蘇玲
摘要 果皮顏色是影響葡萄及葡萄酒品質的重要指標之一,也是果實成熟過程中最明顯的變化之一。類黃酮物質,特別是花色苷的合成對果實顏色具有至關重要的作用,它們的合成受到結構基因和調(diào)節(jié)基因的控制。從花色苷的生物合成途徑展開,闡述了結構基因的種類、表達特性,調(diào)節(jié)基因的所屬家族、調(diào)節(jié)特點等方面,特別介紹了MYB基因家族對結構基因的調(diào)控,以期為葡萄的顏色合成機理研究提供理論依據(jù)。
關鍵詞 葡萄;果皮顏色;花色苷;結構基因;調(diào)節(jié)基因
中圖分類號 S188 文獻標識碼 A 文章編號 0517-6611(2018)02-0019-04
Abstract The skin color is not only one of the important indexes affecting the quality of grape and wine, but also one of the most obvious changes in fruit ripening process. The synthesis of flavonoids, especially anthocyanin, which is vital to the color of grape berry, is controlled by structural genes and regulatory genes. This paper started with the biosynthesis pathway of anthocyanin, elaborating the types and features of structure genes, families and regulation characteristics of regulatory genes, specially introduced the MYB gene family regulating structural gene in order to provide theoretical basis for the grape color synthetic mechanism.
Key words Grape;Berry skin color;Anthocyanin;Structural genes;Regulatory genes
葡萄是葡萄科葡萄屬落葉藤本植物,是主要的栽培果樹品種之一。隨著葡萄不同品種間的雜交和人工選擇,果皮顏色的種類也越來越豐富。果皮顏色是影響葡萄及葡萄酒品質的重要指標之一,也是果實成熟過程中變化最明顯的指標之一。類黃酮物質,如花色苷和黃酮醇,都對果皮和葡萄酒的顏色至關重要,并且可提高兩者的感官品質[1-2]。類黃酮物質是植物次生代謝過程中的重要產(chǎn)物,廣泛存在于果實、花和葉片等器官中。它不僅在植物抵御紫外線、病原菌等傷害時具有至關重要的作用,而且能夠增加對授粉昆蟲的吸引力[3-4]。此外,前人研究結果表明類黃酮物質還具有極強的抗氧化能力,可以預防心血管疾病和消除自由基[3]。
葡萄果皮顏色主要是由花色苷的比例所決定的,不同品種間花色苷類型不同,而且花色苷含量也有極大差異[5-6]?;ㄉ兆鳛榉肿咏Y構復雜的物質,是同時具有酸性集團和堿性集團的高分子共軛體系,它的生物合成與積累除受遺傳特性、糖積累水平、激素水平、成熟期等內(nèi)部因素的影響外[7-8],還受光照、溫度、水分、土壤及栽培管理措施等外部環(huán)境因素的影響[9-13]。人們通過對玉米、金魚草和矮牽牛等物種中花色苷的生物合成和調(diào)控機理的研究,對植物花色苷有了較多的認識。在此基礎上,研究者對葡萄花色苷的生物合成和調(diào)控研究也取得了較大的進展,通過對調(diào)控果皮顏色的相關基因的闡述,能夠更加了解葡萄果皮中物質的代謝機理,以期為葡萄的開發(fā)利用和育種提供依據(jù)與工作基礎。
1 葡萄花色苷生物合成途徑
