王明瓊,李 超,李 沛,賈 浩,董 強(qiáng)
(1.西北農(nóng)林科技大學(xué)動(dòng)物醫(yī)學(xué)院,陜西楊陵 712100;2.西藏乃東區(qū)農(nóng)牧綜合服務(wù)中心,西藏乃東 856100;3.錯(cuò)那縣覺(jué)拉鄉(xiāng)人民政府,西藏錯(cuò)那 856700;4.瓊結(jié)縣瓊結(jié)鎮(zhèn)人民政府,西藏瓊結(jié) 856800;5.山南市動(dòng)物疫病預(yù)防控制中心,西藏山南 856000)
奶牛圍產(chǎn)期又稱(chēng)過(guò)渡期,通常指奶牛分娩前后各15 d[1],也有將其擴(kuò)大到分娩前后各21 d[2],甚至30 d[3]。群體監(jiān)測(cè)是指通過(guò)日常的生產(chǎn)參數(shù)或一些特定的危險(xiǎn)因素構(gòu)建畜群模型,以便達(dá)到對(duì)疾病未來(lái)的發(fā)展進(jìn)行預(yù)測(cè)和提前防治。對(duì)于奶牛個(gè)體而言,疾病的診斷是根據(jù)已有的特異性指標(biāo)閾值和/或臨床特征來(lái)進(jìn)行確診。然而對(duì)于奶牛群體水平的疾病監(jiān)測(cè),群體監(jiān)測(cè)相關(guān)指標(biāo)的閾值常常低于和/或高于奶牛個(gè)體的疾病閾值,這使得疾病的群體監(jiān)測(cè)不在是單純依靠個(gè)體奶牛指標(biāo)閾值進(jìn)行診斷和統(tǒng)計(jì),而是從群體的概念建立模型進(jìn)行群體的監(jiān)測(cè)和預(yù)警。有學(xué)者研究了一系列用于牛場(chǎng)生產(chǎn)性疾病的監(jiān)測(cè)和防控的方法,主要包括體況評(píng)分 (body condition score,BCS)管理、能量負(fù)平衡 (negative energy balance,NEB)、低血鈣癥、瘤胃健康和微量元素水平,該方法可廣泛應(yīng)用于牛場(chǎng)的各個(gè)部門(mén)[4]。營(yíng)養(yǎng)代謝狀態(tài)是圍產(chǎn)期奶牛酮病監(jiān)測(cè)的重要措施之一,其監(jiān)測(cè)主要包括能量負(fù)平衡、礦物元素狀態(tài)、日糧營(yíng)養(yǎng)和飼養(yǎng)管理等。
能量平衡是奶牛機(jī)體生產(chǎn)、繁殖和維持健康的重要保證。評(píng)價(jià)奶牛能量負(fù)平衡的指標(biāo)主要包括BCS和血液中葡萄糖(glucose,GLU)、β-羥丁酸(β-hydroxybutyric acid,BHBA)、游離脂肪酸 (nonesterified fatty acid,NEFA)等。圍產(chǎn)期保持理想的BCS是奶牛維持高產(chǎn)和健康的重要基礎(chǔ),也是奶牛場(chǎng)生產(chǎn)管理的重要部分。研究認(rèn)為,在干奶期奶牛BCS保持在2.75為適,分娩期以BCS≤3.0最佳,泌乳早期BCS下降范圍應(yīng)在0.25~0.5以?xún)?nèi)。產(chǎn)犢時(shí)BCS≥3.5可增加酮病的發(fā)病風(fēng)險(xiǎn),延長(zhǎng)首次受孕時(shí)間間隔和增加人工授精次數(shù)[5]。當(dāng)BCS較低時(shí)則可能減低奶牛的產(chǎn)奶量和再次生產(chǎn)的能力。血漿GLU是能量平衡的靈敏指標(biāo),其代謝受應(yīng)激和胰島素抵抗等多種因素的影響。產(chǎn)前30 d~15 d,奶牛血液GLU含量相對(duì)穩(wěn)定,產(chǎn)前10 d時(shí)急劇下降,分娩當(dāng)天達(dá)到最低水平[6]。研究表明[7],奶牛低血糖癥 (GLU<2.5 mmol/L)在整個(gè)圍產(chǎn)期具有較高的發(fā)病率,并且血液GLU與BHBA和NEFA呈顯著負(fù)相關(guān)。國(guó)內(nèi)外研究者認(rèn)為,血清中BHBA>1.2 mmol/L,泌乳早期牛奶中BHBA>0.15 mmol/L被診斷為酮病[8]。