田麗 包滿珠 張蔚
摘要:鋅指蛋白是植物轉(zhuǎn)錄因子中的一個(gè)大家族,RING finger蛋白屬于其中一個(gè)分支,具有環(huán)狀結(jié)構(gòu)域的典型特征結(jié)構(gòu),在植物生長(zhǎng)發(fā)育以及響應(yīng)逆境脅迫等方面起著重要作用。主要綜述了RING finger蛋白的結(jié)構(gòu)特點(diǎn)、分類和亞細(xì)胞定位,重點(diǎn)概括了RING finger蛋白在參與非生物與生物脅迫耐受性等方面的研究成果,并對(duì)其進(jìn)一步的深入研究進(jìn)行了展望,為將來利用植物RING finger蛋白基因創(chuàng)造抗逆新種質(zhì)提供參考。
關(guān)鍵詞:RING finger蛋白;鋅指;非生物逆境;生物逆境
中圖分類號(hào):Q943.2 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2018)06-0005-07
DOI:10.14088/j.cnki.issn0439-8114.2018.06.001
Abstract: Zinc finger proteins form a relatively large family of transcription factors in plants. The RING finger proteins represent a subgroup of Zinc finger proteins that contain specialized structures of ring finger domain. Proteins containing RING finger domain(s) were found to play important roles in plant growth and development, as well as responses to stress. Here the structural characteristics, classification and subcellular localization of RING finger proteins were introduced, the recent functional characterization studies of RING finger proteins in response to abiotic and biotic stresses were mainly highlighted, and a prospect for further in-depth research was made, with the hope that a relatively comprehensive reference for the creation of new germplasm with stress resistance using plant RING finger proteins could be provided.
Key words: RING finger proteins; zinc finger; abiotic stress; biotic stress
鋅指蛋白最早在1985年由Miller等[1]在非洲爪蟾卵母細(xì)胞轉(zhuǎn)錄因子TFⅢA中發(fā)現(xiàn),之后根據(jù)鋅指蛋白基序和結(jié)構(gòu)的不同將其分為9大類:C2H2型、C4型、C6型、C8型、CCCH型、C2HC型、C2HC5型、C3HC4型和C4HC3型(H和C分別代表組氨酸和半胱氨酸)[2](圖1)。RING finger蛋白是鋅指蛋白中一個(gè)龐大的蛋白家族,近年來植物鋅指蛋白報(bào)道較多的為C2H2型,而對(duì)RING finger型鋅指蛋白的研究相對(duì)較少。
前人研究表明RING finger蛋白廣泛參與植物細(xì)胞的各種生理生化過程。例如,Xu等[3]在擬南芥(Arabidopsis thaliana)中發(fā)現(xiàn)RING-H2型基因RIE1是種子發(fā)育的重要基因。Schumann等[4]研究發(fā)現(xiàn)的過氧化物酶體膜蛋白PEX10(peroxin protein 10)是C3HC4型RING finger蛋白,參與到基質(zhì)蛋白運(yùn)輸,在過氧化物酶膜與類囊體膜信號(hào)傳遞過程中起到不可缺少的作用。水稻(Oryza sativa L.)中的RING-H2型鋅指蛋白OsBIRF1(Oryza sativa L. BTH-induced RING finger protein 1)既能提高植株抗干旱、抗病毒的能力,同時(shí)還能促進(jìn)植株生長(zhǎng),具有多重效應(yīng)[5]。目前,從植物、動(dòng)物和微生物中都已分離得到 RING finger蛋白,但許多RING finger 蛋白的功能還不太明晰。本研究主要綜述RING finger 蛋白的結(jié)構(gòu)特點(diǎn)、分類以及亞細(xì)胞定位,重點(diǎn)概括RING finger 蛋白在植物逆境脅迫應(yīng)答中的作用,為后續(xù)展開更加廣泛深入的研究提供參考。
