歐陽文,吳曉丹,陳茜,陳希玲,張鵬灝,楊敏慧
(1南方醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院,廣州510515;2南方醫(yī)科大學(xué)第一臨床醫(yī)學(xué)院;3南方醫(yī)科大學(xué)南方醫(yī)院;4 南方醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院)
結(jié)直腸癌是全球第三大常見惡性腫瘤,隨著飲食習(xí)慣和生活方式的改變,中國結(jié)直腸癌發(fā)病率及病死率逐年提升,并呈現(xiàn)年輕化趨勢。腫瘤的復(fù)發(fā)和轉(zhuǎn)移是導(dǎo)致結(jié)直腸癌患者死亡的首要原因,而上皮間質(zhì)轉(zhuǎn)化(EMT)是結(jié)直腸癌細(xì)胞侵襲轉(zhuǎn)移的觸發(fā)條件[1]。EMT指上皮細(xì)胞在特定的生理和病理條件下向間充質(zhì)細(xì)胞分化的現(xiàn)象。隨著EMT的發(fā)生,腫瘤細(xì)胞出現(xiàn)干細(xì)胞特性,凋亡率降低,抑制免疫反應(yīng),獲得侵襲、轉(zhuǎn)移能力。近年來,研究發(fā)現(xiàn)長鏈非編碼RNA(lncRNA)的異常表達(dá)與結(jié)直腸癌的發(fā)生和進(jìn)展相關(guān),是腫瘤侵襲、轉(zhuǎn)移中的“高級調(diào)控單位”[2]。lncRNA可通過內(nèi)源性競爭miRNA,調(diào)控與EMT相關(guān)的一些轉(zhuǎn)錄因子的表達(dá),進(jìn)而影響EMT進(jìn)程,最終改變癌細(xì)胞的侵襲和轉(zhuǎn)移能力[3]。本文圍繞參與結(jié)直腸癌EMT過程的lncRNA展開綜述,闡述其調(diào)控機(jī)制,為提高結(jié)直腸癌臨床治愈率、降低病死率提供理論依據(jù)。
1.1 長鏈非編碼RNA HOX轉(zhuǎn)錄反義RNA(HOTAIR) HOTAIR全長2 364 bp,其表達(dá)框定位于12q13.13,位于同源異型盒C(Homeobox C)基因簇內(nèi),具有高度種屬間保守性。研究發(fā)現(xiàn),HOTAIR可以結(jié)合多梳抑制復(fù)合體2(PRC2)和賴氨酸特異性組蛋白去甲基化酶(LSD1),并將其募集到下游靶基因中,調(diào)節(jié)組蛋白3的27位賴氨酸的三甲基化(H3K27me3)和組蛋白3的4位賴氨酸的去甲基化,從而調(diào)控下游靶基因的表達(dá)[4,5]。Wu等[6]發(fā)現(xiàn),在結(jié)直腸癌中HOTAIR高表達(dá),與腫瘤的發(fā)生、發(fā)展及轉(zhuǎn)移密切相關(guān),并且HOTAIR高表達(dá)提示患者預(yù)后不良。體外細(xì)胞實(shí)驗證實(shí),HOTAIR表達(dá)沉默后,結(jié)直腸癌細(xì)胞內(nèi)E-鈣黏蛋白(E-cadherin)表達(dá)增加、波形蛋白(Vimentin)表達(dá)降低,上皮細(xì)胞特性增強(qiáng),結(jié)直腸癌細(xì)胞的運(yùn)動、侵襲及轉(zhuǎn)移能力顯著提升。在此基礎(chǔ)上,Dou等[7]建立了HOTAIR表達(dá)沉默的裸鼠腸癌尾靜脈注射轉(zhuǎn)移模型,并發(fā)現(xiàn)與對照組相比,HOTAIR低表達(dá)后,腸癌細(xì)胞肺部轉(zhuǎn)移灶減少。上述研究表明,HOTAIR通過參與結(jié)直腸癌細(xì)胞EMT事件,促進(jìn)結(jié)直腸癌轉(zhuǎn)移的發(fā)生。
1.2 肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄本1 (MALAT1) 最早MALAT1是Ji等[8]在研究非小細(xì)胞肺癌的侵襲和轉(zhuǎn)移時發(fā)現(xiàn)的。目前研究發(fā)現(xiàn),MALAT1在甲狀腺癌、膠質(zhì)母細(xì)胞瘤、結(jié)直腸癌等多種腫瘤中均存在表達(dá)異常,并與增殖、轉(zhuǎn)移、耐藥和血管新生等過程相關(guān),且參與到EMT過程中。Li等[9]研究結(jié)果發(fā)現(xiàn),MALAT1在結(jié)直腸癌耐奧沙利鉑細(xì)胞株中異常表達(dá)。