測(cè)定血清中BHBA比乙酰乙酸、丙酮、尿酮和乳酮具有更高的準(zhǔn)確性和敏感性。BHBA和NEFA被認(rèn)為是能量負(fù)平衡的標(biāo)志物,能量負(fù)平衡的在產(chǎn)前和產(chǎn)后血清BHBA和NEFA的濃度范圍為:在奶牛個(gè)體水平,產(chǎn)前血清BHBA>0.6 mmol/L~0.8 mmol/L、NEFA>0.3 mEq/L~0.5 mEq/L,產(chǎn)后血清BHBA>1.0 mmol/L~1.4 mmol/L、NEFA>0.7 mEq/L~1.0 mEq/L;在牛群水平,超過(guò)15%~25%個(gè)體奶牛BHBA和NEFA的濃度超過(guò)個(gè)體水平的范圍[9]。但是這種方法對(duì)群體水平的能量負(fù)平衡狀態(tài)進(jìn)行評(píng)估的敏感性受諸多因素的限制,例如在較小的牛群樣本中其敏感性較低。也有研究者提出,將10頭奶牛的血清等分混合,檢測(cè)NEFA和BHBA的濃度以監(jiān)測(cè)診斷群體亞臨床酮病(subclinical ketosis,SCK)的患病率[10],但這種方法存在局限性。研究報(bào)道,在產(chǎn)犢后第1周血清中NEFA≥1.0 mmol/L和BHBA≥1.2 mmol/L時(shí),奶牛發(fā)生臨床酮病的風(fēng)險(xiǎn)分別高達(dá)6.3倍和4.7倍[11]。在產(chǎn)后7 d~21 d,奶牛血清中BHBA為1.2 mmol/L~2.9 mmol/L時(shí),奶牛發(fā)情表現(xiàn)和發(fā)情活動(dòng)降低,產(chǎn)犢后第一次發(fā)情期和懷孕間隔延長(zhǎng)[12]。血液NEFA的積累可引發(fā)亞急性炎癥,而持續(xù)的亞急性炎癥又反饋性地加強(qiáng)脂肪動(dòng)員進(jìn)而加重代謝應(yīng)激,誘發(fā)酮病的發(fā)生[13]。曹宇等[14]通過(guò)對(duì)產(chǎn)后14 d~21 d的奶牛研究發(fā)現(xiàn),酮病奶牛血漿中對(duì)氧磷酶1 (paraoxonase1,PON1)活性和含量顯著降低,并提出其可作為預(yù)測(cè)奶牛酮病發(fā)病風(fēng)險(xiǎn)的評(píng)估指標(biāo)。血漿代謝組學(xué)研究表明,酮病奶牛血液中與氨基酸、脂肪和碳水化合物相關(guān)的代謝產(chǎn)物存在差異,說(shuō)明奶牛酮病血液學(xué)監(jiān)測(cè)應(yīng)以能量代謝相關(guān)產(chǎn)物為主[15-16]。同時(shí),利用人工神經(jīng)網(wǎng)絡(luò) (artificial neural networks,ANN)方法構(gòu)建預(yù)測(cè)模型的結(jié)果顯示,基于代謝以及牛奶參數(shù)的模型的預(yù)測(cè)性能高于基于遺傳信息的模型[17],表明監(jiān)測(cè)代謝產(chǎn)物進(jìn)行奶牛酮病的預(yù)測(cè)預(yù)警可能更有效。
礦物元素在奶牛機(jī)體的許多生理生化過(guò)程中發(fā)揮重要作用。如維持奶牛機(jī)體的酸堿平衡、維生素合成、骨骼發(fā)育、酶的活性和細(xì)胞正常功能的發(fā)揮等都需要礦物元素的參與。圍產(chǎn)期奶牛血液中Ca、P、K、Mg等礦物元素的含量與低鈣血癥、低鎂血癥和倒地不起等疾病的發(fā)生有關(guān)。但是,血液中多數(shù)礦物元素的濃度受到內(nèi)環(huán)境協(xié)調(diào)控制機(jī)制的嚴(yán)格調(diào)控。由于正常情況下,奶牛機(jī)體具有完整的調(diào)控系統(tǒng),因此測(cè)定血液中一些礦物元素的濃度并不能反映日糧狀態(tài)。研究發(fā)現(xiàn)泌乳奶牛通過(guò)泌乳損失的Ca>5 g/d[3]。當(dāng)泌乳損失的Ca不能由骨Ca和日糧中的Ca補(bǔ)充時(shí),總血Ca≤2.0 mmol/L,會(huì)引起低鈣血癥。