李笑榮,張進,馬端
復旦大學 基礎醫(yī)學院,上海 200012
PP2A是一種重要的絲氨酸/蘇氨酸磷酸酶,是由調(diào)節(jié)亞基 (B)、支架亞基 (A) 和催化亞基(C) 組成的異三聚體,其中調(diào)節(jié)亞基B決定PP2A磷酸酶復合物的底物特異性和亞細胞定位[1-2]。目前在人類細胞中共發(fā)現(xiàn)有12種PP2A調(diào)節(jié)亞基,PPP2R2A是PP2A中調(diào)節(jié)亞基之一[3]。以往的研究表明,PPP2R2A參與腫瘤的發(fā)生發(fā)展,促腫瘤細胞生長[4-7]。例如,胰腺癌細胞中 PPP2R2A的表達顯著增加,可激活多條促腫瘤發(fā)生的信號通路 (AKT-,ERK-,Wnt-)[8];腫瘤細胞中的PPP2R2A/PP2A可催化將c-Jun的T239位點去磷酸化,促進其與 DNA結(jié)合從而促進細胞的增殖和遷移[4];此外,腫瘤組織谷氨酰胺的缺乏可誘導PPP2R2A表達的上調(diào),并抑制P53通路,從而促進腫瘤細胞生存[9]。
本課題組前期研究也發(fā)現(xiàn),在乳腺癌細胞中下調(diào)PPP2R2A后,細胞增殖和遷移的能力顯著下降。由于PPP2R2A是磷酸酶復合物的調(diào)節(jié)亞基,決定了PPP2R2A-PP2A磷酸酶復合物的底物特異性,因此尋找PPP2R2A的相互作用蛋白質(zhì),有助于闡明 PPP2R2A的作用機制。本研究通過SBP-HIS8串聯(lián)純化分離了PPP2R2A蛋白復合物,進而通過 HPLC-Chip-ESI/MS/MS分析其蛋白組分。蛋白質(zhì)質(zhì)譜結(jié)果顯示 PPP2R2A與 GFPT1/GFPT2結(jié)合。GFPT1/GFPT2是己糖胺途徑的限速酶,催化谷氨酰胺水解為谷氨酸,6-磷酸-果糖轉(zhuǎn)化為 6-磷酸-葡萄糖胺。然后經(jīng)一系列反應產(chǎn)生UDP-GlcNAC,而UDP-GlcNAC是蛋白質(zhì)O-連接絲氨酸-蘇氨酸的糖基化修飾以及糖原、糖脂修飾的糖基供體[10-11]。在本研究中,我們將進一步確認 PPP2R2A與 GFPT1/2間的相互作用,以及對GFPT1/2磷酸化和下游蛋白糖基化的影響。
人胚腎細胞株HEK293T、HEK293和人乳腺癌細胞 MDA-MB-231購自 ATCC;大腸桿菌DH5α由本實驗室擴增提供;慢病毒包裝用輔助質(zhì)粒 (TAT/GAG/VSVG/REC) 購自 SBI公司;Streptavidin-beads購自 GE公司;Protein A/G beads購自 Roche公司;GST beads購自 Sigma公司;單克隆兔源抗 PPP2R2A抗體和單克隆兔源抗GAPDH抗體購自Bioworld公司;單克隆鼠源FLAG抗體購自Abmart;單克隆鼠源 GST抗體和單克隆兔源HA抗體購自Sigma 公司;兔源PKA substrate購自CST公司;Dylight 488以及Dylight 594購于Jackson Immuno Research。
1.2.1 重組質(zhì)粒構(gòu)建
構(gòu)建 PCDH-FLAG3-HIS8-SBP-Puro重組質(zhì)粒,首先設計SBP引物,并添加連續(xù)編碼8個HIS氨基酸序列標,PCR擴增得到目的片段,純化后酶切,與酶切處理的PCDH-FLAG3-Puro質(zhì)粒進行連接,質(zhì)粒經(jīng)轉(zhuǎn)化,然后菌落經(jīng)PCR鑒定擴大培養(yǎng)陽性克隆。最后重組質(zhì)粒測序鑒定。重組質(zhì)粒PCDH-FLAG3-hyg-GFPT1/PCDH-FLAG3-hyg-GFPT 2/PCDH-FLAG3-HIS8-SBP-PPP2R2A-Puro/mGSTHIS-GFPT1/mGST-HIS-GFPT2/PCDH-FLAG3-hyg-PP P2R2A以及mGST-HIS-PPP2R2A構(gòu)建方法同上,其中引物如表1所示。
表1 引物名稱和序列Table 1 Primer names and sequences
1.2.2 細胞穩(wěn)轉(zhuǎn)株構(gòu)建