1 RING finger蛋白的結(jié)構(gòu)特點(diǎn)與分類
RING finger domain是1991年從人類基因RING1(Really Interesting New Gene 1)蛋白中新發(fā)現(xiàn)富含半胱氨酸的鋅指結(jié)構(gòu)域[6],RING finger也由RING1基因首字母縮寫命名得來[7]。RING finger蛋白具有典型的環(huán)指結(jié)構(gòu)域(RING finger domain),環(huán)指結(jié)構(gòu)域中有富含半胱氨酸序列的基序,概括為Cys-X2-Cys-X9-39-Cys-X1-3-His-X2-3-Cys/His-X2-Cys-X4-48-Cys-X2-Cys,X可以為任意氨基酸[8],能夠與兩個(gè)Zn2+結(jié)合形成典型cross-brace結(jié)構(gòu)[9](圖2)。根據(jù)第5位保守氨基酸為半胱氨酸或組氨酸,RING finger蛋白分別對(duì)應(yīng)分為兩大類:RING-HC(C3HC4)和RING-H2(C3H2C3)[10]。RING-HC和RING-H2的區(qū)別在于共有序列中第5配位是半胱氨酸或是組氨酸。
迄今已在植物中發(fā)現(xiàn)了許多RING finger蛋白。利用生物信息學(xué)分析的方法,Lim等[11]從水稻中共檢索獲得488個(gè)潛在的RING finger基因,在確定了425個(gè)RING finger基因分布的基礎(chǔ)上,將其分為RING-H2(281個(gè))、RING-HC(119個(gè))、RING-v(23個(gè))和RING-C2(2個(gè))共計(jì)4種類型。Liu等[12]從毛果楊(Populus trichocarpa)中118個(gè)候選的C3HC4型RING finger蛋白基因里鑒定出了91個(gè)C3HC4型RING finger基因。Alam等[13]從蕪菁(Brassica rapa)的基因組中鑒定了715個(gè)RING finger蛋白。
2 RING finger蛋白的亞細(xì)胞定位
植物RING finger蛋白大多定位于細(xì)胞核、細(xì)胞質(zhì)或者細(xì)胞膜,如:擬南芥C3H2C3型RING finger蛋白R(shí)FI2(Red and Far-red Insensitive 2)[14]、C3HC4型RING finger蛋白DRIP1(DREB2A-INTERACTING PROTEIN 1)[15]、中國(guó)野生華東葡萄(V. pseudoreticulata)VpUIRP2蛋白[16]、玉米(Zea mays)ZmRFP1(Oryza sativa cold-inducible)蛋白[17]等。
也有部分蛋白位于內(nèi)質(zhì)網(wǎng)等其他地方,如:辣椒(Capsicum annuum)Rma1H1(RING membrane-anchor 1 homolog 1)蛋白[18]、水稻OsHCI1(Oryza sativa heat and cold induced 1)蛋白[19]等(表1)。
3 RING finger蛋白的功能
RING finger蛋白可以發(fā)揮轉(zhuǎn)錄因子的作用,在植物體內(nèi)主要是通過與DNA/RNA結(jié)合或蛋白互作進(jìn)行轉(zhuǎn)錄調(diào)控,部分RING finger蛋白還能起到E3連接酶的作用以調(diào)節(jié)植物體內(nèi)蛋白水解等[26]。已知RING finger蛋白廣泛參與植物細(xì)胞的各種生理生化進(jìn)程,包括生長(zhǎng)發(fā)育[27,28]、開花[29]、細(xì)胞體內(nèi)的信號(hào)傳遞[30]、植物與細(xì)菌、病原體親和或不親和互作以及逆境脅迫應(yīng)答[31]等過程。而RING finger蛋白在非生物與生物逆境脅迫響應(yīng)過程中的作用尤為重要。
3.1 RING finger蛋白參與應(yīng)答非生物脅迫
非生物脅迫主要包括高溫、低溫、干旱、鹽堿、氧化脅迫等,是影響植物分布和農(nóng)作物生產(chǎn)的主要環(huán)境因素。植物在漫長(zhǎng)的進(jìn)化過程中,產(chǎn)生了眾多不同的非生物逆境應(yīng)答與調(diào)控方式,發(fā)掘關(guān)鍵抗逆基因,解析抗逆機(jī)制,不僅可用于植物抗逆性的遺傳改良,還將極大地豐富人們對(duì)植物非生物逆境脅迫應(yīng)答的認(rèn)識(shí),為相關(guān)基因在植物抗逆遺傳改良中的合理利用提供科學(xué)依據(jù)和理論基石。近年來很多研究結(jié)果表明,RING finger蛋白參與應(yīng)答各種非生物脅迫(表2)。
