程明林 時(shí)夢(mèng)詢
摘要 分析作物耐鹽、耐旱的反應(yīng)和機(jī)制,介紹一些耐鹽和耐旱的基因,探討各種轉(zhuǎn)基因方法的開發(fā)和應(yīng)用,并提出進(jìn)一步了解響應(yīng)鹽和干旱危害信號(hào)級(jí)聯(lián)的生理和分子機(jī)制,以增強(qiáng)作物的耐受性。
關(guān)鍵詞 非生物危害;干旱;鹽度;應(yīng)激反應(yīng)基因
中圖分類號(hào) S188;Q812文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 0517-6611(2018)01-0014-02
Abstract The responses and mechanisms of salt and drought tolerance were studied. Some salt and drought tolerant genes were introduced. The development and application of various methods were disscussed, and the response of physiological and molecular mechanisms to salt and drought signal cascade were pointed out to increase the tolerance of crops.
Key words Abiotic stress;Drought;Salinity;Stress responsive genes
非生物危害(干旱、鹽堿和極端溫度等)是作物生產(chǎn)的最大制約因素,大約70%的作物減產(chǎn)是由于非生物危害引起的[1]。為應(yīng)對(duì)這些危害,科學(xué)家開發(fā)了標(biāo)記輔助育種(MAB)和數(shù)量性狀位點(diǎn)(QTL)技術(shù)[2]。但是MAB技術(shù)是昂貴的,并且對(duì)于表型性狀的分析效率較低,而QTL分析的準(zhǔn)確性令人懷疑。在這種情況下,轉(zhuǎn)基因方法更具說服力和實(shí)用性。轉(zhuǎn)基因的目的是開發(fā)可以賦予非生物危害耐受性以及高產(chǎn)量和生物量的轉(zhuǎn)基因作物。通過轉(zhuǎn)基因的穩(wěn)定整合來完成核基因組的轉(zhuǎn)化或者通過修飾作物載體來實(shí)現(xiàn)作物中轉(zhuǎn)基因的表達(dá)。筆者探討了各種轉(zhuǎn)基因方法的開發(fā)和應(yīng)用,以增強(qiáng)作物對(duì)非生物危害的耐受性,特別是對(duì)鹽危害和干旱的耐受性。
1 耐鹽和耐旱性的背景
鹽度和干旱影響植物形態(tài)、生理、代謝和基因表達(dá)。礦物風(fēng)化、粉塵、降水和地下水位升高都會(huì)導(dǎo)致土地鹽堿化,干旱是由于作物生存所需水量不足導(dǎo)致的[3]。
1.1 耐鹽反應(yīng)和機(jī)制
鹽度滲透會(huì)導(dǎo)致細(xì)胞體內(nèi)平衡和離子分布的破壞。鹽危害下,作物生長受到了抑制。生長響應(yīng)的滲透(第一)階段是由于作物外部的高鹽積累,這降低了作物的進(jìn)水能力,進(jìn)而導(dǎo)致缺水,其特征在于葉和根生長減慢,作物氣孔閉合[4]。生長反應(yīng)的離子(第二)階段是由鹽離子的毒性作用引起的。作物長時(shí)間暴露于高鹽度會(huì)導(dǎo)致非常多的Na+和Cl-進(jìn)入細(xì)胞質(zhì),鹽離子濃度增加破壞了膜結(jié)構(gòu)和細(xì)胞器,改變了光合作用和蒸騰速率,抑制了酶活性,并最終導(dǎo)致葉子死亡[5]。作物耐鹽性機(jī)制是克服生長抑制,使作物在高鹽條件下茁壯成長。作物維持細(xì)胞中低鈉濃度的3個(gè)策略是離子排除,分隔和滲透保護(hù)。離子排除通過離子交換劑(NHX)排除對(duì)作物有毒的積聚離子;離子分隔是通過離子通道將有毒離子(Na+)分成空泡來增強(qiáng)組織耐受性;細(xì)胞的滲透調(diào)節(jié)和滲透保護(hù)包括候選基因合成滲透調(diào)節(jié)物質(zhì)、水通道蛋白,增強(qiáng)抗氧化酶活性,以此降低耐鹽危害[6]。
