂紋時觀察發(fā)現(xiàn)計算機輸出的應力曲線并沒有下降,反而繼續(xù)上升,直到木質(zhì)環(huán)形體出現(xiàn)裂紋時,曲線才開始下降。這說明芯髓的破裂對果穗的抗壓性能沒有影響,木質(zhì)環(huán)形體的破裂導致了果穗內(nèi)部穩(wěn)定性的明顯破壞。由于木質(zhì)環(huán)形體堅固且強度大,在受壓過程中能一直承受主要的載荷,因此木質(zhì)環(huán)形體是玉米果穗抗壓的主要部位。

注:玉米芯含水率:1. 10.5%2. 16.5%3. 24.5%4. 29.5%5. 33.5%

3.2.2 玉米果穗外部變化與分析

圖8a記錄了在壓縮試驗中完整玉米果穗受壓破裂時果穗側(cè)面的變化情況,由圖8a可知,玉米果穗出現(xiàn)變形,側(cè)面籽粒出現(xiàn)松動、脫落現(xiàn)象,籽粒排列雜亂,但并無籽粒破裂的情況。圖8b記錄了果穗受壓破裂時果穗頂部的變化情況,圖中黑線圈出的區(qū)域為果穗承受正壓的籽粒,圖片顯示承受正壓的籽粒排列完好、無脫落現(xiàn)象,籽粒也沒有破裂。

圖8 玉米果穗外部變化

對玉米果穗施加壓力后,壓力的一部分分解為籽粒的側(cè)向擠壓力2,上下兩處的側(cè)向擠壓力同時向果穗側(cè)面籽粒傳遞,玉米果穗側(cè)面單個籽粒的受力分析如圖9所示。

籽粒受到外力后的徑向平衡方程如式(1)所示。

式中1為的最小值;2為的最大值。

果穗受外力作用時,籽粒與玉米芯連接力c的方向為指向軸負方向,穎殼對籽粒的摩擦力變?yōu)橄騼?nèi),玉米果穗側(cè)上方籽粒受力均滿足平衡方程(1),而側(cè)下方籽粒的受力與側(cè)上方籽粒不同,由于籽粒位置的變化導致籽粒重力在軸上分力方向變?yōu)橹赶蜉S正方向,因此側(cè)下方籽粒受力滿足徑向平衡方程(2)。

1.籽粒 2.穎殼 3.木質(zhì)環(huán)形體 4.芯髓

1.Grain 2.Glume shell 3.Wooden ring form 4.Core pulp

注:為籽粒重力,kN;c為籽粒與玉米芯連接力,kN;為支撐力與軸的夾角;為擠壓力與軸的夾角;為重力與軸的夾角;N為角度為時穎殼對籽粒的支撐力,kN;f為角度為時穎殼對籽粒的摩擦力,kN;5為來自上側(cè)相鄰籽粒的壓力,kN;6為來自下側(cè)相鄰籽粒的壓力,kN。

Note:is grain gravity, kN;cis connection force of grain and corn con, kN; is angle of support force andaxis;is angle of pressure andaxis;is angle of gravity and y axis;Nis support force of glume shell on grain when angle is, kN;fis friction of glume shell on grain when angle is, kN;5is pressure from upper adjacent grain, kN;6is pressure from basiscopic adjacent grain, kN.

圖9 玉米果穗受壓時徑向受力分析

Fig.9 Force analysis of corn ear in radial direction

由上述平衡方程可知,在壓力施加的初始階段,果穗側(cè)面籽粒能夠保持徑向受力的平衡,籽粒不會脫落,但隨著壓力的增大,籽粒間的相互擠壓力增大,導致籽粒與玉米芯連接力逐漸增加到最大值,也就是果柄的斷裂極限值,隨后平衡方程會被破壞,果柄斷裂,籽粒出現(xiàn)脫落現(xiàn)象。果穗頂部和底部的籽粒受到壓盤的直接壓力,隨著壓力不斷增大,果柄會斷裂,籽粒逐漸被壓入穎殼深處,穎殼對籽粒的緊密包裹是籽粒沒有脫落的原因,但承受正壓的籽粒與果穗實際已經(jīng)分離。機械脫粒時確保脫粒裝置對玉米果穗施加的載荷值低于610 N不僅可以防止果穗斷裂而且有利于脫粒。