3.1.1 RING finger蛋白在滲透脅迫中的作用 滲透脅迫主要是指植物由于環(huán)境因素?zé)o法獲得充足的水分而造成的脅迫。植物體內(nèi)的生命活動(dòng)都直接或間接地需要水分的參與,滲透脅迫能夠破壞植物細(xì)胞的正常離子分布動(dòng)態(tài)平衡,長(zhǎng)時(shí)間則對(duì)植株的生長(zhǎng)發(fā)育等造成巨大的損害。這里主要概括RING finger蛋白在干旱和鹽滲透脅迫中的作用。
至今,已在多個(gè)物種中發(fā)現(xiàn)RING finger蛋白參與滲透脅迫的應(yīng)答。Kam等[35]從小麥(Triticum aestivum)中發(fā)現(xiàn)鋅指蛋白TaRZF70具有4個(gè)RING-H2結(jié)構(gòu)。小麥遭受干旱脅迫時(shí),其在葉片中的表達(dá)量上升,在根部的表達(dá)量卻下降,說明TaRZF70的表達(dá)具有組織特異性,并推測(cè)TaRZF70蛋白的4個(gè)RING-H2結(jié)構(gòu)能作用于不同的靶蛋白。沙蒿(Artemisia desertorum)AdZFP1蛋白的N末端具有錨蛋白重復(fù)序列區(qū)域,C末端具有C3HC4型RING finger結(jié)構(gòu)。干旱處理后,AdZFP1在根、莖、葉等多個(gè)器官內(nèi)的表達(dá)量上升。將AdZFP1在煙草植株中異源表達(dá),能增強(qiáng)植株的抗旱性[31]。吳學(xué)闖等[23]利用核蛋白篩選系統(tǒng),從干旱脅迫大豆cDNA文庫中篩選出C3HC4型RING finger蛋白基因GmRZFP1。該基因能被干旱、高鹽等脅迫誘導(dǎo)表達(dá),表明GmRZFP1涉及多種脅迫相關(guān)信號(hào)傳導(dǎo)途徑。Reis等[33]用NaCl處理離體木薯(Manihot esculenta Crantz)葉片時(shí)發(fā)現(xiàn)MeRZF(Manihot esculenta RZF)表達(dá)量增加,推測(cè)MeRZF在響應(yīng)鹽脅迫時(shí)有著潛在的作用。Cheng等[43]在擬南芥中發(fā)現(xiàn)RGLG2能與AtERF53在細(xì)胞核內(nèi)相互作用,通過調(diào)節(jié)AtERF53(ETHYLENE RESPONSE FACTOR53)的轉(zhuǎn)錄活性來負(fù)調(diào)控干旱脅迫響應(yīng)。
已知部分RING finger蛋白依賴于ABA途徑進(jìn)行調(diào)控。Ko等[32]研究發(fā)現(xiàn)XERICO(Greek for ‘drought tolerant)在擬南芥的根、莖和葉等多個(gè)器官中有表達(dá)。轉(zhuǎn)基因植株在干旱處理下,ABA的生物合成量遠(yuǎn)遠(yuǎn)高于野生型植株,同時(shí)失水率也要低于野生型。觀察葉片氣孔狀態(tài)時(shí)還發(fā)現(xiàn),轉(zhuǎn)基因型氣孔多數(shù)關(guān)閉,而野生型多數(shù)為開放狀態(tài),表明轉(zhuǎn)基因植株通過增加ABA 含量控制葉片氣孔的關(guān)閉,以減少水分來提高抗旱能力。辣椒中分離出的基因CaRFP1能被NaCl和甘露醇迅速誘導(dǎo)。過量表達(dá)CaRFP1的植株在種子萌發(fā)期對(duì)NaCl和甘露醇的處理很敏感,萌發(fā)率顯著低于野生型,但在幼苗生長(zhǎng)期時(shí)滲透脅迫對(duì)植株影響變小,推測(cè)不同生長(zhǎng)期對(duì)滲透脅迫的敏感程度不同,這可能是不同生長(zhǎng)期對(duì)ABA的響應(yīng)有差異造成,即CaRFP1參與依賴ABA的信號(hào)途徑[10]。水稻T-DNA突變體osdsg1(Oryza sativa delayed seed germination 1)中,ABA信號(hào)相關(guān)基因的表達(dá)量顯著提升。并且,相較于野生型,osdsg1突變體與OsDSG1-RNAi植株更加耐高鹽和干旱,推測(cè)OsDSG1(Oryza sativa Delayed Seed Germination 1)依賴ABA途徑負(fù)調(diào)控植物抗旱性。
部分RING finger蛋白能夠發(fā)揮E3泛素連接酶的作用,通過單泛素化或多聚泛素化修飾靶蛋白,調(diào)控植物對(duì)滲透脅迫的響應(yīng)。Qin等[15]利用響應(yīng)干旱脅迫的重要基因DREB2A(The DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A)篩選擬南芥文庫,分離了2個(gè)C3HC4型RING finger蛋白DRIP1(DREB2A-INTERACTING PROTEIN 1)和DRIP2。試驗(yàn)證明,DRIP1/DRIP2具有E3連接酶的作用,能在核內(nèi)與DREB2A相互作用,并能水解DREB2A蛋白。