葡萄中花色苷主要的合成部位是在表皮細胞的細胞質中,經(jīng)一系列運輸途徑最終在液泡中積累[14]?;ㄉ盏纳锖铣稍谝幌盗忻复呋峦瓿?,整個過程中涉及20 多步反應[15],它也是植物體類黃酮途徑的分支之一,與原花青素(proanthocyanidins)和黃酮醇(flavonol)的合成擁有共同的上游途徑[16]?;ㄉ盏暮铣赏緩街饕幸韵聨讉€階段:第一階段是苯丙氨酸代謝途徑,它是由苯丙氨酸轉化為香豆酰CoA,參與的酶有苯丙氨酸裂解酶(PAL)、肉桂酸羥化酶(C4H)和香豆酰CoA連接酶(4CL)等,此途徑是很多次生代謝共有的;第二階段為類黃酮途徑[16],由香豆酰CoA轉化為黃酮類物質,此途徑主要在查爾酮合成酶(CHS)、異構酶(CHI)、烷酮-3-羥化酶(F3H)、烷酮醇還原酶(DFR)、氫黃酮醇還原酶(DFR)和無色花色素雙加氧酶(LDOX)等的催化下完成(圖1)。經(jīng)過上述2個階段的反應,花色素的合成骨架基本形成,再經(jīng)過甲基化、?;刃揎椬饔煤?,可以形成不同結構的花色苷。最后,內(nèi)質網(wǎng)中的花色苷在谷胱甘肽-S-轉移酶(GST)作用下與谷胱甘肽結合,經(jīng)跨膜運輸?shù)揭号莘e累[2,4,15,17-18]。
目前研究發(fā)現(xiàn),類黃酮生物合成有2類基因參與:一類是編碼反應途徑中各種酶的結構基因;另一類是控制結構基因表達的調(diào)節(jié)基因[1]。
2 編碼反應途徑中各種酶的結構基因
目前在葡萄類黃酮生物合成途徑中主要有以下幾種結構基因(表1)。
2.1 PAL基因
編碼苯丙氨酸解氨酶(phenylalanine ammonialyase,PAL)。在葡萄中,PAL成員有 15~20 個[19]。它在葡萄的各個組織器官中均有表達,不具有組織特異性,但是不同品種間差異較大,在有色果實中均有表達[20-21]。葡萄果實發(fā)育過程中,PAL在果皮中的表達具有時空特異性,花后15~30 d表達量很高,之后表達減弱或不表達,在果實成熟時表達量最高[20,22]。
2.2 CHS基因
編碼查爾酮合成酶(chalcone synthase,CHS),是最先被克隆的類黃酮合成基因,目前在“赤霞珠”葡萄中已經(jīng)分離得到3個CHS基因,分別為CHS1、CHS2及CHS3。生物信息學研究表明CHS1和 CHS2有較近的進化關系,但是CHS3與二者進化關系較遠[17]。在葡萄的組織和器官中,不同的CHS 家族成員的表達模式也不盡相同,CHS1和CHS2在葡萄葉片和果皮中都能檢測到它們的表達,但是CHS3主要在葡萄轉色后的果皮中特異表達[8,17]。此外,也有研究表明,在轉色后CHS2也有表達,但是未檢測到CHS1的表達[23]。一些學者認為CHS是花色苷形成的真正開始,是進入黃酮類合成途徑的第一個限速酶,它在果實生長發(fā)育過程中一直保持著較高的活性[14,23-24]。
2.3 CHI基因
編碼查爾酮異構酶(chalcone isomerase,CHI),在葡萄中,已發(fā)現(xiàn)的CHI基因序列是CHI1和CHI2[23]。試驗結果表明,CHI在葡萄的不同組織和器官中都能檢測到表達,表達模式表現(xiàn)為非組織特異性,同時檢測其在果實發(fā)育過程中的表達特性,發(fā)現(xiàn)表達量為先上升后下降后又上升的趨勢,具體表現(xiàn)為花后15~30 d表達量上升,隨后減弱,到葡萄轉色期表達又加強[20]。
2.4 F3H基因
編碼黃烷酮3-羥基酶(flavanone 3-hydroxylase,F(xiàn)3H),在植物中,F(xiàn)3H既可以獨立表達,又可以與其他結構基因協(xié)同表達。葡萄中F3H位于4號染色體上,主要在花后14~28 d的果皮中表達,表達規(guī)律基本表現(xiàn)為先加強再減弱,至轉色后再加強[20,25],并且研究結果表明其在紅色品種成熟的果皮中表達高于白色品種[17]。F3H分別和F3′H(flavonoid 3′-hydroxylase,F(xiàn)3′H)、F3′5′H(flavanone 3′,5′-hydroxylase,F(xiàn)3′5′H)參與調(diào)控花色苷合成的2個分支。F3′H 和F3′5′H分別屬于P450的CYP75B和CYP75A家族。在葡萄中存在4個F3′H 基因,Southern試驗證明了它們?yōu)?對等位基因[26]。葡萄中F3′H和F3′5′H的表達模式存在較大的差異,但都具有時空表達特異性。F3′H的表達貫穿整個葡萄發(fā)育過程,高峰期為轉色前,而F3′5′H僅在有色葡萄品種的果實成熟期表達,且發(fā)育早期表達微弱[2,14,26]。
