黎 冰,侍朋寶,2,欒雪濤,霍素芳,惠竹梅,3
(1 西北農(nóng)林科技大學 葡萄酒學院,陜西 楊凌 712100;2 河北科技師范學院 食品科技學院,河北 秦皇島 066600;3 陜西省葡萄與葡萄酒工程技術研究中心,陜西 楊凌 712100)
試驗于2015年在西北農(nóng)林科技大學智能日光溫室內(nèi)進行,供試品種為歐亞種(Vitisvinifera)釀酒葡萄赤霞珠(Cabernet Sauvignon),3年生盆栽自根苗。植株生長期間正常管理,每日監(jiān)測溫濕度變化,晝、夜溫度平均為25,15 ℃,濕度為70%~80%,光周期平均為12 h/12 h。溫室內(nèi)部溫濕度較均一。
1.3.1 生長指標 生長指標分別于萌芽后20,27,34,41 d測定1次,共測定4次。
新梢長度和節(jié)間長度的測定:用卷尺測量新梢總長度和從基部向上第3,5,7節(jié)的節(jié)間長度。新梢長度或節(jié)間長度平均增長量=兩次測量新梢長度或節(jié)間長度的差值/測量間隔時間。
節(jié)間粗度的測定:用數(shù)顯游標卡尺測量基部向上第3,5,7節(jié)間粗度,節(jié)間粗度平均增長量=兩次測量節(jié)間粗度的差值/測量間隔時間。
葉面積的測定:采用LI-3200便攜式激光葉面積儀(LI-COR,USA)測量每株葡萄的新梢從基部向上第6,7節(jié)位葉的面積。葉面積平均增長量=兩次測量葉面積的差值/測量間隔時間。
1.3.2 光合特性 光合指標分別于漿果膨大期(花后30-32 d)、轉(zhuǎn)色期(花后58-60 d)和果實成熟期(花后120-122 d)測定,每次測定于晴天的上午10:00左右進行,每處理隨機選取6個結果枝,選擇果穗以上1-2節(jié)位的葉片,使用Li-6400型(Li-CorUSA)光合儀在自然光源下測定凈光合速率(Pn)、胞間CO2濃度(Ci)、氣孔導度(Gs)和蒸騰速率(Tr)。
1.3.3 葉綠素SPAD值和熒光動力學參數(shù) 葉綠素SPAD值和熒光動力學參數(shù)的測定葉片位置與光合指標相同。葉綠素SPAD值測定:分別于坐果期(花后10-12 d)、轉(zhuǎn)色期和果實成熟期,用便攜式葉綠素儀前端夾住葉片,3 s后讀出SPAD值讀數(shù),并記錄。每個樣品重復測量3次。
葉綠素熒光動力學參數(shù)的測定:在坐果期和轉(zhuǎn)色期,使用PAM-2500型葉綠素熒光儀測定葉片光系統(tǒng)Ⅱ(PSⅡ)的可變熒光產(chǎn)量(Fv)與最大熒光產(chǎn)量(Fm)之比,即最大光合效率(Fv/Fm),以及實際光合效率(ΦPSⅡ),光化學淬滅(qP)和非光化學淬滅(NPQ)[21]。
1.3.4 葉片游離氨基酸和可溶性蛋白質(zhì)含量 分別于花后30,45,60,75和90 d,采集各處理的葉片,每次采樣時在每株葡萄上選取1個生長勢基本相同的新梢,依次在每個新梢的不同節(jié)位(5~10節(jié)位)取1片葉。游離氨基酸含量的測定采用茚三酮溶液顯色法,可溶性蛋白質(zhì)含量的測定采用考馬斯亮藍G-250染色法[22]。
試驗數(shù)據(jù)采用SPSS 17.0軟件進行分析處理,差異顯著性分析采用Duncan’s新復極差法(P≤0.05),做圖采用Excel 2016軟件。
2.1.1 新梢長度平均增長量 硝銨態(tài)氮不同配比對赤霞珠葡萄新梢長度平均增長量的影響見圖1。
圖柱上標不同小寫字母表示不同處理間差異 達顯著水平(P<0.05)。下圖同 Different letters represent significant difference at P<0.05. The same below
2.1.2 新梢節(jié)間長度平均增長量 硝銨態(tài)氮不同配比對赤霞珠葡萄新梢節(jié)間長度平均增長量的影響見圖2。
圖2 硝銨態(tài)氮不同配比對赤霞珠葡萄 新梢節(jié)間長度平均增長量的影響Fig.2 Effects of different ratios on average growth of shoot internode length of Cabernet Sauvignon