drip1drip2雙突變體的耐旱性增強(qiáng),且干旱脅迫響應(yīng)基因的表達(dá)量也顯著上升。研究者推測(cè),DRIP1和DRIP2通過26S蛋白酶泛素化調(diào)控DREB2A,對(duì)干旱響應(yīng)起負(fù)調(diào)控作用。Lee等[18]發(fā)現(xiàn),干旱脅迫下,辣椒Rma1H1基因的表達(dá)能被迅速誘導(dǎo)。在擬南芥中異源表達(dá)Rma1H1,植株的耐旱性顯著增強(qiáng)。酵母雙雜交和體外泛素化試驗(yàn)證明,Rma1H1能與水通道蛋白PIP2;1相互作用,并能介導(dǎo)PIP2;1泛素化。研究者推測(cè),Rma1H1及其擬南芥同源基因Rma1(RING membrane-anchor 1)通過抑制PIP2;1的運(yùn)輸,降解PIP2;1蛋白,來下調(diào)細(xì)胞膜上PIP2;1的水平,從而調(diào)節(jié)植物抗旱性。目前已在多個(gè)物種中發(fā)現(xiàn)RING finger蛋白具有E3泛素連接酶活性,能參與特定的泛素化事件。前人報(bào)道中多以體外泛素化實(shí)驗(yàn)證明目的蛋白是否具有E3連接酶作用,如擬南芥SDIR1(salt-and drought-induced RING finger 1)[36],水稻OsBIRF1[5]、OsRDCP1(Oryza sativa RING domain-containing protein 1)[37],玉米ZmRFP1[19]以及煙草NtRHF1(RING-H2 finger gene 1)[38]等,但其是否能在體內(nèi)同樣發(fā)揮E3連接酶的作用,以及如何發(fā)揮作用還有待進(jìn)一步研究。
3.1.2 RING finger蛋白在溫度脅迫中的作用 極端溫度使得植物的細(xì)胞膜流動(dòng)性,膜的脂類成分,光合、呼吸作用,酶活性以及植株的代謝都遭受到損壞,從而影響植株的生長(zhǎng)發(fā)育。
前人報(bào)道中,大部分RING finger蛋白依賴 ABA途徑響應(yīng)低溫脅迫。水稻OsCOIN(Oryza sativa cold-inducible)基因的表達(dá)受低溫、干旱、鹽和ABA強(qiáng)烈誘導(dǎo),OsCOIN的過量表達(dá)增強(qiáng)了植株對(duì)低溫、干旱和鹽脅迫的抗性,提高了OsLti6b和OsP5CS等冷脅迫相關(guān)基因的表達(dá)。其中,OsP5CS(delta1-pyrroline-5-carboxylate synthetase)是參與脯氨酸合成的一種酶,而脯氨酸對(duì)細(xì)胞滲透平衡有著重要作用。由此推測(cè)OsCOIN 依賴ABA途徑,通過調(diào)控冷相關(guān)基因的表達(dá),增加細(xì)胞內(nèi)脯氨酸含量,從而增強(qiáng)植物對(duì)低溫、干旱以及鹽的耐受性[20]。Jung等[21]發(fā)現(xiàn)蕪菁BrRZFP1(RING zinc finger protein from Brassica rapa)基因的表達(dá)能被低溫和ABA迅速誘導(dǎo)。過量表達(dá)BrRZFP1的煙草植株對(duì)低溫、干旱以及鹽脅迫的抗性增強(qiáng)。
此外,還有的RING finger蛋白,如擬南芥中的HOS1(high expression of osmoticstress-regulated gene expression 1),通過不依賴ABA的CBF途徑在植物抵抗低溫脅迫中發(fā)揮重要作用。HOS1的編碼產(chǎn)物是類似于C3H2C3型的RING finger蛋白,其RING finger domain中第一個(gè)氨基酸為亮氨酸,而非半胱氨酸[41,44]。已知CBF類轉(zhuǎn)錄因子是調(diào)控植物抗寒性的重要節(jié)點(diǎn)基因,當(dāng)植物遭受低溫脅迫時(shí),其上游調(diào)控因子ICE1(inducer of CBF expression 1)被激活,誘導(dǎo)CBF的表達(dá),而后CBF基因表達(dá)產(chǎn)物與下游COR(cold-regulated gene)基因啟動(dòng)子中的CRT/DRE(C-repeat binding factor/dehydration-responsive element binding protein)元件結(jié)合, 誘導(dǎo)系列抗冷基因的表達(dá),從而增強(qiáng)植株的抗寒能力[45]。而HOS1蛋白具有E3泛素連接酶的作用。在低溫條件下,通過與ICE1相互作用,將 ICE1蛋白降解。體內(nèi)和體外的實(shí)驗(yàn)均證明,HOS1能直接將ICE1泛素化,多泛素化的ICE1蛋白通過26S蛋白酶途徑降解。與生化結(jié)果一致的是,超量表達(dá)HOS1的植株中CBF3以及下游的COR基因表達(dá)受到抑制,植株對(duì)低溫敏感[44]。