2.5 DFR基因
編碼黃烷酮醇-4-還原酶(dihydroflavonol 4-reductase,DFR),它在葡萄中是單拷貝的基因[27]。在葡萄中,DFR的表達不僅具有品種特異性,而且有很強的組織特異性,有色品種中的表達量顯著高于無色品種,營養(yǎng)組織(如葉片)的表達量很高,但是在果皮中表達相對較低,在整個生長發(fā)育周期中,表現(xiàn)為早期表達量上升,隨后下降,到轉色后又再次上升的趨勢[2,14,20]。
2.6 LDOX基因
編碼無色花色素雙加氧酶(leucoanthocyanidin dioxygenase,LDOX),LDOX 和DFR基因類似,也是單基因拷貝,并具有組織特異性,在根尖、葉片、花和種子中表達量較高,果實中較低,但其發(fā)育期間的表達量也遵循先上升后降低,轉色后再上升的表達模式[2,20]。此外,LDOX的表達水平受光、Ca2+及蔗糖等因素的影響較大[28]。
2.7 UFGT基因
編碼類黃酮3-O-葡萄糖基轉移酶(UDP glucose-flavonoid 3-O-glucosyltransferase,UFGT),又被稱為 3GT 或5GT,被認為是葡萄果皮花色苷生物合成途徑中最關鍵的酶,分析發(fā)現(xiàn)歐亞種葡萄只含有3GT,而其他種群葡萄還包含5GT[27,29-30]。UFGT作為葡萄果實顏色形成的關鍵基因,已被研究得較為透徹,是目前已知的與轉錄調(diào)控最直接相關的結構基因。研究結果表明,它雖然在有色葡萄果實成熟期的果皮中特異表達,但是其轉錄和翻譯除了受基因型和生理狀態(tài)等內(nèi)部因素的影響,外界環(huán)境如光照、溫度等對其表達也有很大的影響[2,14,17,20,25]。
2.8 OMT基因
編碼O-甲基轉移酶(O-methyltransferase,OMT),對OMT表達的研究發(fā)現(xiàn),其表達量與花色苷的含量呈正相關,在果實轉色前沒有表達,轉色后開始有表達[1,14]。
2.9 GST基因
編碼谷胱甘肽S-轉移酶(glutathione Stransferase,GST),它是啟動谷胱甘肽結合反應的關鍵酶。葡萄果實發(fā)育過程中,主要在轉色后的果皮中[30]。此外,還發(fā)現(xiàn)GST的表達量在水分脅迫環(huán)境中明顯上升[1,14]。除 GST 外,一些多藥抗藥性的相關蛋白(multidrug resistanceassociated protein,MRP)和多藥有毒化合物排出家族(multidrug and toxic compound extrusion,MATE)也參與了花色苷的轉運[31-32]。在葡萄中,關于花色苷合成后的轉運是近年研究者關注的難點和熱點。
目前,研究發(fā)現(xiàn)MATE基因AM1、AM2和AM3成員參與花色苷的轉運,也有報道指出 ABC 轉運蛋白可能也參與花色苷的運輸[33-34]。葡萄果實的顏色,一方面是由花色苷合成決定的,另一方面是由花色苷被有效地運輸?shù)揭号莘e累量所決定的。在葡萄中,關于花色苷合成后分子轉運機制的研究較少,還需要進一步研究。
3 控制結構基因表達的調(diào)節(jié)基因
調(diào)節(jié)基因的作用機理是與結構基因上游的識別區(qū)域結合,調(diào)控其表達水平,以此啟動或調(diào)控花色苷合成的各個途徑[38-39]。目前的研究結果表明,調(diào)控基因的類型主要是幾種編碼轉錄因子蛋白的基因家族,例如 MYB、bHLH、WD40、WRKY、鋅指(zinc finger)和同源異形結構域(homeodomain)等[4,16,40-42]。前人研究也表明,調(diào)節(jié)基因在黃酮醇和原花青素的合成過程中也發(fā)揮著重要作用[8,16,43]。研究者對調(diào)節(jié)基因的觀點有很多,一些研究者把調(diào)節(jié)基因分為2類:一類是調(diào)節(jié) PAL、CHS、CHI、F3H、DFR、LDOX等結構基因的轉錄,它們的表達主要在果實發(fā)育早期;而另一類是促進 UFGT等結構基因轉錄,它們的表達主要在成熟期。另一些研究者認為2類調(diào)節(jié)基因分別是特異地調(diào)節(jié)UFGT在果實發(fā)育晚期表達和調(diào)節(jié)除UFGT以外的基因表達的基因[20,44]。