而奶牛Ca為1.7 mmol/L~2.2 mmol/L,無(wú)明顯臨床癥狀時(shí),判定奶牛患亞臨床低血鈣癥[18]。日糧陽(yáng)離子平衡 (dietary cation-anion balance,DCAB)[(Na+K)-(Cl+S)]主要集中于奶牛產(chǎn)前日糧中K的水平上。如果日糧總K>1.8%,低鈣血癥是很難控制的[19]。熱應(yīng)激條件下,當(dāng)飼糧DCAB在177.77 mEq/kg DM以下時(shí),可降低奶牛的呼吸頻率、緩解熱應(yīng)激、增加血清Ca濃度[20]。圍產(chǎn)前期飼喂陰離子鹽顆粒飼料可有效維持血鈣平衡[21]。使用DCAB預(yù)防低鈣血癥的策略是尿液pH 6~6.8,干奶牛尿液pH監(jiān)測(cè)應(yīng)接近6.8[19]。研究報(bào)道[22],妊娠奶牛日糧中P含量從0.3%增加到0.4%可增加低鈣血癥的發(fā)病風(fēng)險(xiǎn),而添加Mg補(bǔ)充劑可有效預(yù)防奶牛低鈣血癥。研究指出[22],預(yù)防低鈣血癥的關(guān)鍵監(jiān)測(cè)標(biāo)準(zhǔn)是妊娠奶牛日糧中Mg含量低于0.4% DM,P含量低于0.3%。產(chǎn)犢后7 d內(nèi)監(jiān)測(cè)血液中Mg濃度是有用的,產(chǎn)犢后24 h~48 h血液中Mg的理想范圍為0.8 mmol/L~1.3 mmol/L[23]。有學(xué)者提出,產(chǎn)犢后12 h~24 h采集奶牛血液樣品檢測(cè)Ca濃度進(jìn)行亞臨床低鈣血癥的監(jiān)測(cè)方法,總血Ca濃度低于2.0 mmol/L[24]。
妊娠晚期和泌乳早期干物質(zhì)采食量 (dry matter intake,DMI) 不足引起的NEB,容易誘發(fā)SCK[25]。研究表明[26-27],圍產(chǎn)期日糧中的能量、粗蛋白 (crude protein,CP)、中性洗滌纖維 (neutral detergent fiber,NDF)濃度與奶牛酮病和奶牛健康密切相關(guān)。研究提出,在產(chǎn)后8周內(nèi)日糧應(yīng)提供奶牛95%的能量需求[28]。在大多數(shù)情況下,飼糧中粗脂肪 (ether extract,EE)總量不應(yīng)超過(guò)干物質(zhì) (dry matte,DM)的6%~7%,飼喂高濃度EE可導(dǎo)致DMI降低[29]。圍產(chǎn)期對(duì)奶牛進(jìn)行日糧限制可誘導(dǎo)血液中BHBA和NEFA濃度增加,GLU濃度降低,甘油三酯 (triacylglycerol,TG)含量增多,并上調(diào)肝臟中細(xì)胞因子信號(hào)傳導(dǎo),脂肪酸攝取/運(yùn)輸,脂肪酸氧化相關(guān)的基因和核受體[30]。圍產(chǎn)前期(產(chǎn)前21 d內(nèi))飼糧CP的適宜水平為13.07%[31]。酮病奶牛的抗氧化能力顯著降低[32],產(chǎn)后1周內(nèi)日糧硒含量為0.45 mg/kg DM時(shí),可顯著改善酮病奶牛機(jī)體的抗氧化能力[33]。研究表明,每頭奶牛日糧中添加3.5 g/d煙酸可有效降低酮病的發(fā)病率和增加DMI[34]。圍產(chǎn)期奶牛存在不同程度的胰島素抵抗 (insulin resistance,IR)[35],使用預(yù)防性飼料添加劑增強(qiáng)胰島素敏感性,用以預(yù)防酮病的方法還有待進(jìn)一步研究[36]。
飼養(yǎng)管理直接影響奶牛的生產(chǎn)性能和健康狀態(tài)。在生產(chǎn)實(shí)際中,奶牛的品種、年齡、胎次、季節(jié)、飼養(yǎng)密度、干奶天數(shù)、飼喂方式、活動(dòng)規(guī)律等均可影響奶牛的健康[37-38]。通過(guò)改善日糧制備和可利用性的管理可影響圍產(chǎn)期疾病的發(fā)病風(fēng)險(xiǎn)[39]。干奶期通常指奶牛妊娠的最后2個(gè)月,一般為45 d~75 d,以60 d為佳。干奶期過(guò)長(zhǎng)或日糧營(yíng)養(yǎng)過(guò)剩,易導(dǎo)致奶牛體況過(guò)肥,使得奶牛食欲下降,干物質(zhì)采食量降低,從而增加酮病的發(fā)病風(fēng)險(xiǎn)[40]。