4 結(jié) 論

1)玉米芯含水率對玉米果穗抗壓特性有極大影響,含水率低于13%時,隨著含水率的降低,果穗塑性減弱,抗壓強度緩慢增加,導致抗壓能力小幅度增強;含水率在13%~25%內(nèi),隨著含水率的增加,果穗塑性增強,抗壓強度增加,導致抗壓能力增強;含水率高于25%后,果穗塑性減弱,抗壓強度減小,使其抗壓能力急劇減弱;玉米芯含水率為25%時的玉米果穗抗壓能力最強,最適合玉米的不斷芯脫粒。

2)玉米果穗的破裂是由內(nèi)向外逐步破裂的過程,在受壓過程中,芯髓最先破裂,然后木質(zhì)環(huán)形體破裂;裂紋是在果穗內(nèi)部豎直方向壓力和水平方向張力的共同作用下產(chǎn)生的,并在豎直方向擴展;木質(zhì)環(huán)形體結(jié)構(gòu)密實堅固,是玉米果穗抗壓的主要部位。

3)玉米果穗在受壓過程中,壓力會傳遞給周向分布的籽粒,籽粒間擠壓力的增大會破壞籽粒的徑向受力平衡,導致果柄斷裂,籽粒脫落。機械脫粒時確保脫粒裝置對玉米果穗施加的載荷值低于610 N不僅可以防止果穗斷裂而且有利于脫粒。

[1] 何曉鵬,劉春和,師建芳,等. 擠搓式玉米脫粒機的研制[J]. 農(nóng)業(yè)工程學報,2003,19(2):105-108.

He Xiaopeng, Liu Chunhe, Shi Jianfang, et al. Research and design on corn sheller by extruding and rubbing method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(2): 105-108. (in Chinese with English abstract)

[2] 趙武云,郭康權(quán). 變徑變間距螺旋板齒式玉米脫粒機設(shè)計與試驗[J]. 干旱地區(qū)農(nóng)業(yè)研究,2013,31(1):226-230.

Zhao Wuyun, Guo Kangquan. Design and experiment of corn thresher with varied-diameter and varied-spacing spiral plate tooth[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 226-230. (in Chinese with English abstract)

[3] 李心平,馬義東,金鑫,等. 玉米種子仿生脫粒機設(shè)計與試驗[J]. 農(nóng)業(yè)機械學報,2015,46(7):97-101.

Li Xinping, Ma Yidong, Jin Xin, et al. Design and test of corn seed bionic thresher[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 97-101. (in Chinese with English abstract)

[4] 廖慶喜,萬星宇,李海同,等. 油菜聯(lián)合收獲機旋風分離清選系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(14):24-31.

Liao Qingxi,Wan Xingyu,Li Haitong,et al. Design and experiment on cyclone separating cleaning system for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 24-31. (in Chinese with English abstract)

[5] 付宏,呂游,李艷雙,等. 基于離散元法的玉米脫粒過程分析[J]. 吉林大學學報:工學版,2012,42(4):997-1002.

Fu Hong, Lü You, Li Yanshuag, et al. Analysis for corn threshing process based DEM[J]. Journal of Jilin University: Engineering and Technology Edition, 2012, 42(4): 997-1002. (in Chinese with English abstract)

[6] Rosli W I W, Chow Y N. Effects of young corn ear addition on nutritional composition and acceptability of malaysian star cake (baulu cermai)[J]. Sains Malaysiana, 2014, 43(10): 1503-1508.