對葡萄、白楊和蘋果等很多木本植物的研究表明MYB調(diào)控花色苷的生物合成。在葡萄中,調(diào)控花色苷生物合成的MYBA類基因已經(jīng)被鑒定出來,釀酒葡萄(Vitis vinifera)存在VvMYBA1、VvMYBA2,然而,Vitis ×labruscana基因組有VlMYBA1-2、 VlMYBA1-3和VlMYBA2這3個功能性的基因[35,45]。研究表明MYBF1與FLS表達密切相關。此外,大量的研究表明MYB5a、MYB5b、MYBPA1和MYBPA2也是參與調(diào)節(jié)花色苷生物合成途徑的基因[36,44,46-47](表2)。
研究表明除MYB外,bHLH、WD40也是調(diào)節(jié)花色苷生物合成主要的轉錄因子。前人的研究證明bHLH 不僅可直接調(diào)節(jié)DFR表達,而且能和MYB互作共同促進花色素積累[49]。有報道指出bHLH家族的基因成員VvMYC1調(diào)節(jié)花色苷的生物合成[37]。另外,WD40的克隆和功能驗證試驗證明其參與葡萄果實的著色,并發(fā)現(xiàn)其在有色葡萄中特異表達[1]。
4 結語
由于葡萄的生物學特異性和巨大的經(jīng)濟價值,其一直受到研究者的關注。葡萄果皮顏色對葡萄的加工、市場價值和經(jīng)濟效益具有決定性作用,因此研究葡萄花色苷生物合成過程中的相關基因具有重要的意義。借助于先進的研究技術,葡萄花色苷生物合成和調(diào)控機理的研究已經(jīng)顯著提高。葡萄果皮中多種不同結構的花色苷已被鑒定。花色苷生物合成過程中涉及的多個結構基因已被詳盡地介紹。一系列的轉錄因子(包括MYB家族)已被報道特異地調(diào)節(jié)花色苷合成的結構基因。然而,關于葡萄果皮花色苷的合成和調(diào)控還有許多未解之謎,如花色苷胞內(nèi)運輸機制、調(diào)節(jié)花色苷特異積累時期的特殊機制及花色苷和原花色苷的遺傳調(diào)控機理等。目前,葡萄基因組序列已經(jīng)測序完成,隨著各種組學(轉錄組、代謝組等)研究的開展,葡萄果皮花色苷合成過程中的各類基因將得到進一步的研究。
參考文獻
[1] AGEORGES A,F(xiàn)ERNANDEZ L,VIALET S,et al.Four specific isogenes of the anthocyanin metabolic pathway are systematically coexpressed with the red colour of grape berries[J].Plant science,2006,170(2):372-383.
[2] BOGS J,EBADI A,MCDAVID D,et al.Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development[J].Plant physiology,2006,140(1):279-291.
[3] HARBORNE J B,WILLIAMS C A.Advances in flavonoid research since 1992[J].Phytochemistry,2000,55(6):481-504.
[4] KOES R,VERWEIJ W,QUATTROCCHIO F.Flavonoids:A colorful model for the regulation and evolution of biochemical pathways[J].Trends in plant science,2005,10(5):236-242.
[5] KENNEDY J A,MATTHEWS M A,WATERHOUSE A L.Effect of maturity and vine water status on grape skin and wine flavonoids[J].American journal of enology and viticulture,2002,53(4):268-274.