1.2 耐旱反應(yīng)和機(jī)制
干旱對(duì)作物危害的初始反應(yīng)與鹽危害導(dǎo)致的滲透性相一致,都有普遍的生理缺水。這種滲透壓力導(dǎo)致葉片失去膨脹壓力而枯萎,最終完全干燥。膨脹壓力下降使氣孔閉合,光合速率被抑制,因?yàn)镃O2的供應(yīng)由RUBISCO酶(核酮糖-1,5-二磷酸羧化酶)限制,從而抑制無機(jī)CO2轉(zhuǎn)化為有機(jī)形式,這是光合作用的第一步。同時(shí),干旱會(huì)使光系統(tǒng)Ⅱ的功能喪失,導(dǎo)致光合作用的降低[7]和RUBISCO酶的不穩(wěn)定。耐旱機(jī)制包括冠層阻力和葉面積減少,這2種機(jī)制都是通過減少暴露在光下的區(qū)域來減少過量的光和輻射的吸收率,這2種機(jī)制除了控制氣孔關(guān)閉之外,它們還調(diào)節(jié)土壤干燥期間的作物生長[8],并在氣孔交換時(shí)減少失水和CO2擴(kuò)散。
2 耐鹽性和耐旱性的轉(zhuǎn)基因方法
2.1 信號(hào)感知和轉(zhuǎn)錄控制的基因
信號(hào)感知和轉(zhuǎn)導(dǎo)是作物非生物危害反應(yīng)的首要事件。分子反應(yīng)的級(jí)聯(lián)始于危害信號(hào)的感知,其次是細(xì)胞質(zhì)和細(xì)胞核信號(hào)轉(zhuǎn)導(dǎo),為應(yīng)激反應(yīng)基因的基因表達(dá)提供信號(hào),這些基因賦予作物耐受性[9]。轉(zhuǎn)錄因子(TF)是具有序列特異性DNA結(jié)合特性的一類蛋白質(zhì),它們具有激活和抑制基因表達(dá)的能力。許多轉(zhuǎn)錄因子家族和亞家族被確定涉及作物對(duì)抗非生物危害條件的反應(yīng),如高鹽度、干旱、熱和低溫[10]。
絲裂原活化蛋白激酶(MAPK)級(jí)聯(lián)在作物危害生理學(xué)中起重要作用。通過級(jí)聯(lián)的可逆磷酸化感知應(yīng)激刺激,從而促使作物對(duì)外界環(huán)境做出應(yīng)激反應(yīng)。MAPK可調(diào)節(jié)TF的含量[11],外界刺激的強(qiáng)弱會(huì)導(dǎo)致TF含量有所差異,使得作物耐旱和耐鹽的程度不同。鹽和H2O2誘導(dǎo)了一種Mn2+依賴受體激酶,該激酶過度表達(dá)后,作物的抗氧化活性增加,對(duì)鹽和干旱的耐受性也增強(qiáng)[12]。熱休克蛋白(Hsps)作為分子伴侶,可以防止蛋白質(zhì)的聚集和變性。從Hsps分離出的熱休克蛋白轉(zhuǎn)錄因子(Hsfs)在轉(zhuǎn)基因作物中過度表達(dá)可增強(qiáng)熱度、鹽度和氧化危害的耐受性[13]。
2.2 參與ABA生物合成和轉(zhuǎn)錄控制的基因
