王亞麗 陳凱 向曉輝 李嫚華 冀潤(rùn)利 夏時(shí)海
鋅指轉(zhuǎn)錄因子是人類基因組中最大的轉(zhuǎn)錄因子家族,迄今為止已經(jīng)報(bào)道了8種不同類別的鋅指基序,包括類C2H2型鋅指、塞結(jié)狀鋅指、高音譜號(hào)鋅指、帶狀鋅指、Zn2/Cys6型鋅指、類TAZ2型鋅指、鋅離子結(jié)合短環(huán)鋅指和金屬硫蛋白鋅指[1]。不同類型的鋅指基序顯示了生物功能的多樣性,除了與DNA結(jié)合,鋅指基序中的RNA、蛋白質(zhì)和脂質(zhì)可以與其他鋅指蛋白(zinc finger protein,ZFP)中的類似基團(tuán)相互作用[2-4],因此,鋅指轉(zhuǎn)錄因子可以通過多個(gè)鋅指基序的不同組合大大擴(kuò)展它們?cè)诓煌?xì)胞環(huán)境或刺激下的多樣基因調(diào)控作用。在過去的幾十年里,越來越多的證據(jù)顯示了鋅指轉(zhuǎn)錄因子在癌癥進(jìn)程中的潛在作用,研究表明鋅指轉(zhuǎn)錄因子在胰腺癌中也發(fā)揮著重要作用。本文就鋅指轉(zhuǎn)錄因子在胰腺癌中作用的研究進(jìn)展進(jìn)行綜述。
ZFP91在1995年由Saotome等[5]發(fā)現(xiàn),是一種具有轉(zhuǎn)錄因子特有結(jié)構(gòu)基序的保守核蛋白,含有5個(gè)鋅指結(jié)構(gòu)域,1個(gè)亮氨酸拉鏈模式,1個(gè)卷曲螺旋結(jié)構(gòu)和幾個(gè)核定位信號(hào)。據(jù)報(bào)道,ZFP91與腫瘤抑制因子ARF相互作用,后者可誘導(dǎo)p53依賴的細(xì)胞死亡或相應(yīng)癌基因激活后的生長(zhǎng)停滯[6]。Paschke等[7]發(fā)現(xiàn)ZFP91在前列腺癌組織中高表達(dá),Ma等[8]研究發(fā)現(xiàn),ZFP91可通過與NF-κB/p56相互作用激活HIF-1α啟動(dòng)子,從而促進(jìn)結(jié)腸癌細(xì)胞增殖并可在體內(nèi)促進(jìn)腫瘤的生長(zhǎng)。Huang等[9]研究報(bào)道,ZFP91在胰腺導(dǎo)管癌細(xì)胞中高表達(dá),敲除ZFP91基因后胰腺導(dǎo)管癌細(xì)胞的遷移能力減弱,聯(lián)蛋白(catenin)表達(dá)上升而波形蛋白(vimentin)表達(dá)下降,表明敲除ZFP91可能是通過逆轉(zhuǎn)上皮細(xì)胞-間質(zhì)轉(zhuǎn)化(EMT)過程抑制胰腺導(dǎo)管癌細(xì)胞的生長(zhǎng)和遷移。
鋅指核酸結(jié)合蛋白(zinc finger RNA binding protein, ZFR)是一種古老的高度保守的染色體相關(guān)蛋白[10],其編碼具有3個(gè)寬間隔C2H2鋅指的由1 052個(gè)氨基酸組成的蛋白質(zhì)[11]。鼠ZFR蛋白是在篩選精子發(fā)生期間表達(dá)的RNA結(jié)合蛋白時(shí)被發(fā)現(xiàn),人ZFR則是在篩查與mRNA前體剪接活化劑RNPS1相互作用的遺傳因子時(shí)被確認(rèn)[12-13]。除骨骼肌外,轉(zhuǎn)錄水平ZFR在人體不同的組織中均可被檢測(cè)到。Zhao等[14]研究報(bào)道,ZFR在胰腺癌組織中表達(dá)明顯高于胰腺正常組織,沉默ZFR可顯著降低人胰腺癌PANC1細(xì)胞的存活率并可抑制細(xì)胞增殖和細(xì)胞活性,ZFR可以改變細(xì)胞周期調(diào)控分子導(dǎo)致細(xì)胞停滯于G0/G1期,通過調(diào)節(jié)某些癌癥相關(guān)基因抑制細(xì)胞的生長(zhǎng)和凋亡。沉默ZFR還可以抑制胰腺導(dǎo)管癌細(xì)胞的遷移和侵襲。