以HEK293T為慢病毒包裝細胞,按照說明,將4種輔助質(zhì)粒按照和基因表達質(zhì)粒等比例混合即 Rec∶VsVg∶GAG∶TAT∶目標質(zhì)粒=1∶1∶1∶1∶4,脂質(zhì)體 Lipofectamine介導轉(zhuǎn)染,24 h后收集病毒上清,2 000 r/min離心,上清中含有組裝好的慢病毒加入細胞中,同時加入2.5 ng/mL 聚凝胺 (Polybrene) 促進感染,同上分別收集 48 h以及72 h的病毒并感染細胞。最后一次病毒感染48 h后,使用潮霉素加壓篩選細胞穩(wěn)轉(zhuǎn)株。
1.2.3 串聯(lián)親和純化聯(lián)合HPLC-Chip-ESI/MS/MS分析
收集穩(wěn)定表達 SBP-HIS-FLAG-PPP2R2A的細胞穩(wěn)轉(zhuǎn)株MDA-MB-231,加入15 mL細胞裂解液 (含1% Triton X-100,1 mol/L巰基乙醇) 冰上裂解20 min,離心收集全部細胞上清。第一次鏈霉柔和素 (Streptavidin) 純化,蛋白上清加入Streptavidin磁珠,4 ℃過夜;棄上清,用細胞裂解液 (含0.1% Triton X-100,1 mol/L巰基乙醇) 洗滌5遍,每次3 min,最后保留1 mL左右含有沉淀復合物混懸液,加入400 μL 生物素洗脫液 (無EDTA/EGTA,含2 mmol/L biotin,20 mmol/L 咪唑),4 ℃旋轉(zhuǎn)4 h后,收集上清。第二次Ni磁珠純化,蛋白上清加入40 μL PBS平衡后的Ni磁珠,4 ℃旋轉(zhuǎn)2 h;離心棄上清,加入0.05 mmol/L的NH4HCO3(pH 8.0),4 ℃ 靜置5 min,離心棄上清,重復2次;加入10 mmol/L的NH4HCO3,用2 μg胰酶酶切過夜,取出酶切產(chǎn)物,2 000 r/min離心1 min (4 ℃),收集上清加入2 μg胰酶繼續(xù)上述酶切4 h (37 ℃),2 000 r/min離心1 min,收集上清。最后HPLC- Chip-ESI/MS/MS分析,上清樣品經(jīng)過色譜分離后,肽段先后進入一級質(zhì)譜和二級質(zhì)譜,從而進行分析和鑒定。
1.2.4 細胞免疫熒光
將高壓滅菌的蓋玻片蘸于 0.1%明膠中后放至12孔板中;HA-PPP2R2A和PCDH-hyg-FLAGGFPT1/2重組質(zhì)粒依據(jù)產(chǎn)品說明書進行脂質(zhì)體Lipofectamine@2000瞬時轉(zhuǎn)染,轉(zhuǎn)染6 h后消化細胞,將其接種在明膠上生長,24 h后用4%多聚甲醛固定細胞10 min,PBST (0.2% Triton X-100)洗滌3次,5 min/次,3% BSA封閉1 h;取出玻片加入兔源抗HA一抗和鼠源抗FLAG一抗混合液 (1∶100),濕盒中4 ℃過夜;PBST (0.2% Triton X-100) 洗滌3次,5 min/次,再加入Dylight 488標記羊抗鼠IgG熒光二抗以及Dylight 594標記羊抗兔 IgG 熒光二抗的混合液 (1∶10),室溫孵育1 h,需避光;PBST (0.2% Triton X-100) 洗滌3次,5 min/次,DAPI染細胞核,避光靜置5 min;封片并熒光顯微鏡下觀察。
1.2.5 GST Pull-down
PCDH-hyg-FLAG-GFPT1和mGST-HIS-PPP2R2A重組質(zhì)粒依據(jù)產(chǎn)品說明書進行脂質(zhì)體Lipofectamine@2000瞬時轉(zhuǎn)染,24 h后收集細胞抽提蛋白;蛋白上清分成2份,一份取50 μL用作input,剩余的細胞裂解液全部用于GST Pull-down,按每個蛋白樣品需要20 μL GST磁珠,取適量的磁珠用細胞裂解液清洗3次,將GST磁珠加入待測樣品中,4 ℃旋轉(zhuǎn)孵育過夜;次日,小于500×g離心2 min,棄上清,細胞裂解液清洗磁珠 3次,磁珠沉淀加入50 μL 的 SDS 上樣緩沖液,95–100 ℃ 變性 5 min,12 000 r/min離心5 min;Western blotting檢測目的蛋白。
1.2.6 免疫共沉淀 (Co-IP)
PCDH-hyg-FLAG-PPP2R2A和mGST-GFPT1/2重組質(zhì)粒依據(jù)產(chǎn)品說明書進行脂質(zhì)體 Lipofectamine@2000瞬時轉(zhuǎn)染;24 h后收集細胞抽提蛋白,一份取50 μL用作input,剩余的全部用于免疫共沉淀;按每個樣品30 μL×2磁珠,取適量的蛋白A/G,用細胞裂解液清洗3次;蛋白樣品與30 μL蛋白A/G混勻,4 ℃旋轉(zhuǎn)孵育 1 h;小于 500×g離心2 min,棄沉淀,上清加入鼠源FLAG (2 μg) 抗體,4 ℃ 旋轉(zhuǎn)孵育 1 h,再加 30 μL Protein A/G,4 ℃旋轉(zhuǎn)孵育過夜。次日,小于500×g離心2 min,棄上清。用細胞裂解液洗磁珠3次,磁珠沉淀加入50 μL 的SDS 上樣緩沖液中,95–100 ℃變性 5 min,12 000 r/min 離心5 min;Western blotting檢測目的蛋白。
