鄭婷 楊定平
[摘要] 急性腎損傷是嚴(yán)重膿毒癥的最常見和嚴(yán)重的并發(fā)癥之一。膿毒癥急性腎損傷(SAKI)患者的發(fā)病率和死亡率居高不下。近年來,越來越多的研究表明線粒體動(dòng)力學(xué)改變、自噬、氧化應(yīng)激、炎性反應(yīng)等機(jī)制在SAKI的形成過程中起到極其重要的作用。充分了解SAKI的發(fā)生發(fā)展機(jī)制,有助于更好地予以防治,有效降低發(fā)病率和病死率。因此,本文就SAKI的發(fā)生、發(fā)展機(jī)制作一綜述。
[關(guān)鍵詞] 膿毒癥;急性腎損傷;線粒體;炎性反應(yīng);氧化應(yīng)激;細(xì)胞凋亡;自噬
[中圖分類號(hào)] R692 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)02(c)-0024-04
[Abstract] Acute kidney injury is one of the most common and serious complications of severe sepsis. And the incidence and mortality of patients with sepsis-induced acute kidney injury (SAKI) remained high. In recent years, more and more studies have shown that the mechanism of mitochondrial dynamics, autophagy, oxidative stress and inflammatory response plays an extremely important role in the formation of SAKI. Therefore, understanding the development mechanism of SAKI is helpful for better prevention and control, and effectively reduce morbidity and mortality. In this paper, the mechanism of occurrence and development of SAKI is reviewed.
[Key words] Sepsis; Acute kidney injury; Mitochondrial;Inflammatory response; Oxidative stress; Apoptosis; Autophagy
膿毒癥是一種常見的致命性疾病,能導(dǎo)致宿主無法反應(yīng)性控制入侵機(jī)體的微生物及其產(chǎn)物的活動(dòng)性感染,而引起全身炎性反應(yīng)綜合征,進(jìn)一步發(fā)展成膿毒性休克、多器官功能障礙綜合征(MODS)[1]。因此膿毒癥成為重癥監(jiān)護(hù)室病房?jī)?nèi)非心臟患者死亡的主要原因[2]。腎臟作為MODS最常受累器官之一,急性腎損傷(AKI)的發(fā)生率相當(dāng)高[3-4]。Angus等[5]發(fā)現(xiàn)來自美國(guó)七個(gè)州的192 980例嚴(yán)重膿毒癥患者中,AKI發(fā)生率為22%,死亡率為38.2%。在其他發(fā)達(dá)國(guó)家,監(jiān)護(hù)室的AKI患病率高達(dá)38.4%~39.3%,其中90 d的死亡率占13.9%~33.7%[5-6]。我國(guó)的一項(xiàng)多中心前瞻性研究發(fā)現(xiàn)納入的1255例監(jiān)護(hù)室患者中AKI發(fā)病率為31.6%,其中膿毒癥急性腎損傷(SAKI)患者占44.9%,90 d病死率為41.9%[7]。Wen等[8]研究發(fā)現(xiàn)AKI最常見的病因是膿毒癥,占總患病的47.5%。因此,如何防治膿毒癥最常見并發(fā)癥之一的AKI的發(fā)生發(fā)展,成為當(dāng)代醫(yī)療中非常嚴(yán)峻的醫(yī)學(xué)問題之一。
1 AKI與膿毒癥
AKI是指48 h血肌酐增高≥0.3 mg/dL或者血肌酐增高≥基礎(chǔ)值1.5倍,明確或經(jīng)推斷其發(fā)生在之前7 d之內(nèi);或持續(xù)6 h尿量< 0.5 mL/(kg·h),表現(xiàn)為氮質(zhì)血癥、水電解質(zhì)和酸堿平衡以及全身各系統(tǒng)癥狀一組臨床綜合征[9]。AKI由于高死亡率和高發(fā)病率,嚴(yán)重影響公眾健康。膿毒癥可引起多器官功能障礙,AKI是膿毒癥最常見的并發(fā)癥之一[10]。據(jù)相關(guān)研究報(bào)道約50%的膿毒癥患者會(huì)合并AKI,70%患者的死亡與AKI相關(guān)[11-13]。
2 SAKI的相關(guān)發(fā)病機(jī)制