人GLI基因首先由Vofelestein等鑒定為在膠質(zhì)母細(xì)胞瘤中擴(kuò)增的癌基因。GLI基因不同于其他類型的癌基因,因?yàn)槠渚幋a包含5個(gè)重復(fù)鋅指基序的蛋白[15]。GLI家族包括GLI1、GLI2和GLI3,它們是hedgehog(Hh)信號(hào)轉(zhuǎn)導(dǎo)途徑中的關(guān)鍵轉(zhuǎn)錄因子[16]。Sheng等[17]研究發(fā)現(xiàn),GLI1在胰腺癌組織中高表達(dá),且與胰腺癌UICC期和T期密切相關(guān),下調(diào)GLI1可以抑制PANC1細(xì)胞的遷移,使基質(zhì)金屬蛋白酶9(MMP9)的表達(dá)量下降,從而抑制胰腺癌的侵襲。GLI1在胰腺上皮內(nèi)瘤變(PanINs)中也高表達(dá)[18],此外,激活的K-ras原癌基因與GLI2共同作用可誘導(dǎo)未分化的胰腺腫瘤,且GLI1基因可通過調(diào)節(jié)K-ras促進(jìn)胰腺導(dǎo)管腺癌細(xì)胞的生存和惡性細(xì)胞表型[19]。Jones等[20]研究發(fā)現(xiàn),所有的胰腺導(dǎo)管癌細(xì)胞系均有Hh信號(hào)下游組分的突變,包括GLI1和GLI3,是胰腺癌發(fā)生發(fā)展的自主通路。GLI1的表達(dá)水平與胰腺癌浸潤(rùn)的深度及TNM分期相關(guān),高表達(dá)GLI1的胰腺癌患者預(yù)后比GLI1正?;虻捅磉_(dá)患者差,是胰腺癌預(yù)后的獨(dú)立危險(xiǎn)因素[21]。Xu等[22]通過基因芯片技術(shù)在胰腺導(dǎo)管癌細(xì)胞系中篩選了高轉(zhuǎn)移靶基因EIF5A2,將GLI1綁定在EIF5A2基因的啟動(dòng)子后EIF5A2是GLI1的下游分子網(wǎng)絡(luò)節(jié)點(diǎn),通過參與Hh信號(hào)通路促進(jìn)惡性腫瘤的發(fā)展。
ZIC2是小腦鋅指蛋白(zinc finger protein cerebellum, ZIC)家族中的成員,在篩選富含小鼠小腦的cDNA過程中被鑒定[23]。雞、小鼠和人中具有5個(gè)同源物,在斑馬魚中具有7個(gè)同源物,ZIC蛋白的特征是由5個(gè)串聯(lián)的Cys2His2型鋅指組成的高度保守的鋅指結(jié)構(gòu)域,并且與GLI、GLIS和NKL家族的鋅指結(jié)構(gòu)密切相關(guān)[24]。Inaguma等[25]研究發(fā)現(xiàn)ZIC2在胰腺癌組織中表達(dá)顯著升高,沉默ZIC2基因后可抑制癌細(xì)胞的增殖,減少G0/G1期細(xì)胞,增加亞G1期細(xì)胞。此外,沉默ZIC2可以使活化的DNA修復(fù)酶(PARP)表達(dá)升高。研究還發(fā)現(xiàn)ZIC2通過上調(diào)成纖維細(xì)胞生長(zhǎng)因子受體3(FGFR3)和膜聯(lián)蛋白A8(ANXA8)表達(dá)來調(diào)節(jié)胰腺癌細(xì)胞的增殖和凋亡。
KAISO是在多種細(xì)胞類型中普遍表達(dá)POZ-ZF的蛋白,屬于BTB/POZ鋅指蛋白轉(zhuǎn)錄因子家族,最初被鑒定為細(xì)胞黏附連接素和Src激酶底物p120的結(jié)合配偶體,具有介導(dǎo)蛋白質(zhì)-蛋白質(zhì)相互作用的N末端POZ結(jié)構(gòu)域和3個(gè)C末端的C2H2鋅指結(jié)構(gòu)[26]。Jones等[27]研究發(fā)現(xiàn),KAISO在惡性程度低的胰腺癌組織中于胞質(zhì)表達(dá)較高,于胞核表達(dá)較低;在惡性程度高的胰腺癌組織中,于胞質(zhì)和胞核的表達(dá)均較高,且與腫瘤的侵襲相關(guān)。另外,在男性惡性程度高的腫瘤中KAISO在胞質(zhì)的表達(dá)更高,確切原因尚不明確,可能與性激素水平不同相關(guān)。