除上述響應(yīng)低溫脅迫的RING finger蛋白以外,還有研究發(fā)現(xiàn)部分RING finger蛋白響應(yīng)高溫脅迫,但目前報(bào)道的文獻(xiàn)不多。水稻OsRZFP34基因能被高溫和ABA所誘導(dǎo),異源表達(dá)OsRZFP34的擬南芥植株中,很多參與Ca2+、K+和ABA信號(hào)傳遞的基因的表達(dá)量上升。并且,用外源ABA處理植株后發(fā)現(xiàn),相較于對(duì)照,轉(zhuǎn)基因植株葉片上的氣孔張開程度更大。這證明了OsRZFP34是響應(yīng)高溫和ABA的植物調(diào)節(jié)子。當(dāng)植物暴露在高溫環(huán)境中時(shí),OsRZFP34可促進(jìn)氣孔開放,從而提高蒸發(fā)速率,利于植株散熱[39]。擬南芥RING finger基因AtHHR1被發(fā)現(xiàn)參與到了熱脅迫響應(yīng),實(shí)驗(yàn)中對(duì)athhr1突變體、athhr1/AtHHR1互補(bǔ)株系及野生型進(jìn)行45 ℃熱脅迫處理,發(fā)現(xiàn)athhr1的萌發(fā)率、葉綠素及脯氨酸含量高于野生型,而athhr1/AtHHR1株系均低于野生型,且熱誘導(dǎo)后擬南芥熱信號(hào)通路中相關(guān)熱激蛋白基因在突變體中表達(dá)比野生型高,初步證明了AtHHR1基因在擬南芥的熱脅迫響應(yīng)中起負(fù)調(diào)控作用[40]。
3.2 RING finger蛋白參與應(yīng)答生物脅迫
生物脅迫主要是指病蟲、真菌、細(xì)菌以及病毒等對(duì)植物的生長(zhǎng)發(fā)育帶來的脅迫。已知RING finger蛋白可以通過調(diào)控防御相關(guān)基因的表達(dá),激活防御機(jī)制來抵御潛在入侵的病原體。水稻基因OsZFP1能響應(yīng)稻瘟病菌的侵染,其表達(dá)水平在稻瘟病菌Guy11孢子懸浮液接種水稻后緩慢升高,且OsZFP1過表達(dá)植株的整體抗稻瘟病能力得到顯著提高[46]。Liu等[5]發(fā)現(xiàn)的水稻OsBIRF1基因也增強(qiáng)了轉(zhuǎn)基因煙草對(duì)煙草花葉病毒及煙草野火病病菌的抗性,轉(zhuǎn)基因植株中PR蛋白以及氧化脅迫相關(guān)基因的表達(dá)量都有所增加。伍文憲等[47]在本生煙中克隆了C3HC4型RING finger蛋白NbZFP1,其過量表達(dá)的煙草植株對(duì)煙草花葉病毒的抗性要強(qiáng)于野生型,研究者推測(cè)NbZFP1可能通過正調(diào)控PR基因的表達(dá)來增強(qiáng)抗病性。
許多RING finger蛋白具有E3連接酶活性,可以水解蛋白,從而調(diào)控植物對(duì)生物脅迫的響應(yīng)。Hong等[10]發(fā)現(xiàn),超表達(dá)辣椒CaRFP1的轉(zhuǎn)基因擬南芥對(duì)番茄細(xì)菌性斑點(diǎn)病更加敏感,同時(shí)還伴隨著PR-2、PR-5等抗病相關(guān)基因的表達(dá)量降低,推測(cè)CaRFP1起到E3連接酶的作用,多聚泛素化水解PR蛋白。擬南芥中MIEL1與轉(zhuǎn)錄因子MYB30在細(xì)胞核中可發(fā)生互作,并導(dǎo)致MYB30的降解,從而降低MYB30轉(zhuǎn)錄激活的抗病相關(guān)基因的表達(dá),抑制植物免疫反應(yīng)[48]。Yu等[49]發(fā)現(xiàn)中國(guó)華東葡萄(Vitis pseudoreticulata)中RING finger基因EIRP1(E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1)參與到病原體防御響應(yīng)。EIRP1能靶定并泛素化/26S酶蛋白系統(tǒng)水解負(fù)調(diào)控轉(zhuǎn)錄因子VpWRKY11,而轉(zhuǎn)錄因子VpWRKY11植物防御中起到負(fù)調(diào)控的作用,推測(cè)EIRP1發(fā)揮E3連接酶作用水解 VpWRKY11,從而能增強(qiáng)華東葡萄抗病原體的能力。但同樣來源于中國(guó)華東葡萄中RING finger基因VpUIRP2是通過響應(yīng)水楊酸調(diào)控增強(qiáng)對(duì)白粉病的抗性[16]。