通過慢病毒感染建立SBP-HIS-FLAG-PPP2R2A穩(wěn)定表達的 MDA-MB-231乳腺癌細胞,Western blotting檢測PPP2R2A表達結(jié)果顯示,除了內(nèi)源性的PPP2R2A條帶外,在穩(wěn)轉(zhuǎn)細胞內(nèi)還有因加入純化標簽而變大的 SBP-HIS-FLAG-PPP2R2A條帶,與內(nèi)源性PPP2R2A表達水平相當 (圖1)。先通過SBP-HIS8串聯(lián)純化分離PPP2R2A蛋白復合物,進而通過 HPLC-Chip-ESI/MS/MS鑒定與PPP2R2A相互作用的蛋白。蛋白質(zhì)質(zhì)譜鑒定結(jié)果顯示,除了PPP2R2A蛋白外,還有PP2A復合物蛋白PPP2R1A和PPP2CA,這表明了該方法的可靠性。在被鑒定的蛋白中,GFPT1和GFPT2同屬于 L-谷氨酰胺-D-果糖-6-磷酸轉(zhuǎn)氨酶,并且均有多個肽段被鑒定 (表 2),因此我們將進一步分析PPP2R2A與GFPT1/2間的相互作用。
在 HEK293T細胞中,重組質(zhì)粒共瞬時轉(zhuǎn)染PCDH-hyg-FLAG-GFPT1/2和mGST-HIS-PPP2R2A,設置瞬轉(zhuǎn)PCDH-hyg-FLAG空載和mGST-HIS空載作為陰性對照。GST Pull-down結(jié)果顯示PPP2R2A可沉淀細胞中的 FLAG-GFPT1和 FLAG-GFPT-2(圖 2A、B);反向,使用 FLAG抗體通過 Co-IP分別沉淀FLAG-GFPT1和 FLAG-GFPT2融合蛋白,結(jié)果同樣表明二者均可沉淀細胞中的PPP2R2A蛋白。進一步說明PPP2R2A與GFPT1/2存在相互作用。
圖1 Western blotting檢測SBP-HIS-FLAG-PPP2R2A穩(wěn)定細胞株的PPP2R2A表達水平Fig. 1 Detection of the expression of PPP2R2A in the stable MDA-MB-231 cells of SBP-HIS-FLAG-PPP2R2A by using Western blotting.
表2 串聯(lián)親和法聯(lián)合 HPLC-Chip-ESI/MS/MS結(jié)果顯示GFPT1/2是PPP2R2A潛在的結(jié)合蛋白Table 2 The results of tandem affinity and HPLCChip-ESI/MS/MS identified the GFPT1/2 as the potential partner of PPP2R2A
圖2 PPP2R2A蛋白與GFPT1/2蛋白相互作用Fig. 2 The interaction between PPP2R2A and GFPT1/2 was further validated. (A, B) GST Pull-down of PPP2R2A with Flag-GFPT1/2. HEK-293T cells were co-transfected with plasmids expressing GST-tagged PPP2R2A (or empty vector) and Flag-tagged GFPT-1/-2. PPP2R2A was precipitated with GST Pull-down, and the pull-down products were analyzed by anti-Flag immunoblotting. (C) Co-immunoprecipitation (IP) of PPP2R2A with Flag-tagged GFPT1/2.PPP2R2A was immunoprecipitated with an anti-Flag antibody, and co-immunoprecipitated PPP2R2A was analyzed by anti-GST immunoblotting.