鋅指E盒結(jié)合蛋白-1(zinc finger E-box-binding protein 1, ZEB1)屬于ZEB家族的轉(zhuǎn)錄因子,具有N端和C端2個(gè)DNA結(jié)合的鋅指簇及位于中心的同源結(jié)構(gòu)域[28]。有研究表明,miR-139-5p通過ZEB1抑制肝癌細(xì)胞的EMT和轉(zhuǎn)移過程[29]。Smigiel等[30]發(fā)現(xiàn),抑瘤素M通過JAK/STAT3信號(hào)通路激活ZEB1的表達(dá)促進(jìn)胰腺導(dǎo)管癌細(xì)胞發(fā)生EMT,促使癌細(xì)胞從原發(fā)部位轉(zhuǎn)移到繼發(fā)部位,增強(qiáng)腫瘤細(xì)胞的致瘤性,還可以增強(qiáng)對(duì)治療藥物的耐藥性。Schickel等[31]報(bào)道,miR-200c可以通過下調(diào)fas相關(guān)磷酸酯酶-1(FAP-1)抑制ZEB1和波形蛋白的表達(dá),增加E-Cad的表達(dá),從而抑制EMT的發(fā)生。Burk等[32]研究發(fā)現(xiàn),胰腺癌ZEB1的異常表達(dá)能夠抑制胰腺導(dǎo)管癌細(xì)胞miR-200c和miR-141的表達(dá),ZEB1和miR-200相互抑制,達(dá)到平衡,在胰腺癌的發(fā)生發(fā)展中發(fā)揮重要作用。由此可見,ZEB1在胰腺癌中可以和多種miRNA相互作用,通過多種細(xì)胞信號(hào)通路影響腫瘤細(xì)胞EMT過程,從而影響腫瘤細(xì)胞的侵襲和轉(zhuǎn)移。
KLF家族作為重要的轉(zhuǎn)錄組件存在于酵母到脊椎動(dòng)物的真核細(xì)胞中,它們的結(jié)構(gòu)特征在于C端有3個(gè)高度保守的DNA結(jié)合鋅指結(jié)構(gòu)域和含有轉(zhuǎn)錄調(diào)節(jié)基序的N端結(jié)構(gòu)域[33]。迄今為止,在哺乳動(dòng)物中至少鑒定出了17種KLF因子[34],它們參與細(xì)胞增殖、分化、凋亡和腫瘤轉(zhuǎn)化等許多生物過程。有研究表明[35],KLF10啟動(dòng)子在胰腺導(dǎo)管癌細(xì)胞中具有顯著的活性。Chang等[36]研究發(fā)現(xiàn),KLF10過表達(dá)可以誘導(dǎo)TGF-β1敏感的胰腺導(dǎo)管癌細(xì)胞凋亡,其預(yù)測(cè)胰腺癌患者無進(jìn)展生存期(PFS)和總存活期(OS)較血清CA19-9更具優(yōu)勢(shì)。Wei等[37]研究發(fā)現(xiàn),KLF4通過調(diào)節(jié)p27的表達(dá)抑制胰腺導(dǎo)管癌細(xì)胞的細(xì)胞周期進(jìn)程,誘導(dǎo)癌細(xì)胞阻滯于G1期,抑制細(xì)胞增殖;裸鼠成瘤實(shí)驗(yàn)也表明KLF4在體內(nèi)抑制胰腺癌生長(zhǎng)和轉(zhuǎn)移。另外,Zhang等[38]發(fā)現(xiàn)KLF2在胰腺癌中表達(dá)下降,通過下調(diào)β-連環(huán)蛋白/TCF信號(hào)的表達(dá)抑制腫瘤細(xì)胞生長(zhǎng)和遷移,沉默KLF2后可以促進(jìn)胰腺導(dǎo)管癌細(xì)胞的侵襲。
參 考 文 獻(xiàn)
[1] Jen J, Wang YC. Zinc finger proteins in cancer progression[J]. J Biomed Sci, 2016, 23(1): 53. DOI:10.1186/s12929-016-0269-9.