通過(guò)對(duì)高發(fā)病率(酮病)牛群研究發(fā)現(xiàn)[41],泌乳早期隔間與自動(dòng)擠奶系統(tǒng) (automatic milking system,AMS)模式發(fā)病率低于隔間與擠奶廳的模式,妊娠后期育成牛隔間飼養(yǎng)發(fā)病率高于圍欄飼養(yǎng);干奶牛與育成牛在同一圈舍的發(fā)病率高于分開(kāi)飼養(yǎng);全混合日糧 (total mixed ration,TMR)飼養(yǎng)發(fā)病率高于組分飼養(yǎng);泌乳奶牛日糧個(gè)體飼養(yǎng)發(fā)病率高于群體飼養(yǎng);泌乳牛每個(gè)空間多于1頭牛時(shí)發(fā)病率增加;此外,牛群規(guī)模、環(huán)境衛(wèi)生等均對(duì)酮病的發(fā)病率有影響。研究表明,奶牛的行為數(shù)據(jù)(如站立和躺臥的時(shí)間)監(jiān)測(cè)可用于產(chǎn)后SCK早期預(yù)測(cè)[42]?;加蠸CK的多胎奶牛與健康奶牛相比,在產(chǎn)后3周和4周躺臥時(shí)間分別延長(zhǎng)44 min/d±16.7 min/d和41 min/d±18.9 min/d[43]。產(chǎn)前2周至產(chǎn)后4周,健康奶牛反芻時(shí)間平均為459 min/d±11.3 min/d,而酮病奶牛的反芻時(shí)間比健康奶牛縮短25 min/d±12.8 min/d[44]。干奶前期飼喂燕麥草可降低奶牛產(chǎn)后酮病的發(fā)病率[45]。
奶牛酮病的發(fā)生通常受多種因素(如農(nóng)場(chǎng)管理、日糧營(yíng)養(yǎng)等)的影響,對(duì)奶牛群體的營(yíng)養(yǎng)狀態(tài)進(jìn)行監(jiān)測(cè),從而達(dá)到預(yù)測(cè)預(yù)警疾病的發(fā)生是極具挑戰(zhàn)性的。定期對(duì)畜群進(jìn)行抽樣調(diào)查,了解各種營(yíng)養(yǎng)物質(zhì)代謝情況;正確地評(píng)估或預(yù)測(cè)畜體的營(yíng)養(yǎng)需要,合理調(diào)配日糧;篩選疾病的監(jiān)測(cè)指標(biāo),構(gòu)建科學(xué)的監(jiān)測(cè)指標(biāo)體系,確定合理的指標(biāo)閾值,開(kāi)展?fàn)I養(yǎng)代謝狀態(tài)的監(jiān)測(cè),在預(yù)測(cè)預(yù)警酮病、脂肪肝和亞臨床低鈣血癥等生產(chǎn)性疾病中具有重要意義。然而,單一監(jiān)測(cè)指標(biāo)因提供的有用信息不同,其疾病發(fā)生的預(yù)測(cè)精度也會(huì)不同。將多個(gè)指標(biāo)以某種方式進(jìn)行適當(dāng)?shù)慕M合,綜合利用每一個(gè)指標(biāo)所提供的信息,進(jìn)行組合預(yù)測(cè),可使疾病發(fā)生的預(yù)測(cè)精確度和可靠度有較大提高。
參考文獻(xiàn):
[1] 王 博.奶牛圍產(chǎn)期酮病和乳熱的早期預(yù)警體系的研究 [D].黑龍江大慶:黑龍江八一農(nóng)墾大學(xué),2014.
[2] Quiroz-Rocha G F,LeBlanc S J,Duffield T F,et al.Reference limits for biochemical and hematological analytes of dairy cows one week before and one week after parturition [J].Can Vet J,2009,50(4):383.
[3] DeGaris P J,Lean I J.Milk fever in dairy cows:A review of pathophysiology and control principles [J].Vet J,2008,176(1):58-69.