[7] 張新偉,李心平,楊德旭,等. 玉米種子內(nèi)部機械裂紋產(chǎn)生與擴展的微觀機理[J]. 農(nóng)業(yè)機械學報,2012,43(12):72-76.

Zhang Xinwei, Li Xinping, Yang Dexu, et al. Micromechanism of inner mechanical cracks generation and expansion of corn seed kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 72-76. (in Chinese with English abstract)

[8] 蔡超杰,陳志,韓增德,等. 種子玉米生物力學特性與脫粒性能的關(guān)系研究[J]. 農(nóng)機化研究,2017,4(4):192-196.

Cai Chaojie, Chen Zhi, Han Zengde, et al. Study on relationship of biomechanical characteristics of corn seed and threshing performance[J]. Journal of Agricultural Mechanization Research, 2017, 4(4): 192-196. (in Chinese with English abstract)

[9] 高連興,李飛,張新偉,等. 含水率對種子玉米脫粒性能的影響機理[J]. 農(nóng)業(yè)機械學報,2011,42(12):92-96.

Gao Lianxing, Li Fei, Zhang Xinwei, et al. Mechanism of moisture content affect on corn seed threshing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 92-96. (in Chinese with English abstract)

[10] 張翔,楊然兵,尚書旗. 立式軸流玉米單穗種子脫粒機試驗參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機械學報,2014,45(增刊1):73-79.

Zhang Xiang, Yang Ranbing, Shang Shuqi. Experimental parameter optimization of vertical axial-flow single panicle thresher for corn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Supp.1): 73-79. (in Chinese with English abstract)

[11] Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshing process[J]. Biosystems Engineering, 2008, 99(4): 532-539.

[12] Folarin A A, Kosemani B S. Development of a guinea corn thresher[C]//2011 ASABE Annual International Meeting Paper1111268, 2011.

[13] Steponavicius D, Butkus V, Kiniulis V, et al. Influence of inertia momentum of cylinder on power consumption during corn ear threshing[C]//12th International Scientific Conference on Engineering for Rural Development Proceedings, 2013.

[14] 韓綠化,毛罕平,胡建平,等. 穴盤苗自動移栽缽體力學特性試驗[J]. 農(nóng)業(yè)工程學報,2013,29(2):24-29.

Han Lühua, Mao Hanping, Hu Jianping, et al. Experiment on mechanical property of seedling pot for automatic transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 24-29. (in Chinese with English abstract)

[15] 張濤,張鋒偉,孫偉,等. 大豆籽粒的化學-力學特性灰色關(guān)聯(lián)度及本構(gòu)模擬[J]. 農(nóng)業(yè)工程學報,2017,33(5):264-271.

Zhang Tao,Zhang Fengwei,Sun Wei,et al. Gray relation degree and constitutive modeling of chemo-mechanical properties for soybean seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 264-271. (in Chinese with English abstract)

[16] Xu Yunfeng, Zhang Xiliang, Sun Xiaojia, et al. Tensile mechanical properties of greenhouse cucumber cane[J]. Int J Agric & Biol Eng, 2016, 9(5): 1-8.

[17] Spokas L, Steponavicius D, Butkus V. Substantiation of the rational technological parameters for threshing high-moisture corn ears[C]//6th International Scientific Conference on Rural Development Innovations and Sustainability, 2013.

[18] Lu Bing, Hu Can, Wang Xufeng, et al. Compressive mechanical properties test and finite element analysis of winter jujube during crisp ripe period in South Xinjiang, China[J]. IAEJ, 2016, 25(4): 245-256.

[19] 陳紅,徐翔宙,尹伊君,等. 寬皮柑橘移動夾持剝皮力學特性與果皮分離特性試驗研究[J]. 農(nóng)業(yè)工程學報,2017,33(14):25-31.