[2] 趙楠, 趙飛, 李玉花. 鋅指蛋白結(jié)構(gòu)及功能研究進(jìn)展[J]. 生物技術(shù)通訊, 2009, 20(1): 131-134.DOI:10.3969/j.issn.1009-0002.2009.01.037.
[3] Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation[J]. Nucleic Acids Res, 2014, 42(17): 10873-10887. DOI: 10.1093/nar/gku767.
[4] Font J, Mackay JP. Beyond DNA: zinc finger domains as RNA-binding modules[J]. Methods Mol Biol, 2010, 649: 479-491.DOI: 10.1007/978-1-60761-753-2_29.
[5] Saotome Y, Winter CG, Hirsh D. A widely expressed novel C2H2 zinc-finger protein with multiple consensus phosphorylation sites is conserved in mouse and man[J]. Gene, 1995, 152(2): 233-238.DOI:10.1016/0378-1119(94)00717-7.
[6] Tompkins V, Hagen J, Zediak VP, et al. Identification of novel ARF binding proteins by two-hybrid screening[J]. Cell Cycle, 2006, 5(6): 642-647. DOI:10.4161/CC.5.6.2560.
[7] Paschke L, Jopek K, Szyszka M, et al. ZFP91: A noncanonical NF-κB signaling pathway regulator with oncogenic properties is overexpressed in prostate cancer. Biomed Res Int, 2016, 2016: 6963582.DOI: 10.1155/2016/6963582.
[8] Ma J, Mi C, Wang KS, et al. Zinc finger protein 91 (ZFP91) activates HIF-1α via NF-κB/p65 to promote proliferation and tumorigenesis of colon cancer[J]. Oncotarget, 2016, 7(24): 36551-36562. DOI:10.18632/oncotarget.9070.
[9] Huang W, Li N, Hu J, et al. Inhibitory effect of RNA-mediated knockdown of zinc finger protein 91 pseudogene on pancreatic cancer cell growth and invasion[J]. Oncol Lett, 2016, 12(2): 1343-1348. DOI: 10.3892/ol.2016.4794.
[11] Meagher MJ, Schumacher JM, Lee K, et al. Identification of ZFR, an ancient and highly conserved murine chromosome-associated zinc finger protein[J]. Gene, 1999, 228(1-2): 197-211. DOI:10.1016/S0378-1119(98)00615-5.
[12] Kleines M, G?rtner A, Ritter K, Schaade L. Cloning and expression of the human single copy homologue of the mouse zinc finger protein zfr[J]. Gene, 2001, 275(1): 157-162. DOI: 10.1016/S0378-1119(01)00620-5.
[13] Sakashita E, Tatsumi S, Werner D, et al. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo[J]. Mol Cell Biol, 2004, 24(3): 1174-1187. DOI:10.1128/MCB.24.3.1174-1187.
[14] Zhao X, Chen M, Tan J. Knockdown of ZFR suppresses cell proliferation and invasion of human pancreatic cancer[J]. Biol Res, 2016, 49(1): 26. DOI: 10.1186/s40659-016-0086-3.
[15] Kinzler KW, Ruppert JM, Bigner SH, et al. The GLI gene is a member of the Kruppel family of zinc finger proteins[J]. Nature, 1988, 332(6162): 371-374. DOI:10.1038/332371a0.
[16] Hatayama M, Aruga J. Gli protein nuclear localization signal[J]. Vitam Horm, 2012, 88: 73-89. DOI:10.1016/B978-0-12-394622-5.00004-3.
[17] Sheng W, Dong M, Zhou J, et al. The clinicopathological significance and relationship of Gli1, MDM2 and p53 expression in resectable pancreatic cancer[J]. Histopathology, 2014, 64(4): 523-535. DOI: 10.1111/his.12273.
[18] Thayer SP, di MMP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J]. Nature, 2003, 425(6960): 851-856. DOI:10.1038/nature02009.
[19] Nolan-Stevaux O, Lau J, Truitt ML, et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation[J]. Genes Dev, 2009, 23(1): 24-36.DOI: 10.1101/gad.1753809.