[4] Mulligan F,O’Grady L,Rice D,et al.A herd health approach to dairy cow nutrition and production diseases of the transition cow [J].An Reprod Sci,2006,96(3):331-353.
[5] Gillund P,Reksen O,Gr?hn Y,et al.Body condition related to ketosis and reproductive performance in Norwegian dairy cows [J].J Dairy Sci,2001,84(6):1390-1396.
[6] 嚴(yán) 磊,王家晶,姚璐連,等.圍產(chǎn)期奶牛血清糖、脂代謝變化的研究 [J].畜牧與獸醫(yī),2017,49(2):119-120.
[7] 李國(guó)鵬.圍產(chǎn)期奶牛低血糖癥,高酮血癥,亞臨床低鈣血癥血液生化指標(biāo)的監(jiān)測(cè) [D].吉林長(zhǎng)春:吉林大學(xué),2015.
[8] Tatone E H,Duffield T F,LeBlanc S J,et al.Investigating the within-herd prevalence and risk factors for ketosis in dairy cattle in Ontario as diagnosed by the test-day concentration of β-hydroxybutyrate in milk [J].J Dairy Sci,2017,100(2):1308-1318.
[9] Ospina P A,Mcart J A,Overton T R.Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance [J].Vet Clin North Am Food Anim Prac,2013,29(2):387-412.
[10] Borchardt S,Staufenbiel R.Evaluation of the use of nonesterified fatty acids and β-hydroxybutyrate concentrations in pooled serum samples for herd-based detection of subclinical ketosis in dairy cows during the first week after parturition [J].J Am Vet Med Asso,2012,240(8):1003-1011.
[11] Seifi H A,LeBlanc S J,Leslie K E,et al.Metabolic predictors of post-partum disease and culling risk in dairy cattle [J].Vet J,2011,188(2):216-220.
[12] Rutherford A J,Oikonomou G,Smith R F.The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle [J].J Dairy Sci,2016,99(6):4808.
[13] 弓 劍,曉 敏.圍產(chǎn)期奶牛炎癥反應(yīng)及其與免疫和能量代謝的關(guān)系 [J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(9):2667-2672.
[14] 曹 宇,張 江,楊 威,等.血漿對(duì)氧磷酶 1 在奶牛酮病中的變化及其預(yù)測(cè)作用 [J].中國(guó)獸醫(yī)雜志,2016,52(11):38-39.
[15] Wang Y,Gao Y,Xia C,et al.Pathway analysis of plasma different metabolites for dairy cow ketosis [J].Italian J An Sci,2016,15(3):545-551.
[16] Ametaj B,Zhang G,Dervishi E,et al.DI/LC-MS/MS-based metabolomics identifies early predictive serum biomarkers for ketosis in dairy cows [J].J Anim Sci,2016,94(S5):72-72.
[17] Ehret A,Hochstuhl D,Krattenmacher N,et al.Short communication:Use of genomic and metabolic information as well as milk performance records for prediction of subclinical ketosis risk via artificial neural networks [J].J Dairy Sci,2015,98(1):322-329.
[18] 舒 適,夏 成,張洪友,等.乳熱奶牛與亞臨床低血鈣奶牛的血漿理化指標(biāo)檢測(cè) [J].畜牧與獸醫(yī),2013,45(12):79-81.
[19] Zhang J,Fan Z,Wang G,et al.Overview of milk fever and subclinical hypocalcemia in daily cows [J].Asian Case Rep Vet Med,2016,5(3):20-26.
[20] 臧長(zhǎng)江,潘 榕,郭同軍,等.飼糧陰陽(yáng)離子平衡對(duì)熱應(yīng)激奶牛機(jī)體礦物質(zhì)代謝的影響 [J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(12):3625-3634.
[21] 常 譽(yù),焦 陽(yáng),黃文明,等.陰離子鹽對(duì)圍產(chǎn)期奶牛健康和生產(chǎn)性能的影響 [J].中國(guó)畜牧獸醫(yī),2017,44(1):80-86.
[22] Lean I,DeGaris P,McNeil D,et al.Hypocalcemia in dairy cows:meta-analysis and dietary cation anion difference theory revisited [J].J Dairy Sci,2006,89(2):669-684.
[23] Whitaker D.Interpretation of metabolic profiles in dairy cows [J].Cattle Prac (United Kingdom),1997,5(1):57-60.
[24] Oetzel G R.Monitoring and testing dairy herds for metabolic disease [J].Vet Clin North Am Food Anim Pract,2004,20(3):651-674.