含有保守RING-H2結(jié)構(gòu)域的ATL(Arabidopsis Toxicos en Levadura)家族也是通過E3泛素連接酶活性來介導(dǎo)植物的抗病反應(yīng)。如擬南芥中的ATL9被發(fā)現(xiàn)在免疫反應(yīng)中調(diào)控植株對(duì)活體營(yíng)養(yǎng)型病原物的抗性[24],而番茄(Solanum tuberosum L.)中的ATL相關(guān)基因RFP1(RING-finger protein 1)對(duì)于抵抗半活體營(yíng)養(yǎng)型病原物Phytophthora infestans是必不可少的[50]。Berrocal-Lobo等通過蛋白質(zhì)泛素化檢測(cè),證實(shí)了ATL9具有E3連接酶的作用,推測(cè)外來病原體如白粉病能激活NADPH氧化酶活性,進(jìn)而體內(nèi)產(chǎn)生ROS和MAPK信號(hào),誘導(dǎo)ATL9基因的表達(dá),ATL9則泛素化水解某些抵抗病原的抑制蛋白,同時(shí)自身也被快速降解,從而開始防御響應(yīng)[24]。還有的ATL基因依賴水楊酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)或乙烯(ethylene,ET)等信號(hào)途徑來調(diào)控生物脅迫的響應(yīng)[51]。如番茄中ATL6能被誘導(dǎo)子誘導(dǎo)表達(dá),其依賴于JA信號(hào)途徑進(jìn)行調(diào)控[52]。Serrano等[53]發(fā)現(xiàn)擬南芥組成型表達(dá)ATL2的5個(gè)eca(expression constitutiva de ATL2)突變體能響應(yīng)水楊酸、茉莉酸途徑,且存在著較大的不同。與JA-信號(hào)途徑相關(guān)的基因PDF1.2,其表達(dá)量只在eca2,eca4中大幅度上升;5個(gè)突變體中的防御相關(guān)基因ATLs有表達(dá),但SA-信號(hào)途徑相關(guān)基因PR-1只在eca1中高水平表達(dá),其他4個(gè)突變體中卻沒有表達(dá)。
4 展望
植物能夠適應(yīng)多種逆境主要是通過改變其基因表達(dá)和代謝途徑來實(shí)現(xiàn)的,研究這些基因表達(dá)和功能對(duì)提高植物耐逆性具有重要意義[54],因此植物對(duì)逆境脅迫響應(yīng)機(jī)制一直是人們研究的熱點(diǎn)。雖然RING finger蛋白響應(yīng)逆境脅迫的研究已取得了較大進(jìn)展,但目前有關(guān)RING finger蛋白響應(yīng)逆境的工作多數(shù)仍集中在RING finger蛋白基因的結(jié)構(gòu)類型分析、組織及脅迫表達(dá)譜、亞細(xì)胞定位以及轉(zhuǎn)基因植株的抗性鑒定等方面,RING finger蛋白的調(diào)控機(jī)制尚未清楚闡明。并且,多數(shù)研究以擬南芥和水稻等模式植物為研究對(duì)象,由于同源基因在不同物種中的功能有可能出現(xiàn)分化,因此還有更多參與植物生物逆境脅迫響應(yīng)的RING finger蛋白及其調(diào)控機(jī)制有待鑒定和研究。
蛋白質(zhì)泛素化是植物體內(nèi)蛋白質(zhì)翻譯后重要修飾之一,其中泛素連接酶E3決定底物蛋白的特異性選擇。盡管已有許多證據(jù)表明一些RING finger 蛋白具有E3泛素連接酶活性,可以調(diào)控植物抗逆性,但其底物蛋白是哪些,是如何與底物蛋白相互作用的,是否識(shí)別具有相同特點(diǎn)的底物蛋白,E3泛素連接酶能否單泛素化、多泛素化或多聚泛素化修飾這些底物,這些問題還有待解答,深入探究泛素化調(diào)控抗逆反應(yīng)的機(jī)制將為提高植物的抗逆性提供新的思路。
隨著現(xiàn)代全基因組測(cè)序技術(shù)的飛速發(fā)展,更多物種的全序列將被破譯,更多植物的RING finger蛋白將被鑒定。屆時(shí)利用生物信息分析手段,綜合運(yùn)用功能基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)以及代謝組學(xué)等研究方法,將極大促進(jìn)和推動(dòng)RING finger蛋白基因的功能及作用機(jī)制研究,并最終加快植物抗逆基因工程育種的進(jìn)程。
參考文獻(xiàn):
[1] MILLER J,MCLACHLAN A D,KLUG A. Repetitive zinc binding domains in the protein transcription factor IIIA from Xenopus oocytes[J].The EMBO Journal,1985,4(6):1609-1614.
[2] BERG J M,SHI Y. The galvanization of biology:A growing appreciation for the roles of zinc[J].Science,1996,271(5252):1081-1085.
[3] XU R Q,LI Q Q. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis[J].Plant Molecular Biology,2003,53(1-2):37-50.
[4] SCHUMANN U,PRESTELE J,OGEEN H,et al. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts[J].Proc Natl Acad Sci USA,2007,104(3):1069-1074.