2.1 SAKI與自噬
自噬是通過溶酶體系統(tǒng)降解胞漿中受損的線粒體等細(xì)胞器及錯(cuò)誤折疊的大分子蛋白質(zhì),來維持細(xì)胞穩(wěn)態(tài)的一種細(xì)胞生物學(xué)過程[14],是一種廣泛存在于真核細(xì)胞中對(duì)持續(xù)性內(nèi)外刺激的非損傷性應(yīng)答反應(yīng)。生理狀態(tài)下,適當(dāng)?shù)淖允稍诰S持細(xì)胞結(jié)構(gòu)、代謝和功能的平衡中起重要作用,而在過強(qiáng)或過久的內(nèi)外病理刺激下引發(fā)的過度自噬可能直接誘發(fā)細(xì)胞發(fā)生Ⅱ型細(xì)胞程序性死亡即自噬性細(xì)胞死亡[15]。目前自噬在SAKI中是起到保護(hù)性作用還是促進(jìn)細(xì)胞損傷一直存在爭(zhēng)議,而多數(shù)研究證實(shí)自噬可減輕AKI。在盲腸穿刺結(jié)扎引起SAKI模型中發(fā)現(xiàn),早期自噬反應(yīng)的幅度越強(qiáng),則后期膿毒癥致腎損傷的程度越輕[16]。Mei等[17]在SAKI動(dòng)物模型中,發(fā)現(xiàn)atg7基因敲除小鼠比野生型小鼠的AKI的程度更重。Wu等[18]發(fā)現(xiàn)SAKI模型中,LPS引起的AKI通過激活NF-κB信號(hào)通路來減少自噬和增強(qiáng)腎臟炎性反應(yīng)對(duì)腎臟造成損傷,而抑制NF-κB信號(hào)通路,可增強(qiáng)自噬和減輕腎臟炎性反應(yīng),從而減輕對(duì)腎臟造成的損傷。因此,自噬增多及其清除功能增強(qiáng)在維持腎小管上皮細(xì)胞的穩(wěn)態(tài)中具有重要的臨床意義。
2.2 SAKI與炎性反應(yīng)
在細(xì)菌釋放的內(nèi)毒素或內(nèi)毒素樣物質(zhì)的作用下,機(jī)體中性粒細(xì)胞、單核巨噬細(xì)胞、血管內(nèi)皮細(xì)胞發(fā)生復(fù)雜的免疫網(wǎng)絡(luò)反應(yīng),并向血液循環(huán)中釋放出大量的內(nèi)源性炎癥介質(zhì)(包括IL-1、IL-6、TNF-α、PAF、前列腺素等),造成包括腎臟在內(nèi)的多臟器損害。Zhao等[19]和Zhang等[20]發(fā)現(xiàn),在LPS誘導(dǎo)的SAKI的SD大鼠模型中,甘草酸和橙花叔醇通過抑制NF-κB和TLR4信號(hào)通路減輕膿毒癥AKI。Hu等[21]進(jìn)一步研究發(fā)現(xiàn)提出銀杏黃酮苷元通過上調(diào)SIRT1的表達(dá),阻斷NF-κB信號(hào)通路,來抑制LPS誘導(dǎo)的腎小管上皮細(xì)胞炎性反應(yīng)。TLR4/NF-κB通路被證實(shí)參與腎臟炎癥應(yīng)答的過程[22],抑制TLR4/NF-κB介導(dǎo)的炎性反應(yīng)對(duì)LPS誘導(dǎo)的AKI具有保護(hù)作用[23]。因此,炎性反應(yīng)是SAKI的重要機(jī)制,抑制炎性反應(yīng)通路是治療膿毒癥的一種重要的治療方案,為臨床上治療SAKI患者提供了新思路。
2.3 SAKI與細(xì)胞凋亡
細(xì)胞凋亡是通過一系列基因的激活、表達(dá)以及調(diào)控等的作用,來維持細(xì)胞內(nèi)環(huán)境穩(wěn)定的程序性死亡。在受到病理性刺激后,細(xì)胞凋亡失調(diào)致使細(xì)胞死亡過度,引起器官功能障礙。既往觀點(diǎn)認(rèn)為腎缺血及炎性因子造成的急性腎小管壞死(acute tubular necrosis,ATN)在SAKI中起主導(dǎo)作用。然而近年來的研究表明,細(xì)胞凋亡是膿毒癥致AKI發(fā)生發(fā)展的重要機(jī)制[24]。既往研究發(fā)現(xiàn)Fas和Caspase信號(hào)通路相關(guān)的細(xì)胞凋亡介導(dǎo)了SAKI的腎小管上皮細(xì)胞存在廣泛死亡[25]。而這些線粒體依賴的細(xì)胞凋亡途徑開始于細(xì)胞氧化應(yīng)激的產(chǎn)生(包括線粒體來源活性氧增多、細(xì)胞內(nèi)NO生成減少),隨后促進(jìn)Bax和Bcl-2蛋白復(fù)合物進(jìn)入線粒體,致使線粒體通透性增加、線粒體轉(zhuǎn)換孔開放,釋放細(xì)胞色素C激活Caspase-3,啟動(dòng)細(xì)胞凋亡途徑[26-28]。張敏等[29]發(fā)現(xiàn)在盲腸結(jié)扎穿孔致SAKI大鼠模型中,CHOP和Caspase-12基因表達(dá)增加,提示SAKI與內(nèi)質(zhì)網(wǎng)應(yīng)激后凋亡途徑誘導(dǎo)腎小管上皮細(xì)胞凋亡有關(guān)。雖然Caspase家族作為SAKI中腎臟細(xì)胞凋亡三大途徑的共同交叉點(diǎn),但其細(xì)胞凋亡信號(hào)的通路至今仍為未研究清楚。因此為使細(xì)胞凋亡成為SAKI臨床干預(yù)的全新靶點(diǎn),仍需進(jìn)一步探討SAKI中與細(xì)胞凋亡相關(guān)的其他信號(hào)通路。