[25] Goldhawk C,Chapinal N,Veira D,et al.Prepartum feeding behavior is an early indicator of subclinical ketosis [J].J Dairy Sci,2009,92(10):4971-4977.
[26] Mandebvu P,Ballard C,Sniffen C,et al.Effect of feeding an energy supplement prepartum and postpartum on milk yield and composition,and incidence of ketosis in dairy cows [J].Anim Feed Sci Technol,2003,105(1):81-93.
[27] Dann H,Carter M,Cotanch K,et al.Effect of partial replacement of forage neutral detergent fiber with by-product neutral detergent fiber in close-up diets on periparturient performance of dairy cows [J].J Dairy Sci,2007,90(4):1789-1801.
[28] McNamara S,Murphy J,Rath M,et al.Effects of different transition diets on energy balance,blood metabolites and reproductive performance in dairy cows [J].Livestock Prod Sci,2003,84(3):195-206.
[29] NRC (National Research Council).Nutrient requirements of dairy cattle (7th Revised Edition) [M].Washington,DC:National Academy Sci,2001.
[30] Loor J J,Everts R E,Bionaz M,et al.Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows [J].Physiol Genomics,2007,32(1):105-116.
[31] 劉 薇,李 妍,高艷霞,等.圍產(chǎn)前期飼糧粗蛋白質(zhì)水平對(duì)荷斯坦經(jīng)產(chǎn)奶牛產(chǎn)后生產(chǎn)性能和血液指標(biāo)的影響 [J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016(2):598-608.
[32] 楊 丹,王 哲,李心慰,等.圍產(chǎn)期酮病奶牛與健康奶牛相關(guān)氧化狀態(tài)分析比較 [J].中國(guó)畜牧獸醫(yī)文摘,2017(3):65-66.
[33] 周媛麗,葉耿坪,劉光磊.飼糧硒含量對(duì)酮病奶牛氧化應(yīng)激的緩解作用 [J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(12):4029-4035.
[34] Havlin J M,Robinson P H,Garrett J E.Niacin feeding to fresh dairy cows:immediate effects on health and milk production [J].Anim Prod Sci,2017,57.
[35] Youssef M,El-Ashker M.Significance of insulin resistance and oxidative stress in dairy cattle with subclinical ketosis during the transition period [J].Trop Anim Health Prod,2017,1-6.
[36] Youssef M A,El-Ashker M R,Younis M S.The effect of subclinical ketosis on indices of insulin sensitivity and selected metabolic variables in transition dairy cattle [J].Comparative Clin Pathol,2016,1-6.
[37] Berge A C,Vertenten G.A field study to determine the prevalence,dairy herd management systems,and fresh cow clinical conditions associated with ketosis in western European dairy herds [J].J Dairy Sci,2014,97(4):2145-2154.
[38] Daros R,H?tzel M,LeBlanc S,et al.Risk factors for subclinical ketosis in grazing dairy herds in Brazil [J].J Anim Sci,2016,94(supp 5):55-56.
[39] Van Saun R.Indicators of dairy cow transition risks:metabolic profiling revisited [J].Tier?rztliche Praxis Gro?tiere,2016,44(2):118-126.
[40] 蔡高占.干奶期日糧能量水平對(duì)奶牛生產(chǎn)性能及代謝影響的研究 [D].山東泰安:山東農(nóng)業(yè)大學(xué),2015.
[41] Steng?rde L,Hultgren J,Tr?vén M,et al.Risk factors for displaced abomasum or ketosis in Swedish dairy herds [J].Prev Vet Med,2012,103(4):280-286.
[42] Rodriguez-Jimenez S,Haerr K,Loor J,et al.The use of prepartal standing behavior as a parameter for early detection of subclinical ketosis in postpartal dairy cows [J].J Anim Sci,2017,95(S2):9-9.
[43] Kaufman E,LeBlanc S,McBride B,et al.Short communication:Association of lying behavior and subclinical ketosis in transition dairy cows [J].J Dairy Sci,2016,99(9):7473-7480.
[44] Kaufman E,LeBlanc S,McBride B,et al.Association of rumination time with subclinical ketosis in transition dairy cows [J].J Dairy Sci,2016,99(7):5604.
[45] 李明華,李錫智,周玉財(cái),等.干奶前期飼喂燕麥草對(duì)奶牛圍產(chǎn)后期生產(chǎn)性能的影響 [J].中國(guó)奶牛,2016,31(7):11-14.