在HEK 293細胞中,共同轉(zhuǎn)染HA-PPP2R2A和FLAG-GFPT1/2表達質(zhì)粒,用鼠源抗FLAG和兔源抗HA抗體做免疫熒光檢測,結(jié)果如圖3A、B顯示,PPP2R2A與GFPT1/2在細胞中共定位于細胞質(zhì)中。
圖3 PPP2R2A與GFPT1/2在細胞質(zhì)中共定位的免疫熒光結(jié)果Fig. 3 Colocalization of PPP2R2A and GFPT1/2 in cytoplasm. (A, B) GFPT1/2 was co-localized with PPP2R2A in the cytoplasm. The HEK293 cells were co-transfected with plasmids expressing FLAG-GFPT1/2 and HA-PPP2R2A, and after 24 h, cells were fixed and stained with anti-HA (green) and anti-FLAG (red)antibody. And the DAPI were used for nuclear staining.
已有的報道顯示PKA可導致GFPT1/2的磷酸化,為了檢測PPP2R2A去磷酸酶對GFPT1/2磷酸化的影響,我們通過慢病毒感染并表達shRNA,建立PPP2R2A穩(wěn)定下調(diào)的 HEK 293T細胞,Western blotting結(jié)果顯示該shRNA有效下調(diào)PPP2R2A表達。再在該穩(wěn)定細胞株中轉(zhuǎn)染 mGST-GFPT1/2表達質(zhì)粒,用GST-pull down將外源性表達的GST-GFPT1/2進行純化,Anti-GST-WB檢測結(jié)果顯示在PPP2R2A穩(wěn)定下調(diào)細胞和對照細胞中,GST-GFPT1和GST-GFPT2的表達量相同,同時用 PKA底物抗體檢測其磷酸化水平,結(jié)果顯示 PPP2R2A下調(diào)后,GFPT1磷酸化水平改變不明顯,GFPT2磷酸化水平增加 (圖4 A、B)。另外,在FLAG-GFPT2穩(wěn)定表達的MDA-MB-231細胞株中使用shRNA下調(diào)PPP2R2A表達,通過 Anti-FLAG-IP沉淀 FLAGGFPT2蛋白,Anti-PKA substrate WB結(jié)果同樣顯示,PPP2R2A的下調(diào)可促進 GFPT2的磷酸化,與HEK293T中的結(jié)果一致 (圖4 C)。
己糖胺途徑是一系列的酶促生化反應,最終生成UDP-GlcNAC,它是蛋白質(zhì)的O-連接的絲氨酸-蘇氨酸的糖基化修飾以及糖原、糖脂修飾的底物,GFPT2是己糖胺途徑中的關鍵限速酶,于是我們又進一步檢測 PPP2R2A下調(diào)對細胞內(nèi)總蛋白S/T-O-GlcNAC糖基化的影響,使用O-GlcNAC抗體 (CTD110.6) 進行Western blotting檢測,結(jié)果 (圖4) 表明下調(diào)PPP2R2A后,乳腺癌細胞中蛋白質(zhì)的 S/T-O-GlcNAC糖基化修飾的水平顯著增加。
圖4 PPP2R2A影響GFPT2的磷酸化水平Fig. 4 Knockdown of PPP2R2A enhanced phosphorylation of GFPT2. (A, B) Knockdown of PPP2R2A by lentivirus-mediated shRNA enhanced the phosphorylation of GFPT2, while the phosphorylation of GFPT1 had no significant change In HEK 293T. The plasmid of GST-GFPT1 or GFPT2 was further transfected into the normal and PPP2R2A-knockdown cells. GST Pull-down was used to precipitated the GFPT1 or GFPT2, and the phosphorylation was detected by the anti-PKA substrate immunoblotting. (C) In MDA-MB-231, knockdown of PPP2R2A enhanced the phosphorylation of GFPT2. MDA-MB-231 cells stably expressing FLAG-GFPT2 were established by infection with lentiviral particles. FLAG-GFPT2 was immunoprecipitated with an anti-FLAG antibody, and phosphorylation of GFPT2 was analyzed by the anti-PKA substrate immunoblotting.