2.4 SAKI與線粒體機(jī)制的研究
在SAKI的發(fā)生發(fā)展過程中,細(xì)胞缺氧是及其重要的發(fā)病機(jī)制。線粒體是為細(xì)胞生命活動(dòng)提供能量的場(chǎng)所,在細(xì)胞代謝、細(xì)胞信號(hào)通路、細(xì)胞生存能力中起到非常重要的作用,也是人體氧代謝的最主要的細(xì)胞器[30]。當(dāng)細(xì)胞受到外來刺激后,線粒體發(fā)生如下變化:①線粒體結(jié)構(gòu)改變(線粒體外膜通透性增加,釋放內(nèi)膜cytochrome c等蛋白、線粒體膜電荷改變);②線粒體DNA突變(線粒體DNA點(diǎn)突變及缺失);③線粒體活性氧自由(mROS)產(chǎn)物過剩;④線粒體動(dòng)力學(xué)變化(線粒體融合轉(zhuǎn)向分裂)。
Levy等[31]就提出膿毒癥組織的氧利用受損主要是由于線粒體功能障礙,導(dǎo)致ATP產(chǎn)生和生物能產(chǎn)生減少。隨后Tran等[32]在SAKI的小鼠模型中,發(fā)現(xiàn)腎小管細(xì)胞發(fā)生線粒體結(jié)構(gòu)發(fā)生改變(包括腎小管上皮細(xì)胞線粒體發(fā)生腫脹、線粒體嵴斷裂),得出結(jié)論SAKI與線粒體的結(jié)構(gòu)改變有關(guān),除此之外,Tran等[32]進(jìn)一步發(fā)現(xiàn)SAKI模型中PGC-1α表達(dá)量隨著腎功能下降而減少,PGC-1α敲除小鼠比對(duì)照鼠腎功能損傷更嚴(yán)重。PGC-1α在近端腎小管內(nèi)廣泛表達(dá)。過表達(dá)PGC-1α可增加近端小管上皮細(xì)胞中線粒體數(shù)量,提高呼吸鏈功能,促進(jìn)氧化應(yīng)激后線粒體功能恢復(fù),進(jìn)而提高細(xì)胞存活率[33]。PGC-1α有望成為增加腎臟線粒體應(yīng)激耐受力的有效靶點(diǎn)。Morigi等[34]證明線粒體分裂和線粒體融合促進(jìn)線粒體間代謝產(chǎn)物和底物的交換,并且參與SAKI的發(fā)病機(jī)理。近期研究發(fā)現(xiàn),通過調(diào)節(jié)線粒體膜上發(fā)動(dòng)蛋白相關(guān)蛋白1、線粒體分裂因子、視神經(jīng)萎縮1蛋白表達(dá),來控制線粒體融合/分裂,促進(jìn)PINK1相關(guān)的線粒體自噬[35]。
2.5 SAKI與腎臟缺血再灌注
膿毒癥發(fā)生發(fā)展過程中,血液循環(huán)系統(tǒng)中的病原體釋放大量炎癥介質(zhì)和細(xì)胞因子,致使心臟舒縮功能障礙、動(dòng)脈血管舒張、腎臟血流量減少,同時(shí)也會(huì)造成血管內(nèi)皮損傷、內(nèi)皮素釋放和微血栓形成更進(jìn)一步導(dǎo)致腎小動(dòng)脈痙攣及腎血流量減少。另外,由于腎臟缺氧及酸性代謝物增多,使得交感神經(jīng)興奮,RASS系統(tǒng)被激活,導(dǎo)致腎血管收縮、腎血流量進(jìn)一步減少。以往,研究者認(rèn)為缺血壞死是SAKI的主要發(fā)病機(jī)制,而Bagshaw等[36]發(fā)現(xiàn),在膿毒性休克中,腎臟皮質(zhì)和髓質(zhì)的血流不僅未減少反而增加,并非只由缺血、壞死或者缺血/再灌注引起,因此SAKI的病理改變完全不同于其他AKI。另外,在膿毒癥動(dòng)物模型中,腎血流量減少占62%,不變或增加占38%。統(tǒng)計(jì)學(xué)單因素研究提示腎血流量的減少并非膿毒癥的直接影響因素,統(tǒng)計(jì)學(xué)多因素分析提示心排出量降低,腎血流量明顯下降,當(dāng)腎臟發(fā)生再灌注時(shí),腎血流恢復(fù),機(jī)體會(huì)發(fā)生灌注損傷,產(chǎn)生氧自由基造成細(xì)胞損傷[37]。由此可見,缺血再灌注在SAKI發(fā)病過程中是否起重要作用,由于缺乏直接檢測(cè)方法,其在SAKI中的具體機(jī)制還待進(jìn)一步研究。
3 小結(jié)
SAKI在臨床上的發(fā)病率和死亡率均較高,一直以來是研究的熱點(diǎn)。近年來研究者對(duì)SAKI的認(rèn)識(shí)不斷深入,對(duì)于其發(fā)病機(jī)制、診斷、治療也提出了一些新的觀點(diǎn)。目前研究提示線粒體、細(xì)胞凋亡、自噬不僅參與SAKI的發(fā)病過程,而且是該疾病可觀的治療靶點(diǎn)。因此從不同的角度探討SAKI的發(fā)病機(jī)理是非常有必要的,只有進(jìn)一步研究清楚該病發(fā)病機(jī)制,才能更好地予以預(yù)防和靶向治療,從而提高臨床上該病的治愈率和減少該病的死亡率。
[參考文獻(xiàn)]