圖3 硝銨態(tài)氮不同配比對赤霞珠葡萄新梢粗度平均增長量的影響Fig.3 Effects of different ratios on average growth of shoot diameter of Cabernet Sauvignon
圖4 硝銨態(tài)氮不同配比對赤霞珠葡萄葉面積平均增長量的影響Fig.4 Effects of different ratios on average growth of Cabernet Sauvignon leaf areas
圖5 硝銨態(tài)氮不同配比對赤霞珠葡萄葉片凈光合速率和胞間CO2濃度的影響Fig.5 Effects of different ratios on Pn and Ci of Cabernet Sauvignon leaves
圖6 硝銨態(tài)氮不同配比對赤霞珠葡萄葉片氣孔導度和蒸騰速率的影響Fig.6 Effects of different ratios on Gs and Tr of Cabernet Sauvignon leaves
硝銨態(tài)氮不同配比對赤霞珠葡萄葉片葉綠素SPAD值的影響見圖7。
圖7 硝銨態(tài)氮不同配比對 赤霞珠葡萄葉片葉綠素SPAD值的影響Fig.7 Effects of different ratios on chlorophyll SPAD of Cabernet Sauvignon leaves
表1 硝銨態(tài)氮不同配比對赤霞珠葡萄葉片葉綠素熒光參數(shù)的影響Table 1 Effect of different ratios on chlorophyll fluorescence parameters of Cabernet Sauvignon leaves
注:同列數(shù)據(jù)后標不同小寫字母表示差異達顯著水平(P<0.05)。
Note: Different letters represent significant difference atP<0.05.
2.5.1 游離氨基酸含量 如圖8所示,在花后30-90 d,各處理赤霞珠葡萄葉片中游離氨基酸含量呈現(xiàn)不同的變化趨勢,其中混合施氮處理的游離氨基酸含量呈先下降后上升再下降趨勢,而單一施氮處理則呈先上升后下降再上升的趨勢。
圖8 硝銨態(tài)氮不同配比對赤霞珠葡萄葉片游離氨基酸含量的影響Fig.8 Effects of different ratios on amino acid content in Cabernet Sauvignon leaves
圖9 硝銨態(tài)氮不同配比對赤霞珠葡萄葉片可溶性蛋白質(zhì)含量的影響Fig.9 Effects of different ratios on protein content in Cabernet Sauvignon leaves
由于可溶性蛋白質(zhì)大部分由光合碳同化過程的關鍵酶核酮糖-1,5-二磷酸羧化酶(RuBPCase)組成,本試驗中,與單一施氮處理相比,混合施氮處理的葉片可溶性蛋白質(zhì)含量顯著增加,可能是RuBPCase活性增加所致。本試驗發(fā)現(xiàn),混合施氮處理的葉片游離氨基酸含量總體高于單一施氮處理,能夠為葉片提供更多的光呼吸過程所需的甘氨酸、絲氨酸等氨基酸。說明不同形態(tài)氮素通過促進葉片的葉綠素、游離氨基酸和可溶性蛋白質(zhì)含量的增加來改善赤霞珠葉片的光合特性。
葉片是葡萄進行光合作用、合成干物質(zhì)的主要場所,葉面積的大小是影響葉片光合能力的因素之一。本研究中,混合施氮處理較單一施氮處理明顯提高了葡萄的葉面積。可見適宜的氮素形態(tài)及比例有利于延長葡萄葉片的光合時間,提高光能利用率,從而促進葉片的光合作用。
[參考文獻]
[1] 陸景陵,胡靄堂.植物營養(yǎng)學 [M].北京:高等教育出版社,2006:35.