Chen Hong,Xu Xiangzhou,Yin Yijun,et al.Experimental study on mechanical properties and peel separation characteristics of citrus reticulate blanco with peel clamped moving[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 25-31. (in Chinese with English abstract)

[20] Shi Yinyan, Chen Man, Wang Xiaochan, et al. Experiment and analysis on mechanical properties of Artemisia selengensis stalk[J]. Int J Agric & Biol Eng, 2017, 10(2): 16-25.

[21] Botlhoko OJ, Ramontja J, Ray SS. Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly(-caprolactone) blend composites[J]. Journal of Applied Polymer Science, 2017, 134(40): 16-25.

[22] Nam K, Wolfenstine J, Choi H, et al. Study on the mechanical properties of porous tin oxide[J]. Ceramics International, 2017, 43(14): 10913-10918.

[23] Simon Marc, Dokukin Maxim, Kalaparthi Vivekanand, et al. Load rate and temperature dependent mechanical properties of the cortical neuron and its pericellular layer measured by atomic force microscopy[J]. Langmuir, 2016, 32(6): 1111-1119.

[24] Razavi S M A, Edalatian M R. Effect of moisture contents and compression axes on physical and mechanical properties of pistachio kernel[J]. International Journal of Food Properties, 2012, 15(3): 507-517.

[25] 陳志強,李愛華,張凌青,等. 寧夏不同地區(qū)玉米芯營養(yǎng)成分分析[J]. 糧食與飼料工業(yè),2010,12:51-53.

[26] 于亞軍,周海玲,付宏,等. 基于顆粒聚合體的玉米果穗建模方法[J]. 農(nóng)業(yè)工程學報,2012,28(8):167-174.

Yu Yajun, Zhou Hailing, Fu Hong, et al. Modeling method of corn ears based on particles agglomerate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 167-174. (in Chinese with English abstract)

[27] 邵卓平. 植物材料(木、竹)斷裂力學[M]. 北京:科學出版社,2012.

[28] 李心平. 種子玉米脫粒損傷機理及5TYZ-1型定向喂入式脫粒機研究[D]. 沈陽:沈陽農(nóng)業(yè)大學,2007.

Study on Threshing-damage Mechanism and 5TYZ-1 Type Directional -Feeding Thresher of Seed Corn[D]. Shenyang: Shenyang Agricultural University, 2007.

[29] 張乾能,朱國,宗力. 鰱魚魚體抗壓特性的研究[J]. 食品科學,2009,30(11):95-98. Zhang Qianneng, Zhu Guo, Zong Li. Study on compressive properties of silver carp[J]. Food Science, 2009, 30(11): 95-98. (in Chinese with English abstract)

[30] 張云偉,喻勇,王大龍,等. 植物根系抗拉力學特性便攜式測試系統(tǒng)[J]. 農(nóng)業(yè)機械學報,2014,45(6):58-63. Zhang Yunwei, Yu Yong, Wang Dalong, et al. Design of portable test system for tensile property of plant roots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 58-63. (in Chinese with English abstract)

Influence of water content on anti-pressing properties of corn ear

Li Xinping, Xiong Shi, Geng Lingxin, Ji Jiangtao

(,471003,)

