李繼娟,張 敏
(河南省焦作市動(dòng)物疫病預(yù)防控制中心,河南 焦作 454003)
雞傳染性法氏囊?。↖nfectious bursal disease,IBD)是由法氏囊病毒(IBDV)引起的一種免疫抑制性傳染病,主要表現(xiàn)為急性、熱性、高度接觸性[1]。該病可引起感染雞群較高的死亡率,IBDV的早期感染會(huì)引起長(zhǎng)期、嚴(yán)重的免疫抑制[2],也會(huì)引起壞死性皮炎、包涵體肝炎、貧血綜合征和大腸埃希菌感染的并發(fā)或繼發(fā)感染[3-7],從而引起其他疾病的免疫失敗[8-9]。防控該病的主要措施是免疫接種[10]。近年來,IBDV在臨床發(fā)病呈現(xiàn)出新的特點(diǎn)勢(shì)[11-13],一年四季均可發(fā)病,病變呈現(xiàn)非典型性,臨床無明顯發(fā)病癥狀,發(fā)病率較高,死亡率較低。同時(shí)由于疫苗的使用、免疫程序的混亂、環(huán)境污染嚴(yán)重,使得IBDV的毒力和抗原均發(fā)生了變異,給診斷和防治帶來了一定的困難[14-16]。因此,加強(qiáng)IBDV診斷技術(shù)和分子流行病學(xué)監(jiān)測(cè)方法的研究,對(duì)防控IBD有重要的意義,建立快速、敏感、特異的診斷方法是有效防控該病的關(guān)鍵。
本研究選取IBDV的高度保守序列,建立IBDV的RT-PCR檢測(cè)分子診斷方法,旨在為IBDV的分子診斷提供一種快速、準(zhǔn)確的檢測(cè)方法,為IBDV流行病學(xué)的調(diào)查研究奠定基礎(chǔ)。
1.1 供試病料 法氏囊病病毒(IBDV)、新城疫病毒(NDV)、雞傳染性喉氣管炎病毒(ILTV)、馬立克病病毒(MDV)、禽流感病毒(AIV),均由實(shí)驗(yàn)室分離保存。Taq酶、Trizol試劑、反轉(zhuǎn)錄酶,氯化鎂,限制性內(nèi)切酶、RNA提取試劑盒、質(zhì)粒提取試劑盒等,購自大連寶生物股份工程有限公司。
1.2 引物的設(shè)計(jì)與合成 根據(jù)GenBank中發(fā)表的IBDV SH95毒株A片段mRNA序列,選取IBDV的保守區(qū)序列進(jìn)行引物設(shè)計(jì),由上海生物工程有限公司合成引物。上游引物5’-GGTATGTGAGGCTTGGTGAC-3’,下游引物5’-GATCCTGTTGCCACTCTTTC-3’。
1.3 病毒基因組RRNNAA的提取及ccDDNNAA的合成 采用柱式法提取RNA,按照試劑盒操作步驟提取。取RNA 2 μL反轉(zhuǎn)錄成cDNA保存?zhèn)溆谩?/p>
1.4 RTT--PPCCRR反應(yīng)條件的篩選及優(yōu)化
1.4.1 模板用量的確定分別以2、4、6、8、10 μL RNA為模板,進(jìn)行RT-PCR擴(kuò)增反應(yīng)。
1.4.2 引物濃度反應(yīng)體系為25 μL,分別加入2、4、6、8、10 和 12 μL(20 μmol/μL)引物,進(jìn)行PCR擴(kuò)增反應(yīng)。
1.4.3 退火溫度的確定,分別取52、53、54、55、56和57℃作為PCR反應(yīng)的退火溫度。
1.5 擴(kuò)增及產(chǎn)物鑒定 反應(yīng)體系為25 μL,根據(jù)反應(yīng)條件篩選及優(yōu)化條件,模板用量為4 μL,引物用量為2 μL,退火溫度為 55 ℃,Taq(5 U/μL)0.5 μL,10×Ex Taq Buffer 12 μL,dNTP(2.5 mmol/L)3 μL,引物(20 μmol/μL)各 2 μL,cDNA 5 μL,加DEPC水至50 μL。PCR反應(yīng)條件是:94℃預(yù)變性3 min;94℃變性2 min,57℃退火1 min,72℃延伸3 min,3個(gè)循環(huán);72℃延伸5 min。
取10 μL PCR擴(kuò)增產(chǎn)物,與Loading Buffer混勻,l%瓊脂糖凝膠電泳,以DNA分子量標(biāo)準(zhǔn)(DL 2000)做參考,120 V電壓條件下電泳,結(jié)束后用凝膠成像系統(tǒng)觀察拍照分析。根據(jù)電泳結(jié)果對(duì)擴(kuò)增產(chǎn)物的大小進(jìn)行初步鑒定。用膠回收試劑盒回收目的片段。將回收產(chǎn)物進(jìn)行克隆與轉(zhuǎn)化。挑取出白色的菌落,采取α互補(bǔ)法對(duì)其質(zhì)粒進(jìn)行初步篩選,之后按質(zhì)粒提取試劑盒進(jìn)行提取。將陽性克隆送至大連寶生物有限公司進(jìn)行測(cè)序鑒定并進(jìn)行比對(duì)分析。
1.6 特異性試驗(yàn) 分別用IBDV、ILTV、NDV、MDV、AIV的基因組DNA或RNA,按照上述方法進(jìn)行擴(kuò)增。