Lu J L,Hu A T.Plant Nutrition [M].Beijing:Higher Education Press,2006:35.
[2] 李文慶,張 民,束懷瑞.氮素在果樹上的生理作用 [J].山東農(nóng)業(yè)大學學報(自然科學版),2002,33(1):96-100.
Li W Q,Zhang M,Shu H R.The physiological effects of nitrogen on fruit trees [J].Journal of Shandong Agricultural University (Natural Science),2002,33(1):96-100.
[3] Lea P J,Azevedo R A.Nitrogen use efficiency:Ⅰ.uptake of nitrogen from the soil [J].Annals of Applied Biology,2006,149(3):243-247.
[4] 鄒 娜,強曉敏,施衛(wèi)明.不同供銨水平對番茄根系生長的影響 [J].土壤,2012,44(5):827-833.
[5] 隋方功,王運華,姚源喜,等.甜椒始花期氮素分配動態(tài)的研究 [J].園藝學報,2002,29(3):238-242.
Sui F G,Wang Y H,Yao Y X,et al.Distribution dynamics of nitrogen in the organs of sweet pepper (CapsicumannuumL.) at early flowering stage [J].Acta Horticulturae Sinica,2002,29(3):238-242.
[6] Forde B G,Clarkson D T.Nitrate and ammonium nutrition of plants:physiological and molecular perspectives [J].Advances in Botanical Research Incorporating Advances in Plant Pathology,1999,30(8):1-90.
[7] 楊 陽,鄭秋玲,裴成國,等.不同硝銨比對霞多麗葡萄幼苗生長和氮素營養(yǎng)的影響 [J].植物營養(yǎng)與肥料學報,2010,16(2):370-375.
[8] Chan T Y K.Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia [J].Toxicology Letters,2011,200(1/2):107-108.
[11] Fontana E,Hoeberechts J,Nicola S,et al.Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (PortulacaoleraceaL.) grown in a soilless culture system [J].Journal of the Science of Food and Agriculture,2006,86(14):2417-2424.
[12] 戴廷波,曹衛(wèi)星,孫傳范,等.增銨營養(yǎng)對小麥光合作用及硝酸還原酶和谷氨酰胺合成酶的影響 [J].應用生態(tài)學報,2003,14(9):1529-1532.
Dai T B,Cao W X,Sun C F,et al.Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat [J].Chinese Journal of Applied Ecology,2003,14(9):1529-1532.
[13] 曹 云,范曉榮,孫淑斌,等.增硝營養(yǎng)對不同基因型水稻苗期硝酸還原酶活性及其表達量的影響 [J].植物營養(yǎng)與肥料學報,2007,13(1):99-105.
[14] 汪建飛,董彩霞,沈其榮.氮素不同形態(tài)配比對菠菜體內(nèi)游離氨基酸含量和相關酶活性的影響 [J].植物營養(yǎng)與肥料學報,2007,13(4):664-670.
[16] 李亞東,趙 爽,張志東,等.不同氮素形態(tài)配比對越橘生長、產(chǎn)量及葉片元素含量的影響 [J].吉林農(nóng)業(yè)大學學報,2008,30(4):477-480.
Li Y D,Zhao S,Zhang Z D,et al.Effect of nitrogen form ratios on the growth, yield and leaf element content of blueberry [J].Journal of Jilin Agricultural University,2008,30(4):477-480.
[17] 趙海蓉,魏 珉,李 巖,等.氮素形態(tài)對溫室土壤性狀及番茄生長和產(chǎn)量的影響 [C]// 蔬菜優(yōu)質(zhì)安全生產(chǎn)技術研討會論文摘要集. 廣州:[出版者不詳],2013:57.
Zhao H R,Wei M,Li Y,et al.Effect of nitrogen form ratios on the soil properties and growth,yield of tomato in greenhouse [C]// Symposium on nitrogen cycle and agriculture,environment of Seminar.Guangzhou:[s.n.],2013:57.