敲除MALAT1后,結(jié)直腸癌細(xì)胞的E-cadherin表達(dá)增加、Vimentin表達(dá)減少,細(xì)胞間連接增加,細(xì)胞的遷移和侵襲能力減弱;進(jìn)一步研究發(fā)現(xiàn),MALAT1通過結(jié)合果蠅Zeste基因增強(qiáng)子人類同源物2(EZH2),并將其募集到E-cadherin啟動子區(qū),促進(jìn)啟動子區(qū)H3K27的三甲基化,從而抑制E-cadherin的表達(dá),觸發(fā)結(jié)直腸癌細(xì)胞的EMT事件的發(fā)生。其他研究證實(shí),轉(zhuǎn)化生長因子β(TGF-β)可以誘導(dǎo)MALAT1表達(dá)增加,異常表達(dá)的MALAT1通過內(nèi)源性競爭miRNA的作用,吸附miR-145,減少了miR-145對TGF-β信號通路的關(guān)鍵信號傳導(dǎo)分子Smad3的靶向抑制作用,從而促進(jìn)了TGF-β誘導(dǎo)的上皮間質(zhì)轉(zhuǎn)化的過程。
1.3 H19 lncRNA H19定位于11p15.1,與鄰近的胰島素樣生長因子2(IGF2)構(gòu)成一對印記基因,并且也是最早發(fā)現(xiàn)的長鏈非編碼RNA之一。目前已經(jīng)報道,H19的異常表達(dá)和乳腺癌和直腸癌的發(fā)生發(fā)展相關(guān),參與到腫瘤的轉(zhuǎn)移和耐藥過程中[10,11]。研究發(fā)現(xiàn),H19在結(jié)直腸癌組織中高表達(dá)。體外細(xì)胞實(shí)驗發(fā)現(xiàn),過表達(dá)H19后,EMT相關(guān)表面分子E-cadherin表達(dá)減少、Vimentin表達(dá)增加,細(xì)胞形態(tài)從上皮細(xì)胞樣細(xì)胞形態(tài)轉(zhuǎn)變成間質(zhì)細(xì)胞樣細(xì)胞形態(tài),結(jié)直腸癌的細(xì)胞遷移能力增加;另一方面,沉默H19表達(dá)后,抑制了細(xì)胞的遷移。進(jìn)一步研究發(fā)現(xiàn),H19可以作為miRNA的吸附海綿,吸附miR-138和miR-200a,抑制miR-138和miR-200a對Vimentin、E盒結(jié)合鋅指蛋白1(ZEB1)和ZEB2的靶向抑制作用,促進(jìn)了其表達(dá),進(jìn)而觸發(fā)了結(jié)直腸癌細(xì)胞的EMT事件,使結(jié)直腸癌細(xì)胞的運(yùn)動能力增強(qiáng),易于向遠(yuǎn)處器官轉(zhuǎn)移。另一項研究[11]發(fā)現(xiàn),在自發(fā)的移植瘤模型內(nèi),異常表達(dá)的H19能夠調(diào)控腫瘤細(xì)胞的轉(zhuǎn)移過程。之后,通過Ago2(RNA誘導(dǎo)的沉默復(fù)合體中的催化亞單位)的RIP實(shí)驗和生物信息學(xué)分析發(fā)現(xiàn),H19能結(jié)合let-7b和miR-200家族成員。進(jìn)一步研究發(fā)現(xiàn),H19能通過內(nèi)源性競爭上述miRNA,促進(jìn)CYTH3和GIT2的表達(dá),最終誘導(dǎo)EMT事件的發(fā)生,使腫瘤細(xì)胞發(fā)生遠(yuǎn)處轉(zhuǎn)移。
1.4 SPRY4內(nèi)含子轉(zhuǎn)錄本1(SPRY4-IT1) SPRY4-IT1是由SPRY4基因第2個內(nèi)含子轉(zhuǎn)錄產(chǎn)生的lncRNA,已經(jīng)被報道與肺癌和膀胱癌的侵襲轉(zhuǎn)移密切相關(guān)。同時,SPRY4-IT1也能通過調(diào)控結(jié)直腸癌EMT事件的發(fā)生,增強(qiáng),結(jié)直腸癌細(xì)胞的運(yùn)動能力,促進(jìn)結(jié)直腸癌的轉(zhuǎn)移。研究[12,13]發(fā)現(xiàn),敲除SPRY4-IT1之后,可增加E-cadherin的表達(dá),減少了Vimentin和N-cadherin的表達(dá),結(jié)直腸癌細(xì)胞的運(yùn)動能力減弱,從而有效抑制結(jié)直腸癌細(xì)胞的EMT過程和轉(zhuǎn)移。Jin等[14]研究發(fā)現(xiàn),SPRY4-IT1含有miR-101-3p的結(jié)合位點(diǎn),對miR-101-3p的靶基因可起到競爭性內(nèi)源RNA的作用,減少了miR-101-3p的靶向抑制作用,從而促進(jìn)了結(jié)直腸癌EMT事件的發(fā)生。