[1] Singer M,Deutschman CS,Seymour CW,et al. The third international consensus definitions for sepsis and septic shock(Sepsis-3)[J]. The Journal of the American Medical Association,2016,315(8): 801-810.
[2] Ricci Z, Ronco C. Pathogenesis of acute kidney injury during sepsis [J]. Curr Drug Targets,2009,10(5):1179-1183.
[3] Doi K. Role of kidney injury in sepsis [J]. Curr Opin Crit Care,2014,20:588-595.
[4] Nisula S,Kaukonen KM,Vaara ST,et al. Incidence risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units FINNAKE study [J]. Intensive Care Med,2013,39(3):420-428.
[5] Angus DC,Linde-Zwirble WT,Lidicker J,et al. Epidemiology of severe sepsis in the United States:analysis of incidence,outcome,and associated costs of care [J]. Crit Care Med,2001,29(7):1303-1314.
[6] Shinjo H,Sato W,Imai E,et al. Comparis of kidney disease:improving global outcomes and acute kidney injury net work criteria for assessing patients in intensive care units [J]. Clin Exp Nephorl,2014,18(5):737-745.
[7] Fang Y,Ding X,Zhong Y,et al. Actue kidney injury in a Chinese hospitalized population[J].Blood Purif,2010,30(2):120-126.
[8] Wen Y,Jiang L,Xu Y,et al. Prevalence risk factors clinical course and outcome of acute kidney injury in Chinese intensive care units :a prospective cohort study [J].Chin Med J,2013,126(23):4409-4416.
[9] Kellum JA,Lameire N. KDIGO AKI Guide line Work Group Diagnosis,evaluation,and management of acute kidney injury. A KDIGO summary (part 1)[J]. Crit Care,2013,17(1):204.
[10] Goncalves GM,Zamboni DS,Camara NO. The role of innate immunity in septic acute kidney injuries [J]. Shock,2010,34(7):22-26.
[11] Hocherl K,Schmidt C,Kurt B,et al. Inhibition of NF-κB ameliorates sepsis-induced downregulation of aquaporin-2/V2 receptor expression and acute renal failure in vivo [J].Am J Physiol Renal Physiol,2010,298(1):F196-204.
[12] Lopes JA,F(xiàn)ernandes P,Jorge S,et al. Long-term risk of mortality after acute kidney injury in patients with sepsis:a contemporary analysis [J]. BMC Nephrology,2010, 11(1):1-10.
[13] Bagshaw SM,Darmon M,Ostermann M,et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury [J]. Intensive Care Med,2017,43(6):841-854.