[6] WANG W,TANG K,YANG H R,et al.Distribution of resveratrol and stilbene synthase in young grape plants(Vitis vinifera L.cv.Cabernet Sauvignon)and the effect of UVC on its accumulation[J].Plant physiology and biochemistry,2010,48(2):142-152.
[7] BRAR H S,SINGH Z,SWINNY E.Dynamics of anthocyanin and flavonol profiles in the ‘Crimson Seedless grape berry skin during development and ripening[J].Scientia horticulturae,2008,117(4):349-356.
[8] HE F,MU L,YAN G L,et al.Biosynthesis of anthocyanins and their regulation in colored grapes[J].Molecules,2010,15(12):9057-9091.
[9] AZUMA A,YAKUSHIJI H,KOSHITA Y,et al.Flavonoid biosynthesisrelated genes in grape skin are differentially regulated by temperature and light conditions[J].Planta,2012,236(4):1067-1080.
[10] BERGQVIST J,DOKOOZLIAN N,EBISUDA N.Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California[J].American journal of enology and viticulture,2001,52(1):1-7.
[11] MORI K,GOTOYAMAMOTO N,KITAYAMA M,et al.Loss of anthocyanins in redwine grape under high temperature[J].Journal of experimental botany,2007,58(8):1935-1945.
[12] PALLIOTTI A.A new closing Yshaped training system for grapevines[J].Australian journal of grape and wine research,2012,18(1):57-63.
[13] PASTORE C,ZENONI S,F(xiàn)ASOLI M,et al.Selective defoliation affects plant growth,fruit transcriptional ripening program and flavonoid metabolism in grapevine[J].BMC Plant Biology,2013,13(1):30.
[14] CASTELLARIN S D,MATTHEWS M A,DI GASPERO G,et al.Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries[J].Planta,2007,227(1):101-112.
[15] ZHANG X Y,WANG X L,WANG X F,et al.A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry[J].Plant physiology,2006,142(1):220-232.
[16] CZEMMEL S,HEPPEL S C,BOGS J.R2R3 MYB transcription factors:Key regulators of the flavonoid biosynthetic pathway in grapevine[J].Protoplasma,2012,249(2):109-118.
[17] GOTOYAMAMOTO N,WAN G H,MASAKI K,et al.Structure and transcription of three chalcone synthase genes of grapevine(Vitis vinifera)[J].Plant science,2002,162(6):867-872.
[18] KOES R,VERWEIJ W,QUATTROCCHIO F.Flavonoids:A colorful model for the regulation and evolution of biochemical pathways[J].Trends in plant science,2005,10(5):236-242.
[19] GIVEN N K,VENIS M A,GRIERSON D.Phenylalanine ammonialyase activity and anthocyanin synthesis in ripening strawberry fruit[J].Journal of plant physiology,1988,133(1):25-30.
[20] BOSS P K,DAVIES C,ROBINSON S P.Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L.cv Shiraz grape berries and the implications for pathway regulation[J].Plant physiology,1996,111(4):1059-1066.
[21] KOBAYASHI S,GOTOYAMAMOTO N,HIROCHIKA H.Retrotransposoninduced mutations in grape skin color[J].Science,2004,304(5673):982.
[22] KOBAYASHI S,ISHIMARU M,HIRAOKA K,et al.Mybrelated genes of the Kyoho grape(Vitis labruscana)regulate anthocyanin biosynthesis[J].Planta,2002,215(6):924-933.
[23] JEONG S T,GOTOYAMAMOTO N,KOBAYASHI S,et al.Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins[J].Plant science,2004,167(2):247-252.
[24] HONDA T,SAITO N.Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments[J].Heterocycles,2002,56(1/2):633-692.
[25] CASTELLARIN S D,DI GASPERO G,MARCONI R,et al.Colour variation in red grapevines(Vitis vinifera L.):Genomic organisation,expression of flavonoid 3′hydroxylase,flavonoid 3′,5′hydroxylase genes and related metabolite profiling of red cyanidin/blue delphinidinbased anthocyanins in berry skin[J].BMC Genomics,2006,7(1):12.
[26] JEONG S T,GOTOYAMAMOTO N,HASHIZUME K,et al.Expression of the flavonoid 3′hydroxylase and flavonoid 3′,5′hydroxylase genes and flavonoid composition in grape(Vitis vinifera)[J].Plant science,2006,170(1):61-69.