1.5 ?;撬嵘险{(diào)基因1 (TUG1) TUG1是一個長7 598 bp的長鏈非編碼RNA,定位于22q12.2。TUG1異常表達(dá)與結(jié)直腸癌的發(fā)生密切相關(guān),并且TUG1高表達(dá)提示患者預(yù)后不良。體外細(xì)胞實(shí)驗[15,16]發(fā)現(xiàn),沉默TUG1后,結(jié)直腸癌細(xì)胞表達(dá)E-cadherin增加,間質(zhì)細(xì)胞表面標(biāo)志物(N-cadherin和Vimentin)表達(dá)減少,EMT事件發(fā)生減少,結(jié)直腸癌細(xì)胞的增殖和轉(zhuǎn)移能力顯著降低;在過表達(dá)TUG后,上述現(xiàn)象相反。Zhao等[17]發(fā)現(xiàn),TUG1可以通過促進(jìn)EZH2的表達(dá)來促進(jìn)腫瘤細(xì)胞EMT事件的發(fā)生,進(jìn)而影響腫瘤的轉(zhuǎn)移。TUG1對EZH2的促進(jìn)作用主要是通過內(nèi)源性競爭結(jié)合miR-383,抑制了miR-383對EZH2的靶向抑制作用來實(shí)現(xiàn)的。因此,TUG1能夠通過誘發(fā)EMT事件增強(qiáng)腫瘤的轉(zhuǎn)移能力。
1.6 結(jié)腸癌相關(guān)轉(zhuǎn)錄因子1 (CCAT1) CCAT1是Nissan首先在結(jié)直腸癌中發(fā)現(xiàn)的一個表達(dá)上調(diào)的lncRNA[18]。Ye等[19]研究發(fā)現(xiàn),在結(jié)直腸癌組織中,CCAT1異常表達(dá),并且CCAT1的表達(dá)上調(diào)與結(jié)直腸癌的侵襲轉(zhuǎn)移顯著相關(guān)。體外細(xì)胞實(shí)驗發(fā)現(xiàn),CCAT1可以調(diào)控E-cadherin和N-cadherin表達(dá),進(jìn)而調(diào)控結(jié)直腸癌細(xì)胞的EMT過程。另外,Cao等[20]發(fā)現(xiàn),CCAT1可以作為miRNA的吸附海綿,通過內(nèi)源性競爭miR-152和miR-130b,抑制了miR-152和miR-130b對ADAM17、WNT1、STAT3、ZEB1的靶向抑制作用,促進(jìn)了間質(zhì)細(xì)胞表面標(biāo)志物N-cadherin和Vimentin的表達(dá),誘導(dǎo)了EMT事件的發(fā)生,增強(qiáng)了細(xì)胞的遷移侵襲能力。
1.7 轉(zhuǎn)化生長因子β活化長鏈非編碼RNA (lncRNA-ATB) lncRNA-ATB首先是Yuan等[21]在用TGF-β誘導(dǎo)肝細(xì)胞癌轉(zhuǎn)移的研究中發(fā)現(xiàn)的一條lncRNA,之后,陸續(xù)報道lncRNA-ATB與乳腺癌、胃癌等惡性腫瘤的轉(zhuǎn)移密切相關(guān)。許多研究結(jié)果發(fā)現(xiàn),lncRNA-ATB在結(jié)直腸癌患者中表達(dá)上調(diào),并且高表達(dá)的lncRNA-ATB提示患者預(yù)后不良。體外細(xì)胞實(shí)驗[22]顯示,沉默lncRNA-ATB后,上皮細(xì)胞表面標(biāo)志物E-cadherin和ZO-1的表達(dá)增加,間質(zhì)細(xì)胞表面標(biāo)志物N-cadherin和ZEB1表達(dá)減少,細(xì)胞形態(tài)從間質(zhì)樣細(xì)胞轉(zhuǎn)變成上皮樣細(xì)胞,誘發(fā)了EMT事件,促進(jìn)結(jié)直腸癌細(xì)胞轉(zhuǎn)移的發(fā)生。