脫落酸(ABA)在對(duì)干旱的適應(yīng)性反應(yīng)中起著不可或缺的作用。涉及ABA生物合成,分解代謝和信號(hào)傳導(dǎo)的基因可用于改善作物的耐旱性。對(duì)干旱危害的轉(zhuǎn)錄反應(yīng)分為ABA依賴型,ABA非依賴型,或二者兼具型。ABA可以調(diào)節(jié)由干旱、冷和鹽危害誘導(dǎo)的多基因表達(dá)。ABA依賴型轉(zhuǎn)錄有2種類型:“直接”途徑包括順式作用的ABA應(yīng)答元素(ABREs),通過與TF結(jié)合直接活化,例如堿基亮氨酸拉鏈(bZIP)型DNA結(jié)合蛋白[14];“間接”ABA依賴型轉(zhuǎn)錄途徑涉及其他的順式作用元素,例如MYC和MYB。這些元素通過與ABA或干旱誘導(dǎo)型TF相關(guān)蛋白結(jié)合來活化[15]。
2.3 滲透調(diào)節(jié)和滲透保護(hù)基因
為了防止細(xì)胞脫水和保護(hù)細(xì)胞蛋白質(zhì),作物中積累了許多有機(jī)化合物,稱為滲透調(diào)節(jié)物質(zhì)。滲透調(diào)節(jié)物質(zhì)包括脯氨酸、甜菜堿、多元醇、糖醇和可溶性糖。作物中甘氨酸甜菜堿(GB)積累可以增強(qiáng)干旱和鹽危害的耐受性[16]。編碼吡咯啉-5-羧酸合成酶(P5CS)合成P5C酶并在轉(zhuǎn)基因煙草中過度表達(dá),會(huì)產(chǎn)生過量游離的脯氨酸并增強(qiáng)耐鹽性,在鹽危害下表現(xiàn)出優(yōu)良的幼苗萌發(fā)和生長[17]。在轉(zhuǎn)基因作物中表達(dá)海藻糖生物合成的基因,作物對(duì)鹽和干旱的耐受性增加[18]。甘露醇是與耐鹽性相關(guān)的主要光合產(chǎn)物。大腸桿菌 mtlD 基因在轉(zhuǎn)基因小麥作物細(xì)胞中過度表達(dá)會(huì)導(dǎo)致甘露醇合成,甘露醇得到適度積累,可以增強(qiáng)作物對(duì)水和鹽危害的耐受性[19]。
2.4 抗氧化酶合成的基因
在干旱和鹽的危害下,作物中的細(xì)胞ROS(活性氧簇)水平升高。高水平的ROS對(duì)作物的生存是有害的。因此需要抗氧化劑降解這些自由基并將細(xì)胞ROS維持在無毒水平。不同的酶如過氧化氫酶(CAT)、超氧化物歧化酶(SOD)和谷胱甘肽還原酶(GR)作為抗氧化劑可以起到降解ROS的作用。超氧化物自由基的分解是由超氧化物歧化酶催化的,它可作為防止氧氣中毒的第一道防線。一種從酵母中分離出并轉(zhuǎn)錄入擬南芥的轉(zhuǎn)錄因子YAPI,使得轉(zhuǎn)基因作物在各種NaCl濃度溶液中生長[20]。過氧化氫酶(CAT)參與H2O2的清除和光呼吸,從大腸桿菌中分離過氧化氫酶會(huì)使轉(zhuǎn)基因水稻在0.1 mol/L的NaCl溶液下表現(xiàn)出正常的生長和發(fā)育。
3 結(jié)論與展望
目前用于開發(fā)耐鹽和耐旱轉(zhuǎn)基因作物的基因工程方法包括改變天然基因的表達(dá)水平或摻入滲透劑、離子轉(zhuǎn)運(yùn)蛋白、轉(zhuǎn)錄因子和其他信號(hào)分子的外來基因。到目前為止,雖然不同來源的耐鹽和耐旱的大量候選基因已經(jīng)確定,但是負(fù)責(zé)對(duì)特定非生物危害的耐受性基因仍不能識(shí)別并激活。理想的轉(zhuǎn)基因作物應(yīng)具有高度調(diào)節(jié)危害的反應(yīng)能力,當(dāng)不存在危害時(shí)不會(huì)影響作物的表現(xiàn)。因此,了解響應(yīng)鹽和干旱危害信號(hào)級(jí)聯(lián)的生理和分子機(jī)制將有助于操縱作物,提高農(nóng)業(yè)生產(chǎn)力。此外,加強(qiáng)作物對(duì)鹽漬化和干旱的耐受性是育種者確保為世界人口增長提供糧食的重要目標(biāo)。
參考文獻(xiàn)
[1] WILD A.Soils,land and food:Managing the land during the twenty-first century[M].Cambridge:Cambridge University Press,2003:785.