[5] LIU H Z,ZHANG H J,YANG Y Y,et al. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses[J]. Plant Molecular Biology,2008, 68(1-2):17-30.
[6] FREEMONT P S,HANSON I M,TROWSDALE J. A novel cysteine-rich sequence motif[J].Cell,1991,64(3):483-484.
[7] LOVERING R,HANSON I M,BORDEN K L B,et al. Identification and preliminary characterization of a protein motif related to the zinc finger[J].Proc Natl Acad SciUSA,1993,90(6):2112-2116.
[8] FREEMONT P S. The RING Finger:A novel protein sequence motif related to the zinc finger[J].Ann NY Acad Sci,1993,684(1):174-192.
[9] KOSAREV P,MAYER K F,HARDTKE C S. Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome[J].Genome Biology,2002,3(4):1-12.
[10] HONG J K,HYONG W C,HWANG I S,et al. Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene,CaRFP1,in disease susceptibility and osmotic stress tolerance[J].Plant Molecular Biology,2007,63(4):571-588.
[11] LIM S D,YIM W C,MOON J C,et al. A gene family encoding RING finger proteins in rice:Their expansion,expression diversity,and co-expressed genes[J].Plant Molecular Biology,2010,72(4-5):369-380.
[12] LIU Q G,YANG J L,WANG Z C,et al. Genome-wide classification, identification and expression profile of the C3HC4-type RING finger gene family in poplar(Populus trichocarpa)[J].Plant Molecular Biology Reports,2015,33(6):1740-1754.
[13] ALAM I,YANG Y Q,WANG Y,et al. Genome-wide identification,evolution and expression analysis of RING finger protein genes in Brassica rapa[J].Scientific Reports,2017(7):40690-40700.
[14] CHEN M J,NI M. RED AND FAR-RED INSENSITIVE2,a RING-domain zinc finger protein,mediates phytochrome-controlled seedling deetiolation responses[J].Plant Physiology,2006, 140(2):457-465.
[15] QIN F,SAKUMA Y,TRAN L S P,et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression[J]. The Plant Cell,2008,20(6):1693-1707.
[16] 王 辰,姚文孔,謝小青,等.華東葡萄泛素連接酶基因VpUIRP2和VpUIRP3的抗白粉病特性分析[J].果樹學(xué)報(bào),2016,33(12):1477-1491.
[17] XIA Z L,LIU Q J,WU J Y,et al. ZmRFP1,the putative ortholog of SDIR1,encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize[J].Gene,2012,495(2):146-153.
[18] LEE H K,CHO S K,SON O,et al. Drought stress-induced Rma1H1,a RING membrane-anchor E3 ubiquitin ligase homolog,regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants[J].Plant Cell,2009,21(2):622-641.
[19] LIM S D,CHO H Y,PARK Y C,et al. The rice RING finger E3 ligase,OsHCI1,drives nuclear export of multiple substrateproteins and its heterogeneous overexpression enhances acquired thermotolerance[J].Journal of Experimental Botany,2013,64(10):2899-2914.
[20] LIU K M,WANG L,XU Y Y,et al. Overexpression of OsCOIN,a putative cold inducible zinc finger protein, increased tolerance to chilling,salt and drought,and enhanced proline level in rice[J].Planta,2007,226(4):1007-1016.
[21] JUNG Y J,LEE I H,NOU I S,et al. BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold,salt and dehydration stress[J].Plant Biology,2013,15(2):274-283.
[22] HWANG S G,KIM J J,LIM S D,et al. Molecular dissection of Oryza sativa salt-induced RING Finger Protein 1(OsSIRP1):possible involvement in the sensitivity response to salinity stress[J].Physiologia Plantarum,2016,158(2):168-179.
[23] 吳學(xué)闖,曹新有,陳 明,等.大豆C3HC4型RING鋅指蛋白基因GmRZFP1[J].植物遺傳資源學(xué)報(bào),2010,11(3):343-348.
[24] BERROCALLOBO M,STONE S,YANG X,et al. ATL9,a ring zinc finger protein with E3 ubiquitinligase activity iimplicated in chitin-and NADPH oxidase-mediated defense responses[J].Plos One,2010,5(12):e14426.
[25] YANG L,LIU Q H,LIU Z B,et al. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling[J].Journal of Integrative Plant Biology,2016,58(1):67-80.
[26] 李曉波,張俊武.真核生物中鋅指蛋白的結(jié)構(gòu)與功能[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2009,25(3):206-211.
[27] ZEBA N,ISBAT M,KWON N J,et al. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco[J].Planta,2009,229(4):861-871.
[28] KARLOWSKI W M,HIRSCH A M. The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development[J].Plant Molecular Biology,2003,52(1):121-133.