1.7 PPCCRR敏感性試驗(yàn) 將RNA定量,并依次10倍稀釋,使其為 1 μg RNA,0.1 μg RNA,10 pg RNA,10-1pg RNA, 10-2pg RNA, 10-3pg RNA, 10-4pg RNA,10-5pg RNA,10-6pg RNA,10-7pg RNA,10-8pg RNA,10-9pg RNA。分別進(jìn)行反轉(zhuǎn)錄合成cDNA,進(jìn)行PCR擴(kuò)增。
1.8 PPCCRR重復(fù)性試驗(yàn) 用優(yōu)化后的方法對(duì)病料進(jìn)行重復(fù)性檢測(cè),判斷其重復(fù)性和穩(wěn)定性。
1.9 臨床應(yīng)用 利用上述建立的檢測(cè)方法對(duì)臨床病料進(jìn)行檢測(cè)與鑒定。
2.1 RRTT--PPRR擴(kuò)增產(chǎn)物的檢測(cè)
2.1.1 凝膠檢測(cè)擴(kuò)增產(chǎn)物用1.5%的凝膠進(jìn)行電泳,如圖1所示,目的條帶為610 bp,與預(yù)期大小相條帶一致。
2.1.2 酶切鑒定用凝膠回收試劑盒回收目的條帶,與克隆載體連接克隆,然后酶切鑒定,可見目的條帶,說明克隆載體構(gòu)建成功。
圖 1RT-PCR擴(kuò)增結(jié)果Fig.1 RT-PCR amplification result
2.1.3 擴(kuò)增產(chǎn)物的測(cè)序鑒定挑取EcoRⅠ和HindⅢ雙切酶鑒定正確的陽性菌液進(jìn)行測(cè)序。測(cè)序結(jié)果表明,與IBDV序列一致。
2.2 特異性試驗(yàn)結(jié)果 應(yīng)用建立的方法對(duì)樣本進(jìn)行擴(kuò)增,法氏囊病病毒擴(kuò)增出了610 bp的目的片段,而其他樣品均未擴(kuò)增出條帶,說明本方法特異性較好(圖2)。
2.3 敏感性試驗(yàn) 從圖3可以看出,靈敏度可達(dá)10 pg RNA。
2.4 重復(fù)性試驗(yàn) 用建立的方法對(duì)樣本進(jìn)行重復(fù)性檢測(cè),結(jié)果完全一致,具有較好的重復(fù)性和穩(wěn)定性。
2.5 臨床應(yīng)用 應(yīng)用上述建立的方法對(duì)臨床樣本進(jìn)行檢測(cè),結(jié)果顯示,檢出陽性樣品6份(圖4),將陽性樣品的PCR擴(kuò)增產(chǎn)物測(cè)序后比對(duì)均為IBDV。
圖2 RT-PCR特異性試驗(yàn)Fig.2 RT-PCR specificity test
圖3 PCR敏感性試驗(yàn)結(jié)果Fig.3 PCR sensitivity test results
圖4 臨床樣品的檢測(cè)結(jié)果Fig.4 Detection results of clinical samples
雞傳染性法氏囊病病毒主要侵害3~12周齡雛雞以及青年雞,對(duì)雞的法氏囊器官起到侵害作用,從而導(dǎo)致雞的免疫抑制,降低機(jī)體對(duì)其他致病因子如新城疫、球蟲病等的抵抗力[18-21]。因此,應(yīng)該加強(qiáng)對(duì)本病的檢測(cè),對(duì)養(yǎng)雞較集中的地區(qū),要定期抽樣檢測(cè)雞傳染性法氏囊病病毒的感染情況,及時(shí)淘汰感染雞群,降低發(fā)病率。自20世紀(jì)80年代以來,由于疫苗的大量應(yīng)用,病毒的毒力及抗原發(fā)生變異,傳染性法氏囊病在臨床癥狀、病理變化及常規(guī)的實(shí)驗(yàn)室檢驗(yàn)很難檢測(cè)出來[22-28]。另外,IBD所引起的細(xì)菌繼發(fā)性感染或者與其他病毒的混合感染較為普遍,臨床表現(xiàn)也更復(fù)雜多樣[29-30]。為了避免該RTPCR檢測(cè)方法出現(xiàn)假陽性結(jié)果,應(yīng)該結(jié)合臨床癥狀、組織病變和流行病學(xué)等手段進(jìn)行綜合診斷。相對(duì)于我國目前常用的雞傳染性法氏囊病檢測(cè)技術(shù),如酶聯(lián)免疫吸附試驗(yàn)、間接免疫熒光、原位雜交、免疫組織化學(xué)等,RT-PCR檢測(cè)具有快速、敏感、準(zhǔn)確、特異性等優(yōu)點(diǎn)。同時(shí),有很多因素會(huì)影響到RT-PCR的檢測(cè)結(jié)果,本研究針對(duì)RT-PCR反應(yīng)的條件進(jìn)行了篩選與優(yōu)化。
本研究建立的RT-PCR檢測(cè)方法,該方法僅對(duì)IBDV能擴(kuò)增出610 bp的特異性片段,而對(duì)ILTV、NDV、MDV和AIV的檢測(cè)結(jié)果均為陰性,說明其具有良好的特異性。此外,本試驗(yàn)通過反轉(zhuǎn)錄、RT-PCR擴(kuò)增兩步法獲得較為滿意的擴(kuò)增結(jié)果,所需時(shí)間較短,操作程序較為簡(jiǎn)便,價(jià)格較為低廉,為IBD的診斷和流行病學(xué)的研究提供了一種簡(jiǎn)便有效的方法。