[2] FLOWERS T J,KOYAMA M L,F(xiàn)LOWERS S A,et al.QTL:Their place in engineering tolerance of rice to salinity[J].Exp Bot,2000,51(342):99-106.
[3] TUBEROSA R,SALVI S.Genomics-based approaches to improve drought tolerance of crops[J].Trends Plant Sci,2006,11(8):405-412.
[4] MUNNS R.Comparative physiology of salt and water stress[J].Plant Cell Environ,2002,25(2):239-250.
[5] GILROY S,SUZUKI N,MILLER G.A tidal wave of signals:Calcium and ROS at the forefront of rapid systemic signaling[J].Trends Plant Sci,2014,19(10):623-630.
[6] ROYCHOUDHURY A,CHAKRABORTY M.Biochemical and molecular basis of varietal difference in plant salt tolerance[J].Annu Rev Res Biol,2013,3(4):422-454.
[7] NISHIYAMA Y,MURATA N.Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery[J].Appl Microbiol Biotechnol,2014,98(21):8777-8796.
[8] TARDIEU F,PARENT B,SIMONNEAU T.Control of leaf growth by abscisic acid:Hydraulic or non-hydraulic processes?[J].Plant Cell Environ,2009,33(4):636-647.
[9] WANG W X,VINOCUR B,ALTMAN A.Plant responses to drought,salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J].Planta,2003,218(1):1-14.
[10] JOSHI R,WANI S H,SINGH B,et al.Transcription factors and plants response to drought stress:Current understanding and future directions[J].Front Plant Sci,2016,7:1029.
[11] TEIGE M,SCHEIKL E,EULGEM T,et al.The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis [J].Mol Cell,2004,15(1):141-152.
[12] SAIBO N J M,LOURENO T,OLIVEIRA M M.Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J].Ann Bot,2009,103(4):609-623.
[13] KIM B M,RHEE J S,JEONG C B,et al.Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein( hsp )modulation in the intertidal copepod Tigriopus japonicus [J].Comp Biochem Physiol C Toxicol Pharmacol,2014,166(65):65-74.
[14] BANERJEE A,ROYCHOUDHURY A.Abscisic-acid-dependent basic leucine zipper(bZIP)transcription factors in plant abiotic stress[J].Protoplasma,2017,254(1):3-16.
[15] ABE H,URAO T,ITO T,et al. Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB)function as transcriptional activators in abscisic acid signaling[J].The plant cell,2003,15(1):63-78.
[16] MOHANTY A,KATHURIA H,F(xiàn)ERJANI A,et al.Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress[J].Theor Appl Genet,2002,106(1):51-57.
[17] SZABADOS L,SAVOUR A.Proline:Amultifunctional amino acid[J].Trends Plant Sci,2010,15(2):89-97.
[18] SAH S K,KAUR G,WANI S H.Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants[M]//IQBAL N,NAZAR R,KHAN N A.Osmolytes and plants acclimation to changing environment:Emerging omics technologies.New York:Springer,2016:83-96.
[19] ABEBE T,GUENZI A C,MARTIN B,et al.Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J].Plant Physiol,2003,131(4):1748-1755.
[20] ZHAO J Q,GUO S L,CHEN S H,et al.Expression of yeast YAP1 intransgenic Arabidopsis results in increased salt tolerance[J].J Plant Biol,2009,52:56-64.