2.1 LINC01133 LINC01133是一個長鏈非編碼RNA,定位在1q23.2。眾多研究表明,LINC01133可以通過結(jié)合EZH2和LSD1,并將它們募集到KLF2、P21和E-cadherin的啟動子區(qū),通過誘導(dǎo)這些區(qū)域的組蛋白甲基化和去甲基化,調(diào)控KLF2、P21和E-cadherin的表達(dá),從而調(diào)控EMT的過程[23]。此外,Kong等[24]研究發(fā)現(xiàn),通過芯片篩選,在用TGF-β誘導(dǎo)結(jié)直腸癌細(xì)胞樣品中,LINC01133表達(dá)下調(diào)。體外細(xì)胞實(shí)驗結(jié)果發(fā)現(xiàn),沉默LINC01133能減少E-cadherin的表達(dá),增加間質(zhì)細(xì)胞表面標(biāo)志物纖連蛋白和EMT相關(guān)轉(zhuǎn)錄因子TWIST的表達(dá),促進(jìn)EMT過程,使結(jié)直腸癌細(xì)胞獲得更強(qiáng)的遷移侵襲能力;另一方面,當(dāng)過表達(dá)LINC01133后,上述現(xiàn)象均相反。體內(nèi)實(shí)驗證實(shí),沉默LINC01133后,裸鼠肺轉(zhuǎn)移模型內(nèi)的肺轉(zhuǎn)移灶數(shù)目增加。進(jìn)一步研究證實(shí),LINC01133通過結(jié)合SR蛋白SRSF6,抑制了SRSF6對結(jié)直腸癌EMT和轉(zhuǎn)移的促進(jìn)作用。這些結(jié)果說明,LINC01133能夠抑制結(jié)直腸癌EMT事件的發(fā)生,降低細(xì)胞的運(yùn)動能力,抑制了結(jié)直腸癌的遠(yuǎn)處轉(zhuǎn)移。
2.2 SLC25A25-AS1 SLC25A25-AS1首先是Li等[25]通過GEO數(shù)據(jù)庫分析結(jié)直腸癌患者的表達(dá)譜,篩選出來的一個新的lncRNA。隨后發(fā)現(xiàn),在結(jié)直腸癌組織中SLC25A25-AS1的表達(dá)下調(diào)。進(jìn)一步研究發(fā)現(xiàn),SLC25A25-AS1能通過調(diào)控MAPK/Erk和MAPK/p38信號通路,增加E-cadherin的表達(dá),減少N-cadherin的表達(dá),從而抑制了結(jié)直腸癌細(xì)胞的EMT過程。
2.3 lncRNA-CTD903 lncRNA-CTD903也被稱作雙重同源盒A假基因9 (DUXAP9),位于14號染色體上。研究發(fā)現(xiàn),沉默CTD903后,上皮細(xì)胞表面標(biāo)志物表達(dá)減少,間質(zhì)細(xì)胞表面標(biāo)志物表達(dá)增加,結(jié)直腸癌細(xì)胞從上皮樣細(xì)胞形態(tài)轉(zhuǎn)變?yōu)殚g質(zhì)樣細(xì)胞形態(tài),增強(qiáng)了結(jié)直腸癌細(xì)胞的運(yùn)動能力,促進(jìn)了癌細(xì)胞的遷移侵襲。進(jìn)一步研究[26]發(fā)現(xiàn),下調(diào)CTD903能夠增強(qiáng)Wnt/β-catenin信號通路,從而激活結(jié)直腸癌細(xì)胞EMT的過程。EMT是腫瘤細(xì)胞發(fā)生遠(yuǎn)處轉(zhuǎn)移級聯(lián)反應(yīng)的第一步,也是腫瘤發(fā)生發(fā)展中一個重要現(xiàn)象。腫瘤細(xì)胞通過EMT,使自身的形態(tài)從上皮型轉(zhuǎn)變成間質(zhì)型,并且減少了周圍細(xì)胞間的連接,更加易于從原發(fā)灶脫離。如果當(dāng)前的研究能從腫瘤細(xì)胞EMT事件入手,在轉(zhuǎn)移的起始過程就抑制轉(zhuǎn)移的發(fā)生,無疑將對現(xiàn)在腫瘤復(fù)發(fā)轉(zhuǎn)移的治療有潛在的巨大作用。雖然已經(jīng)有大量的lncRNA被報道和EMT相關(guān),但是由于EMT現(xiàn)象背后的機(jī)制極其復(fù)雜,具體相互作用的機(jī)制還未完全研究透徹,因此有待進(jìn)一步的深入研究。
[1] Rashed HE, Hussein S, Mosaad H, et al. Prognostic significance of the genetic and the immunohistochemical expression of epithelial-mesenchymal-related markers in colon cancer[J]. Cancer Biomark, 2017,20(1):107-122.