[1] Zhang L,Ren X,Chen Y,et al.Chondroitin sulfate Nacetylgalactosaminyltransferase-2 contributes to the replication of infectious bursal disease virus via interaction with the capsid proteinVP2[J].Viruses,2015, 7(3):1474-1491.
[2] Yu X,Rui L,Shao Q,et al.Changes of CD4+CD25+cells ratio in immune organs from chickens challenged with infectious bursal disease virus strains with varying virulences[J].Viruses,2015,7(3):1357-1372.
[3] Yasmin AR,Yeap SK,Tan SW,et al.In vitro characterization of chicken bone marrow-derived dendritic cells following infection with very virulent infectious bursal disease virus[J].Avian Pathol,2015,44(6):452-462.
[4] Vera F,Craig MI,Olivera V,et al.Molecular characterization of infectious bursal disease virus(IBDV)isolated in Argentina indicates a regional lineage[J]. Arch Virol, 2015, 160(8):1909-1921.
[5] Smith J,Sadeyen JR,Butter C,et al.Analysis of the early immune response to infection by infectious bursal disease virus in chickens differing in their resistance to the disease[J].J Virol,2015,89(5):2469-2482.
[6] Sahare AA,Bedekar MK,Jain SK,et al.Inhibition of infectious bursal disease virus by vector delivered SiRNA in cell culture[J].Anim Biotechnol,2015,26(1):58-64.
[7]Rani S,Kumar S.Evaluation of infectious bursal disease virus stability at different conditions of temperature and pH[J]. Biologicals,2015,43(6):515-518.
[8] Qi X,Wang Y,Gao L,et al.Development and application of the reverse genetic technologies for infectious bursal disease virus[J].Bing Du Xue Bao,2015,31(3):326-331.
[9] Owolodun OA,Yakubu B,Jambol AR,et al.Further evidence for very virulent infectious bursaldisease virusinvaccinated chickens in Nigeria[J].Trop Anim Health Prod,2015,47(7):1437-1441.
[10] Lin W,Zhang Z,Xu Z,et al.The association of receptor of activated protein kinase C 1(RACK1)with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2(VDAC2)inhibits apoptosis and enhances viral replication[J].J Biol Chem,2015,290(13):8500-8510.