PP2A的活性和特異性是通過調(diào)節(jié)亞基調(diào)控的,PPP2R2A作為PP2A復合物的調(diào)節(jié)亞基之一,通過底物特異性結(jié)合從而影響其磷酸化水平[12-13]。已有的研究表明,腫瘤細胞中谷氨酰胺的缺乏會促進PPP2R2A的表達,進而通過抑制P53通路提高腫瘤細胞在此環(huán)境中的生存[9]。為了更加深入地解釋PPP2R2A的分子作用機制,我們進一步尋找新的與PPP2R2A結(jié)合的其他蛋白。
本研究通過慢病毒感染建立 FLAG-SBP-HISPPP2R2A穩(wěn)定表達 MDA-MB-231細胞株,并首次使用 SBP-HIS串聯(lián)親和純化聯(lián)合質(zhì)譜的方式對PPP2R2A的結(jié)合蛋白進行了分析。與文獻中常使用的其他串聯(lián)標簽純化 (Tandem Tag Purification,TAP) 方法相比,該方式具有以下3個優(yōu)點[14-16]:1) 通過慢病毒感染建立穩(wěn)定表達細胞,PPP2R2A表達量與內(nèi)源性PPP2R2A表達量大致相當,更好地模擬 PPP2R2A內(nèi)源性表達量;2) SBP-tag與Streptavidin-beads具有極高的親和力,再經(jīng)過HIS8-tag純化的方法后,進一步增加了PPP2R2A復合物的純度[17];3) 第二步HIS-tag的純化不會引入其他過量的外源蛋白 (例如使用抗體時的免疫球蛋白或Streptavidin-beads上的Streptavidin),從而消除了過量純化基質(zhì)蛋白引入對質(zhì)譜分析的影響。
圖5 PPP2R2A下調(diào)促進S/T-O-GlcNAC糖基化修飾Fig. 5 Cellular O-GlcNAcylation was elevated when PPP2R2A was knocked down in MDA-MB-231 cells.The PPP2R2A were knocked down by using the lentivirus-mediated shRNA, and the cellular O-GlcNAcylation was analyzed by anti-CTD110.6 immunoblotting.
通過該方法,我們鑒定出多個PPP2R2A已知結(jié)合蛋白及許多潛在的相互作用蛋白,其中包括GFPT1和GFPT2。通過GST Pull-down、Co-IP以及免疫熒光,我們進一步確定了PPP2R2A的確能夠與GFPT1/2結(jié)合。人源GFPT1和GFPT2有76%的同源性[18],自身酶的活性受磷酸化水平的調(diào)控[19]。例如,PKA可通過磷酸化GFPT1的205S (絲氨酸) 而抑制其活性,PKA也可磷酸化GFPT2的202S (絲氨酸) 促進其活性[20-21]。我們的結(jié)果顯示PPP2R2A下調(diào)可增加GFPT2的PKA磷酸化水平。
GFPT1和GFPT2是己糖胺途徑的限速酶,催化谷氨酰胺水解為谷氨酸,使 6-磷酸-果糖轉(zhuǎn)化為 6-磷酸-葡萄糖胺。然后經(jīng)一系列反應產(chǎn)生UDP-GlcNAC,它是蛋白質(zhì)O-連接的絲氨酸-蘇氨酸的糖基化修飾以及糖原、糖脂修飾的底物。參與細胞內(nèi)的多條信號通路的調(diào)控[22-24]。我們的結(jié)果表明PPP2R2A下調(diào)后促進GFPT2磷酸化水平的同時,也會促進細胞內(nèi)總O-GlcNAC糖基化修飾的增加。
在本研究中,我們還通過慢病毒感染在MDA-MB-231細胞中上調(diào)了PPP2R2A的表達,但未檢測到GFPT2和O-GlcNAC糖基化修飾的改變,推測這是由于細胞本身就有很高的內(nèi)源性PPP2R2A蛋白表達。例如,在圖 1中內(nèi)源性PPP2R2A蛋白與慢病毒感染表達的 FLAG-HISPPP2R2A蛋白量很近似;在圖4C中PPP2R2A未下調(diào)的 MDA-MB-231細胞中基本檢測不到GFPT2的磷酸化狀態(tài),這說明在細胞中具有高活性的PPP2R2A;同時我們也注意到,最近發(fā)表的一篇關于PPP2R2A去磷酸化EDD并調(diào)控P53的報道中[9],作者同樣僅開展了 PPP2R2A的下調(diào)研究,且在對照組中 EDD磷酸化水平也是幾乎檢測不到。這些均說明在細胞中具有很高的PPP2R2A活性,也提示PPP2R2A具有作為治療靶標的潛力。
另外,在細胞中大約有 80多種蛋白發(fā)生O-GlcNAC糖基化修飾[25],在接下來的研究中我們將進一步鑒定,哪種關鍵的下游蛋白 O-GlcNAC糖基化修飾的改變介導了 PPP2R2A下調(diào)引起的生物學效應。
REFERENCES
[1]Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J,2001, 353(3): 417–439.