[2] Lin JX, Tan X, Qiu L, et al. Long noncoding RNA BC032913 as a novel therapeutic target for colorectal cancer that suppresses metastasis by upregulating TIMP3[J]. Mol Ther Nucleic Acids, 2017,8:469-481.
[3] Li SP, Xu HX, Yu Y, et al. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway[J]. Oncotarget, 2016,7(27):42431-42446.
[4] Liu YW, Sun M, Xia R, et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer[J]. Cell Death Dis, 2015,6:e1802.
[5] Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010,329(5992):689-693.
[6] Wu ZH, Wang XL, Tang HM, et al. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer[J]. Oncol Rep, 2014,32(1):395-402.
[7] Dou J, Ni Y, He X, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells[J]. Am J Transl Res, 2016,8(1):98-108.
[8] Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J]. Oncogene, 2003,22(39):8031-8041.
[9] Li P, Zhang X, Wang H, et al. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2[J]. Mol Cancer Ther, 2017,16(4):739-751.
[10] Chen S, Bu D, Ma Y, et al. H19 overexpression induces resistance to 1,25(OH)2D3 by targeting VDR through miR-675-5p in colon cancer cells[J]. Neoplasia, 2017,19(3):226-236.
[11] Zhou W, Ye XL, Xu J, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b[J]. Sci Signal, 2017,10:483.
[12] Cao D, Ding Q, Yu W, et al. Long noncoding RNA SPRY4-IT1 promotes malignant development of colorectal cancer by targeting epithelial-mesenchymal transition[J]. Onco Targets Ther, 2016,9:5417-5425.
[13] Shen F, Cai WS, Feng Z, et al. Long non-coding RNA SPRY4-IT1 pormotes colorectal cancer metastasis by regulate epithelial-mesenchymal transition[J]. Oncotarget,2017,8(9):14479-14486.
[14] Wu XS, Wang F, Li HF, et al. LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis[J]. EMBO Rep, 2017,18(10):1837-1853.
[15] Sun J, Ding C, Yang Z, et al. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition[J]. J Transl Med, 2016,14:42.
[16] Wang L, Zhao Z, Feng W, et al. Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway [J]. Oncotarget, 2016,7(32):51713-51719.
[17] Zhao L, Sun H, Kong H, et al. The lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging miR-382[J]. Cell Physiol Biochem, 2017,42(6):2145-2158.
[18] Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues[J]. Int J Cancer, 2012,130(7):1598-1606.
[19] Ye Z, Zhou M, Tian B, et al. Expression of lncRNA-CCAT1, E-cadherin and N-cadherin in colorectal cancer and its clinical significance[J]. Int J Clin Exp Med, 2015,8(3):3707-3715.
[20] Cao Y, Shi H, Ren F, et al. Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer [J]. Exp Cell Res, 2017,359(1):185-194.
[21] Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma[J]. Cancer Cell, 2014,25(5):666-681.
[22] Yue B, Qiu S, Zhao S, et al. LncRNA-ATB mediated E-cadherin repression promotes the progression of colon cancer and predicts poor prognosis[J]. J Gastroenterol Hepatol, 2016,31(3):595-603.
[23] Zang CS, Nie FQ, Wang Q, et al. Long non-coding RNA LINC01133 represses KLF2, P21 and E-cadherin transcription through binding with EZH2, LSD1 in non small cell lung cancer [J]. Oncotarget, 2016,7(10):11696-11707.
[24] Kong J, Sun W, Li C, et al. Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6[J]. Cancer Lett, 2016,380(2):476-484.
[25] Li Y, Huang S, Li Y, et al. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells[J]. Tumour Biol, 2016,37(10):14205-14215.
[26] Yuan Z, Yu X, Ni B, et al. Overexpression of long non-coding RNA-CTD903 inhibits colorectal cancer invasion and migration by repressing Wnt/beta-catenin signaling and predicts favorable prognosis[J]. Int J Oncol, 2016,48(6):2675-2685.