[18] 伍松鵬,張秀娟,吳 楚,等.不同氮素形態(tài)比例對黃瓜幼苗生長和光合特性的影響 [J].安徽農(nóng)業(yè)科學,2006,34(12):2697-2707.
[19] 黃長兵,房偉民,楊 勇,等.不同水平和形態(tài)氮素供應對盆栽小菊外觀品質(zhì)和光合特性的影響 [J].浙江農(nóng)業(yè)學報,2010,22(1):45-50.
Huang C B,Fang W M,Yang Y,et al.Effects of different nitrogen levels and forms on the appearance quality and photosynthesis characters of potted chrysanthemum with small inflorescence [J].Acta Agriculturae Zhejiangensis,2010,22(1):45-50.
[20] 師進霖,姜躍麗,陳恩波.氮素形態(tài)對黃瓜幼苗光合特性及碳水化合物代謝的影響 [J].江西農(nóng)業(yè)學報,2009,21(10):57-58.
[21] 張翼飛.施氮對甜菜氮素同化與碳代謝的調(diào)控機制研究 [D].哈爾濱:東北農(nóng)業(yè)大學,2013.
Zhang Y F.Study on regulation mechanism of nitrogen application on nitrogen assimilation and carbon metabolism in sugar beet (BetavulgarisL.) [D].Harbin:Northeast Agricultural University,2013.
[22] 李合生.植物生理生化實驗原理和技術 [M].北京:高等教育出版社,2006:184-194.
Li H S.Plant physiology and biochemistry experiments:principle and technology [M].Beijing:Higher Education Press,2006:184-194.
[23] 田 婧,郭世榮,孫 錦,等.外源亞精胺對高溫脅迫下黃瓜幼苗氮素代謝的影響 [J].生態(tài)學雜志,2011,30(10):2197-2202.
Tian J,Guo S R,Sun J,et al.Effects of exogenous spermidine on nitrogen metabolism of cucumber seedlings under high temperature stress [J].Chinese Journal of Ecology,2011,30(10):2197-2202.
[24] 吳 巍,趙 軍.植物對氮素吸收利用的研究進展 [J].中國農(nóng)學通報,2010,26(13):75-78.
Wu W,Zhao J.Advances on plants’ nitrogen assimilation and utilization [J].Chinese Agricultural Science Bulletin,2010,26(13):75-78.
[26] 張翼飛,于 崧,李彩鳳,等.甜菜幼苗生長及葉片光化學活性對氮素的響應特征 [J].核農(nóng)學報,2013,27(9):1391-1400.
Zhang Y F,Yu S,Li C F,et al.Response characteristics of plant growth and leaf photochemical activity of sugar beet seedlings to different nitrogen application levels [J].Journal of Nuclear Agricultural Sciences,2013,27(9):1391-1400.
[27] 李 凱,郭宇琦,劉楚楠,等.銨硝配比對大豆生長及結瘤固氮的影響 [J].中國油料作物學報,2014,36(3):349-356.
[28] 張福鎖,樊小林,李曉林.土壤與植物營養(yǎng)研究新動態(tài): 第二卷 [M].北京:中國農(nóng)業(yè)出版社,1995:42-75.
Zhang F S,Fan X L,Li X L.Advances in soil and plant nutrition research:second volumes [M].Beijing:China Agriculture Press,1995:42-75.
[29] Xu Q F,Tsai C L,Tsai C Y.Interaction of potassium with the form and amount of nitrogen nutrition on growth and nitrogen uptake of maize [J].Journal of Plant Nutrition,1992,15(1):23-33.
[30] Bown H E,Watt M S,Clinton P W,et al.Influence of ammonium and nitrate supply on growth,dry matter partitioning,N uptake and photosynthetic capacity ofPinusradiataseedlings [J].Trees-structure and Function,2010,24(6):1097-1107.
[31] 陳國祥,何 兵,魏錦城,等.揚麥5號旗葉光合功能衰退進程中光溫逆境下PSⅠ特性的變化 [J].作物學報,2000,26(6):783-788.