[2]Eichhorn PJA, Creyghton MP, BERNARDS R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta (BBA)-Rev Cancer, 2009, 1795(1): 1–15.
[3]Seshacharyulu P, Pandey P, Datta K, et al. Phosphatase:PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett, 2013, 335(1): 9–18.
[4]Gilan O, Diesch J, Amalia M, et al. PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene, 2015, 34(10):1333–1339.
[5]Mori N, Ishikawa C, Uchihara JN, et al. Protein phosphatase 2A as a potential target for treatment of adult T cell leukemia. Curr Cancer Drug Targ, 2013,13(8): 829–842.
[6]Beca F, Pereira M, Cameselle-Teijeiro JF, et al. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer,2015, 15(1): 285.
[7]Suganuma M, Fujiki H. Tumor promotion by inhibitors of protein phosphatase 1 and 2A. Tanpakushitsu Kakusan Koso, 1998, 43(S8): 1102–1110.
[8]Hein AL, Seshacharyulu P, Rachagani S, et al. PR55α subunit of protein phosphatase 2A supports the tumorigenic and metastatic potential of pancreatic cancer cells by sustaining hyperactive oncogenic signaling. Cancer Res, 2016, 76(8): 2243–2253.
[9]Reid MA, Wang WI, Rosales KR, et al. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell, 2013,50(2): 200–211.
[10]Wellen KE, Lu C, Mancuso A, et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev,2010, 24(24): 2784–2799.
[11]Ferrer CM, Sodi VL, Reginato MJ. O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol, 2016, 428(16): 3282–3294.
[12]Ory S, Zhou M, Conrads TP, et al. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol, 2003, 13(16): 1356–1364.
[13]Ruvolo PP. The broken “off” switch in cancer signaling:PP2A as a regulator of tumorigenesis, drug resistance,and immune surveillance. BBA Clin, 2016, 6: 87–99.
[14]Li Y. The tandem affinity purification technology: an overview. Biotechnol Lett, 2011, 33(8): 1487–1499.
[15]Kosobokova EN, Skrypnik KA, Kosorukov VS.Overview of fusion tags for recombinant proteins.Biochemistry (Moscow), 2016, 81(3): 187–200.
[16]Ma Z, Fung V, D’orso I. Tandem affinity purification of protein complexes from eukaryotic cells. J Vis Exp,2017(119), doi: 10.3791/55236.
[17]Loughran ST, Walls D. Tagging recombinant proteins to enhance solubility and aid purification//Walls D,Loughran S, Eds. Protein Chromatography: Methods and Protocols. New York: Humana Press, 2017,1485:131–156.
[18]Oki T, Yamazaki K, Kuromitsu J, et al. cDNA cloning and mapping of a novel subtype of glutamine:fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics, 1999, 57(2): 227–234.
[19]Yamazaki K. Glutamine–fructose-6-phosphate transaminase 1, 2 (GFPT1, 2)//Taniguchi N, Honke K, Fukuda M, et al. Handbook of Glycosyltransferases and Related Genes.Tokyo: Springer, 2014: 1465–1479.
[20]Hu Y, Riesland L, Paterson AJ, et al. Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biolog Chem, 2004, 279(29):29988–29993.
[21]Chang Q, Su KH, Baker JR, et al. Phosphorylation of human glutamine: fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J Biolog Chem, 2000, 275(29):21981–21987.
[22]Ruan HB, Singh JP, Li MD, et al. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metabol, 2013, 24(6): 301–309.
[23]Slawson C, Hart GW. Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr Opin Struct Biol, 2003, 13(5): 631–636.
[24]Comer FI, Hart GW. O-GlcNAc and the control of gene expression. Biochim Biophys Acta (BBA)-Gen Subj,1999, 1473(1): 161–171.
[25]Wells L, Whelan SA, Hart GW. O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Commun, 2003, 302(3): 435–441.