[20] Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science, 2008, 321(5897): 1801-1806. DOI: 10.1126/science.1164368.
[21] Abula Y, Yi C, Wang XY, et al. Gli1 expression in pancreatic ductal adenocarcinoma and its clinical significance[J]. Genet Mol Res, 2015, 14(4): 12323-12329. DOI:10.4238/2015.October.9.21.
[22] Xu X, Liu H, Zhang H, et al. Sonic hedgehog-GLI family zinc finger 1 signaling pathway promotes the growth and migration of pancreatic cancer cells by regulating the transcription of eukaryotic translation initiation factor 5A2[J]. Pancreas, 2015, 44(8): 1252-1258. DOI:10.1097/MPA.0000000000000532.
[23] Aruga J, Yokota N, Hashimoto M, et al. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells[J]. J Neurochem, 1994, 63(5): 1880-1890. DOI: 10.1046/j.1471-4159.1994.63051880.x.
[24] Houtmeyers R, Souopgui J, Tejpar S, et al. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis[J]. Cell Mol Life Sci, 2013, 70(20): 3791-3811. DOI:10.1007/s00018-013-1285-5.
[25] Inaguma S, Ito H, Riku M, et al. Addiction of pancreatic cancer cells to zinc-finger transcription factor ZIC2[J]. Oncotarget, 2015, 6(29): 28257-28268. DOI:10.18632/oncotarget.4960.
[26] Vermeulen JF, van de Ven RA, Ercan C, et al. Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer[J]. PLoS One, 2012, 7(5): e37864. DOI:10.1371/journal.pone.0037864.
[27] Jones J, Mukherjee A, Karanam B, et al. African Americans with pancreatic ductal adenocarcinoma exhibit gender differences in Kaiso expression[J]. Cancer Lett, 2016, 380(2): 513-522. DOI:10.1016/j.canlet.2016.06.025.
[28] Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance[J]. Cell Cycle, 2015, 14(4): 481-487. DOI: 10.1080/15384101.2015.1006048.
[29] Qiu G, Lin Y, Zhang H, et al.miR-139-5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2[J]. Biochem Biophys Res Commun, 2015, 463(3): 315-321. DOI:10.1016/j.bbrc.2015.05.062.
[30] Smigiel JM, Parameswaran N, Jackson MW. Potent EMT and CSC phenotypes are induced by oncostatin-M in pancreatic cancer[J]. Mol Cancer Res, 2017,15(4):478-488. DOI: 10.1158/1541-7786.MCR-16-0337. DOI:10.1158/1541-7786.MCR-16-0337.
[31] Schickel R, Park SM, Murmann AE, et al. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1[J]. Mol Cell, 2010,38(6):908-915. DOI:10.1016/j.molcel.2010.05.018.
[32] Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6): 582-589.DOI: 10.1038/embor.2008.74.
[33] Jiang W, Cui J, Xie D, et al. Sp/KLF family and tumor angiogenesis in pancreatic cancer[J]. Curr Pharm Des, 2012, 18(17): 2420-2431. DOI: 10.2174/13816128112092420.
[34] Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcription factors: bring in the family[J]. Genomics, 2005, 85(5): 551-556. DOI:10.1016/j.ygeno.2005.01.005.
[35] Subramaniam M, Hawse JR, Rajamannan NM, et al. Spelsberg TC. Functional role of KLF10 in multiple disease processes[J]. Biofactors, 2010, 36(1): 8-18. DOI:10.1002/biof.67.
[36] Chang VH, Tsai YC, Tsai YL, et al. Krüpple-like factor 10 regulates radio-sensitivity of pancreatic cancer via UV radiation resistance-associated gene[J]. Radiother Oncol, 2017,122(3):476-484.DOI: 10.1016/j.radonc.2017.01.001.
[37] Wei D, Kanai M, Jia Z, et al. Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells[J]. Cancer Res, 2008, 68(12): 4631-4639.DOI: 10.1158/0008-5472.CAN-07-5953.
[38] Zhang D, Dai Y, Cai Y, et al. KLF2 is downregulated in pancreatic ductal adenocarcinoma and inhibits the growth and migration of cancer cells[J]. Tumour Biol, 2016, 37(3): 3425-3431. DOI: 10.1007/s13277-015-4053-3.