Chen G X,He B,Wei J C,et al.Changes in characteristics of PSⅠ from flag leaves of Yangmai No.5 (TriticumaestivumL.) under light-temperature stress during photosynthetic functional decline process [J].Acta Agronomica Sinica,2000,26(6):783-788.
[32] 馮 偉,李 曉,王永華,等.小麥葉綠素熒光參數(shù)葉位差異及其與植株氮含量的關系 [J].作物學報,2012,38(4):657-664.
Feng W,Li X,Wang Y H,et al.Difference of chlorophyll fluorescence parameters in leaves at different positions and its relationship with nitrogen content in winter wheat plant [J].Acta Agronomica Sinica,2012,38(4):657-664.
[33] Nijs I,Ferris R,Blum H,et al.Stomatal regulation in a changing climate:a field study using Free Air Temperature Increase (FATI) and Free Air CO2enrichment (FACE) [J].Plant Cell and Environment,1997,20(8):1041-1050.
[34] 何麗斯,蘇家樂,劉曉青,等.高山杜鵑葉片葉綠素含量測定及其與SPAD值的關系 [J].江蘇農(nóng)業(yè)科學,2012,40(11):190-191.
He L S,Su J L,Liu X Q,et al.Chlorophyll content determination and its relationship with SPAD readings inRhododendronlapponicum(L.) Wahl. [J].Jiangsu Agricultural Sciences,2012,40(11):190-191.
Zhang C L,Gao Z M,Zhang Y D,et al.The effects of different nitrogen forms and their concentration combinations on the growth and quality of spinach [J].Journal of Nanjing Agricultural University,1990,13(3):70-74.
[36] 榮秀連,王梅農(nóng),宋采博,等.不同銨態(tài)氮/硝態(tài)氮配比對白菜葉綠素含量的影響 [J].江蘇農(nóng)業(yè)科學,2010(1):298-300.
[37] 馬作敏,林 杉,游 捷.氮素形態(tài)和不同pH值對金脈單藥花生長的影響 [J].河北農(nóng)業(yè)大學學報,2005,28(5):11-15.
Ma Z M,Lin S,You J.Growth ofAphelandrasquarrosaas affected by N-form and nutrient solution pH [J].Journal of Agricultural University of Hebei,2005,28(5):11-15.
[38] 楊 陽.氮素形態(tài)對葡萄生長發(fā)育的影響 [D].山東泰安:山東農(nóng)業(yè)大學,2010.
[39] 潘瑞熾,董愚得.植物生理學 [M].北京:高等教育出版社,1995:76-77.
Pan R C,Dong Y D.Plant physiology [M].Beijing:Higher Education Press,1995:76-77.
[40] 周 鵬,彭福田,魏紹沖,等.氮素形態(tài)對平邑甜茶細胞分裂素水平和葉片生長的影響 [J].園藝學報,2007,34(2):269-274.
Zhou P,Peng F T,Wei S C,et al.Effects of rhizosphere nitrate and ammonium on the level of cytokinins and leaf growth ofMalushupenensisrehd [J].Acta Horticulturae Sinica,2007,34(2):269-274.
[42] Wang X T,Below F E.Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source [J].Crop Science,1996,36(1):121-126.
[43] Xie H L,Jiang R F,Zhang F S,et al.Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulatorThlaspicaerulescens[J].Plant and Soil,2009,318(1/2):205-215.
[44] Jimenez S,Gogorcena Y,Hevin C,et al.Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes ofVitis[J].Plant and Soil,2007,290(1/2):343-355.
[45] Stadler J,Gebauer G.Nitrate reduetion and nitrate content in ash trees (FraxinusexeelsiorL.):distribution between compartments,site comparison and seasonal variation [J].Trees,1992,6(4):236-240.
[46] Kronzucker H J,Siddiqi M Y,Glass A D M.Conifer root discrimination against soil nitrate and the ecology of forest succession [J].Nature,1997(385):59-61.