[14] Mizushima N,Levine B,Cuervo AM,et al. Autophagy Fights disease through cellular self-digestion [J]. Nature,2008, 451(7182):1069-1075.
[15] Leventhal JS,Ni J,Osmond M,et al. Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression [J]. PLoS One,2016, 11(3):e0 150 001.
[16] Jiang M, Wei Q,Dong G,et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int,2012,82(12):1271-1283.
[17] Mei S,Livingston M,Hao J,et al. Autophagy is activated to protect against endotoxic acute kidney injury [J]. Scientific Reports,2016,6:22 171.
[18] Wu Y,Zhang Y,Wang L,et al. The role of Autophagy in kidney inflammatory injury via the NF-κB route induced by LPS [J]. Int J Med Sci,2015,12(8):655-667.
[19] Zhao H,Zhao M,Wang Y,et al. Glycyrrhizic acid attenuates sepsis induced acute kidney injury by inhibiting NF-κB signaling pathway [J]. Evid Based Complement Alternat Med,2016:8 219 287.
[20] Zhang L,Sun D,Bao Y,et al. Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling [J]. Phytolther Res,2017,31(3):459-465.
[21] Hu L,Chen C,Zhang J,et al. IL-35 pretreatment alleviates lipopolysaccharide-induced acute kidney injury in mice by inhibiting NF-κB activation [J]. Inflammation,2017,40(4):1393-1400.
[22] Ye HY,Jin J,Jin LW,et al. Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-kappaB signal pathway [J]. Inflammation,2017,40(2):523-529.
[23] Zhao H,Zheng Q, Hu X,et al. Betulin attenuates kidney injury in septic rats through inhibiting TLR4/NF-kappaB signaling pathway [J]. Life Sci,2016,144:185-193.
[24] Lerolle N,Nochy D,Guerot E,et al. Histopathyology of septic shock induced renal injury apotosis and leukocytic infiltration [J]. Intensive Care Med,2010,36(3):471-478.
[25] Cantaluppi V,Weber V,Lauritano C,et al. Protective effect of resin on septic plasma-induced tubular injury [J]. Critical Care,2010,14(1):R4.
[26] 宣小燕,張愛華,黃松明.線粒體通透性轉(zhuǎn)換孔與急性腎損傷[J].中華腎臟病雜志,2010,48(16):1243-1246.
[27] Muthuraman A, Sood S,Ramesh M,et al. Therapeutic potential of 7,8-dimethoxvcoumarin on cisplatin and ischemia/reperfusion injury-induced acute renal failure in rats [J]. Naunyn Schmiedebergs Arch Pharmacol,2012, 385(7):739-748.
[28] Fernandes MP,Leite AC,Araujo FF,et al. The cratylia mollis seed leetin induces membrane permeability transition in isolated rat liver mitoehondria and a eyelosporine A-insensitive permeability ransition in trypanosoma cruzi mitochondria [J]. J Eukaryot Microbiol,2014,61(4):381-388.
[29] 張敏,嚴(yán)斌,陶悅,等.內(nèi)質(zhì)網(wǎng)應(yīng)激在膿毒癥大鼠腎損傷中的作用[J].中華實(shí)驗(yàn)外科雜志,2015,32(4):821-823.
[30] Pathak E,MacMillan-Crow LA,Mayeux PR. Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury [J]. J Phar-macol Exp,2012,340(1):192-201.
[31] Levy MM,F(xiàn)ink MP,Marshall JC,et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference [J] Crit Care Med,2003,31(4):1250-1256.
[32] Tran M,Tam D,Bardia A,et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice [J]. Clin Invest,2011,121:4003-4014.
[33] Rasbach KA,Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury [J]. Biochem Biophys Res Commun,2007,355:734-739.
[34] Morigi M,Perico L,Rota C,et al. Sirtun 3-dependent mitochondrial dynamic improvements protect against acute kidney injury [J]. Clin Invest,2015,125(2):715-726.
[35] Parikh SM,Yang Y,He L,et al. Mitochondrial function and disturbances in the septic kidney [J]. Semin Nephrol,2015,35(1):108-119.
[36] Bagshaw SM,Uchino S,Bellomo R,et al. Septic acute kidney injury in critically ill patients:clinical characteristics and outcomes [J]. Clin J Am Soc Nephrol,2007,2(3):431-439.
[37] Langenberg C,Wan L,Egi M,et al. Renal blood flow in experimental septic acute renal failure [J]. Kidney Int,2006,69(11):1996-2002.
(收稿日期:2017-11-08 本文編輯:李岳澤)