[11] Liang J,Yin Y,Qin T,et al.Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus[J].Vet Immunol Immunopathol,2015,164(1-2):51-55.
[12] Li Z,Qi X,Ren X,et al.Molecular characteristics and evolutionary analysis of a very virulent infectious bursal disease virus[J].Sci China Life Sci,2015,58(8):731-738.
[13] Li Y,He L,Cheng X,et al.Histamine levels in embryonic chicken livers infected with very virulent infectious bursal disease virus[J].Vet Immunol Immunopathol,2015,168(1-2):91-96.
[14] Lee CC,Wu CC,Lin TL.Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages[J].Arch Virol,2015,160(12):3021-3035.
[15] Lee CC,Kim BS,Wu CC,et al.Bursal transcriptome of chickens protected by DNA vaccinationversusthosechallengedwithinfectiousbursaldisease virus[J].ArchVirol,2015,160(1):69-80.
[16] Kumar S.DNA vaccine against infectious bursal disease virus:still more to explore[J].Vet Microbiol,2015,175(2-4):389-390.
[17] Kumar CS,Hazarika NM,Kumar S.Analysis of synonymous codon usage in the VP2 protein gene of infectious bursal disease virus[J].Arch Virol,2015,160(9):2359-2366.
[18] Hornyak A,Lipinski KS,Bakonyi T,et al.Effective multiple oral administration of reverse genetics engineered infectious bursal disease virus in mice in the presence of neutralizing antibodies[J].J Gene Med,2015,17(6-7):116-131.
[19] Hernandez M,Tomas G,Marandino A,et al.Genetic characterization of South American infectious bursal disease virus reveals the existence of a distinct worldwide-spread genetic lineage[J]. Avian Pathol, 2015, 44(3):212-221.
[20] Gimenez MC, Rodriguez Aguirre JF, Colombo MI,et al.Infectious bursal disease virus uptake involves macropinocytosis and trafficking to early endosomes in a Rab5-dependent manner[J].Cell Microbiol,2015,17(7):988-1007.
[21] Geerligs HJ,Ons E,Boelm GJ,et al.Efficacy,safety,and interactions of a live infectious bursal disease virus vaccine for chickens based on strain IBD V877[J].Avian Dis,2015,59(1):114-121.
[22] Ferrero D,Garriga D,Navarro A,et al.infectious bursal disease virus VP3 upregulates VP1-mediated RNA-dependent RNA replication[J].J Virol,2015,89(21):11165-11168.
[23] Aihara N,Horiuchi N,Hikichi N,et al.Immunoreactivity and morphological changes of bursalfolliclesinchickensinfectedwith vaccine or wild-type strains of the infectious bursal disease virus[J]. J Vet Med Sci,2015,77(8):913-918.
[24]Abraham-Oyiguh J,Adewumi MO,Onoja AB,et al.Seroprevalence of infectious bursal diseasevirusinlocalchickensinUduLocal Government Area of Delta State,South East Nigeria[J].J Immunoassay Immunochem,2015,36(4):398-404.
[25] Abdul R,Murgia MV,Saif YM.Persistence and tissue distribution of infectious bursal disease virus serotypes 1 and 2 in Turkeys[J].Avian Dis,2015,59(1):153-156.
[26] Zhao Y,Aarnink AJ,Xin H.Inactivation of airborne Enterococcus faecalis and infectiousbursaldiseasevirususingapilotscale ultraviolet photocatalytic oxidation scrubber[J].J Air Waste Manag Assoc,2014,64(1):38-46.
[27] Zhao Y,Aarnink AJ,Wang W,et al.Airborne virus sampling:Efficiencies of samplers and their detection limits for infectious bursal disease virus(IBDV)[J]. Ann Agric Environ Med,2014,21(3):464-471.
[28] Zanetti FA,Grand MD,Mitarotonda RC,et al.Canarypox virus expressing infectious bursal disease VP2 protein as immunogen for chickens[J].Braz J Microbiol,2014,45(1):231-234.
[29] Xu LM,Li TH,Zhou B,et al.scFv antibodies against infectious bursal disease virus isolated from a combinatorial antibody library by flow cytometry[J].Biotechnol Lett,2014,36(5):1029-1035.
[30] Xu H,Yuan L,Wang F,et al.Overexpression of recombinant infectious bursal disease virus(IBDV)capsid protein VP2 in the middle silk gland of transgenic silkworm[J].Transgenic Res,2014,23(5):809-816.