The corn threshing without cob fracture can greatly simplify cleaning link. The rupture of corn ear can directly affect the effect of the core threshing without cob fracture. In order to study the anti-pressing properties and rupture laws of corn ear and explore the effect of water content on anti-pressing properties, the static compress experiments were carried out on the electronic universal testing machine. The analysis of the biological characteristics of corn ear showed that the wooden ring form had compact structure and its strength was big. And the core pulp and the glume shell had loose structure and small strength. The corn varieties selected by experiment were Zhongdan 868 and Zhenghuangnuo No. 2. The water content of each variety was treated as 5 criteria. Four tests were done for each test level. The corn variety and the water content of corn cob were used as test factors. The maximum load and the maximum stress of corn ear were used as the test indices. The experimental data were analyzed by MATLAB software and the function relation between water content of corn cob and test indices was obtained. The relationship between water content of corn cob and fracture strain of corn ear indicated that the plasticity of corn ear was firstly enhanced and then declined with the increase of the water content of corn cob. Through the analysis of the fitting curves between the water content of corn cob andthe test indices, it was known that the water content of corn cob had a tremendous effect on the anti-pressing properties of corn ear. When the water content was below 13%, with the decrease of water content, the plasticity of corn ear decreased and the compressive strength increased slowly, which resulted in a slow enhancement of the anti-pressing ability of corn ear. When the range of water content was 13%-25%, with the increase of water content, the plasticity and the compressive strength of corn ear both increased, which resulted in the enhancement of the anti-pressing ability. When the water content was higher than 25%, the plasticity of corn ear was weakened and the compressive strength decreased with the increase of water content, which resulted in a sharp decline of the anti-pressing ability. To observe the internal fracture process of corn ear, samples were cut in radial direction and then the cut samples were put on the test bench to do experiment. Using the radial section of corn ear as the observation window, the whole process of corn ear compression test was recorded by camera. Through the analysis of the photos of corn ear in the process of compression, it was known that the core pulp firstly ruptured and the crack was extended in vertical direction. Then the crack gradually approached to the wooden ring form. Finally, the wooden ring form ruptured and corn ear presented obvious deformation. The analysis of the strain-stress curves indicated that stress gradually increased and corn ear showed plastic deformation with the increase of strain. Stress began to decline after peak. Curves showed jagged wave and the yield stage was entered. The rupture of the wooden ring form led to the decline of stress curves. So the wooden ring form was the main anti-pressing part of corn ear. In the process of compression, corn ear showed the phenomenon of grains falling. The radial balance equations of grain were established by force analysis. Analysis indicated that pressure would be transmitted to the grains in the circumferential distribution. The increase of the pressure between grains would destroy the radial force balance of grains, resulting in the fracture of the carpopodium. Test results showed that the anti-pressing ability of corn ear was the strongest when the water content of corn cob was 25%, and this water content of corn cob was the most suitable for the corn threshing without cob fracture. The rupture of corn ear was a gradual rupture process by the inside-out. Applying pressure less than 610 N to corn ear could not only prevent the fracture of corn ear but facilitate threshing. The research results can provide data reference and theoretical support for the further research of the corn threshing without cob fracture.

moisture; crops; pressure; corn ear; anti-pressing properties; water content; experiment

10.11975/j.issn.1002-6819.2018.02.004

S513

A

1002-6819(2018)-02-0025-07

2017-08-07

2018-01-04

國家自然科學基金與河南人才培養(yǎng)聯(lián)合基金資助項目(U1204514)

李心平,教授,博士,主要從事農(nóng)產(chǎn)品收獲與加工機械研究。Email:aaalxp@126.com

李心平,熊 師,耿令新,姬江濤. 含水率對玉米果穗抗壓特性的影響[J]. 農(nóng)業(yè)工程學報,2018,34(2):25-31. doi:10.11975/j.issn.1002-6819.2018.02.004 http://www.tcsae.org

Li Xinping, Xiong Shi, Geng Lingxin, Ji Jiangtao. Influence of water content on anti-pressing properties of corn ear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 25-31. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.004 http://www.tcsae.org

猜你喜歡
玉米芯脫粒抗壓
基于人工擊打脫粒原理的食葵脫粒裝置設(shè)計與試驗
單樁豎向抗壓靜載試驗與研究
不同產(chǎn)地玉米芯的持水率及其相關(guān)性分析
脫粒分離裝置的研究現(xiàn)狀及發(fā)展趨勢
廢舊輪胎橡膠顆粒——黏土的單軸抗壓特性
橫軸流脫粒分離裝置的數(shù)學模型的建立與試驗
排便訓練前 先訓練你的抗壓神經(jīng)
玉米芯發(fā)酵巧作牛飼料
柔性差速帶式單株大豆脫粒裝置設(shè)計與試驗
白銀地區(qū)玉米芯金針菇高產(chǎn)栽培技術(shù)