[27] SPARVOLI F,MARTIN C,SCIENZA A,et al.Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape(Vitis vinifera L.)[J].Plant molecular biology,1994,24(5):743-755.
[28] GOLLOP R,EVEN S,COLOVATSOLOVA V,et al.Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region[J].Journal of experimental botany,2002,53(373):1397-1409.
[29] FLAMINI R,TOMASI D.The anthocyanin content in berries of the hybrid grape cultivars Clinton and Isabella[J].Vitis,2009,39(2):79-82.
[30] LIANG Z C,WU B H,F(xiàn)AN P G,et al.Anthocyanin composition and content in grape berry skin in Vitis germplasm[J].Food chemistry,2008,111(4):837-844.
[31] ZHAO J,DIXON R A.The ‘ins and ‘outs of flavonoid transport[J].Trends in plant science,2010,15(2):72-80.
[32] ZHAO L,YAGIZ Y,XU C,et al.Muscadine grape seed oil as a novel source of tocotrienols to reduce adipogenesis and adipocyte inflammation[J].Food & function,2015,6(7):2293-2302.
[33] KLEIN J.The grapes of incompatibility[J].Developmental cell,2006,10(1):2-4.
[34] FRANCISCO R M,REGALADO A,AGEORGES A,et al.ABCC1,an ATP binding cassette protein from grape berry,transports anthocyanidin 3Oglucosides[J].The plant cell online,2013,25(5):1840-1854.
[35] AZUMA A,KOBAYASHI S,MITANI N,et al.Genomic and genetic analysis of Mybrelated genes that regulate anthocyanin biosynthesis in grape berry skin[J].Theoretical and applied genetics,2008,117(6):1009-1019.
[36] TERRIER N,TORREGROSA L,AGEORGES A,et al.Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J].Plant physiology,2009,149(2):1028-1041.
[37] CUTANDAPEREZ M C,AGEORGES A,GOMEZ C,et al.Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport[J].Plant molecular biology,2009,69(6):633-648.
[38] HICHRI I,BARRIEU F,BOGS J,et al.Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J].Journal of experimental botany,2011,62(8):2465-2483.
[39] TIAN Q G,GIUSTI M M,STONER G D,et al.Screening for anthocyanins using highperformance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursorion analysis,production analysis,commonneutralloss analysis,and selected reaction monitoring[J].Journal of chromatography A,2005,1091(1/2):72-82.
[40] HICHRI I,HEPPEL S C,PILLET J,et al.The basic helixloophelix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J].Molecular plant,2010,3(3):509-523.
[41] HOLTON T A,CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J].The plant cell,1995,7(7):1071-1083.
[42]SPRINGOB K,NAKAJIMA J,YAMAZAKI M,et al.Recent advances in the biosynthesis and accumulation of anthocyanins[J].Natural product reports,2003,20(3):288-303.
[43] OWENS C L.Pigments in grape[M]//Pigments in fruits and vegetables.New York:Springer,2015:189-204.
[44] DELUC L,BARRIEU F,MARCHIVE C,et al.Characterization of a grapevine R2R3MYB transcription factor that regulates the phenylpropanoid pathway[J].Plant physiology,2006,140(2):499-511.
[45] KOBAYASHI S,ISHIMARU M,HIRAOKA K,et al.Mybrelated genes of the Kyoho grape(Vitis labruscana)regulate anthocyanin biosynthesis[J].Planta,2002,215(6):924-933.
[46] BOGS J,JAFF F W,TAKOS A M,et al.The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development[J].Plant physiology,2007,143(3):1347-1361.
[47] DELUC L,BOGS J,WALKER A R,et al.The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J].Plant physiology,2008,147(4):2041-2053.
[48] NAKATSUKA T,HARUTA K S,PITAKSUTHEEPONG C,et al.Identification and characterization of R2R3MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers[J].Plant and cell physiology,2008,49(12):1818-1829.
[49] WALKER A R,LEE E,BOGS J,et al.White grapes arose through the mutation of two similar and adjacent regulatory genes[J].The plant journal,2007,49(5):772-785.