[29] CHEN M J,NIM. RFI2,a RING-domain zinc finger protein,negatively regulates CONSTANS expression and photoperiodic fiowering[J]. The Plant Journal,2006,46(5):823-833.
[30] PRESTELE J,HIERL G,SCHERLING C,et al. Different functions of the C3HC4 zinc RING finger Peroxins PEX10,PEX2,and PEX12 in peroxisome formation and matrix protein import[J].PANS,2010,107(33):14915-14920.
[31] YANG X H,SUN C,HU Y L,et al. Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum[J].Journal of Biosciences,2008,33(1):103-112.
[32] KO J H,YANG S H,HAN K H. Upregulation of an Arabidopsis RING-H2 gene,XERICO,confers drought tolerance through increased abscisic acid biosynthesis[J].The Plant Journal,2006,47(3):343-355.
[33] REIS S P D,COSTA C D N M,BRIGIDA A B S,et al. Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava[J].Molecular Biology Reports,2012,39(6):6513-6519.
[34] ZEBA N,ASHRAFZZAMAN M,HONG C B. Molecular characterization of the Capsicum annuum RING zinc finger protein 1(CaRZFP1) gene lnduced by abietic stresses[J].Journal of Plant Biology,2006,49(6):484-490.
[35] KAM J,GRESSHOFF P,SHORTER R,et al. Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root[J].Plant Science,2007,173(6):650-659.
[36] ZHANG Y Y,YANG C W,LI Y,et al. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis[J].The Plant Cell,2007,19(6):1912-1929.
[37] BAE H,KIM S K,CHO S K,et al. Overexpression of OsRDCP1,a rice RING domain-containing E3 ubiquitin ligase,increased tolerance to drought stress in rice(Oryza sativa L.)[J].Plant Science,2011,180(6):775-782.
[38] XIA Z L,SU X H,LIU J J,et al. The RING-H2 finger gene 1(RHF1)encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum[J].Genetica,2013,141(1-3):11-21.
[39] HSU K H,LIU C C,WU S J,et al. Expression of a gene encoding a rice RING zinc fnger protein,OsRZFP34,enhances stomata opening[J].Plant Molecular Biology,2014,86(1-2):125-137.
[40] 趙白芬,齊輝輝,李旭鋒,等.擬南芥RING finger結(jié)構(gòu)域AtHHR1基因的功能初步研究[J].四川大學(xué)學(xué)報(bào),2017,54(2):393-398
[41] LEE H J,XIONG L M,GONG Z Z,et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning[J].Genes & Development,2001, 15(7):912-924.
[42] 薛晶晶,陳松筆.木薯環(huán)指蛋白基因MeRFP8克隆及表達(dá)[J].福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,46(1):73-80.
[43] CHENG M C,HSIEH E J,CHEN J H,et al. Arabidopsis RGLG2,functioning as a RING E3 ligase,interacts with AtERF53 and negatively regulates the plant drought stress response[J].Plant Physiology,2012,158(1):363-375.
[44] DONG C H,AGARWAL M,ZHANG Y Y,et al. The negative regulator of plant cold responses,HOS1,is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J].Proc Natl Acad SciUSA,2006,103(21):18281-2886.
[45] CHINNUSAMYV,OHTA M,KANRAR S,et al. ICE1:A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes & Development,2003,17(8):1043-1054.
[46] 李 賀,韓藝娟,林藝娟.水稻鋅指蛋白基因OsZFP1的功能分析[J].中國(guó)水稻科學(xué),2005,29(2):135-140.
[47] 伍文憲,楊秀芬,劉 勇,等.煙草C3HC4型鋅指蛋白的原核表達(dá)及轉(zhuǎn)基因植株功能研究[J].生物技術(shù)通報(bào),2014(7):100-105.
[48] MARINO D,F(xiàn)ROIDURE S,CANONNE J,et al. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence[J].Nature Communications,2013(4):1476.
[49] YU Y H,XU W R,WANG J,et al. The Chinese wild grapevine(Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1(EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor[J].The New Phytologist,2013,200(3):834-846.
[50] NI X M,TIAN Z D,LIU J,et al. Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans[J].Journal of Plant Physiology,2010,167(6):488-496.
[51] SALINAS-MONDRAGON R E,GARCIDUENAS-PINA C,GUZMAN P. Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana[J].Plant Molecular Biology,1999,40(4):579-590.99
[52] HONDO D,HASE S,KANAYAMA Y,et al. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato[J].Molecular Plant-Microbe Interactions,2007,20(1):72-81.
[53] SERRANO M,GUZMAN P.Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2,an early elicitor-response RING-H2 Zinc-Finger Gene[J].Genetics,2004,167(2):919-929.
[54] 向建華,李靈之,陳信波.植物非生物逆境相關(guān)鋅指蛋白基因的研究進(jìn)展[J].核農(nóng)學(xué)報(bào),2012,26(4):666-672.