王國柱 肖斌 董博
[摘要] 成人骨骼是一種經(jīng)過不斷重塑的多功能器官。骨骼的內(nèi)穩(wěn)態(tài)需要破骨細(xì)胞骨吸收和成骨細(xì)胞骨形成之間的平衡;如果這種平衡失調(diào)將導(dǎo)致骨質(zhì)疏松癥、硬化性骨病等各種骨骼疾病的發(fā)生。為了找到有效和安全的治療方法來調(diào)節(jié)骨形成,必須闡明骨細(xì)胞分化和活動(dòng)的分子機(jī)制。人類和小鼠的基因研究已經(jīng)確立了Wnt信號作為刺激成骨細(xì)胞分化和活性的關(guān)鍵機(jī)制。本文就Wnt信號通路與骨形成相關(guān)機(jī)制以及治療骨質(zhì)疏松方法的相關(guān)研究進(jìn)行綜述。
[關(guān)鍵詞] 骨細(xì)胞;Wnt信號;骨質(zhì)疏松;綜述
[中圖分類號] R589 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)04(b)-0029-04
Research progress of Wnt signaling pathway and osteoporosis treatment
WANG Guozhu1 XIAO Bin1 DONG Bo2 YAO Jie2 CHEN Zhihui1 QIAN Bing1 Zhang Liping1
1.Department of Orthopedics, the Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi Province, Xianyang 712000, China; 2.Department of Orthopedics, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shaanxi Province, Xianyang 712000, China
[Abstract] Adult bone is a multifunctional organ that has been continuously reshaped. The homeostasis of bone requires the balance between osteoclast bone absorption and osteogenesis. If this imbalance can lead to osteoporosis, sclerosing osteopathy and other bone diseases. In order to find effective and safe treatment methods to regulate bone formation, the molecular mechanism of bone cell differentiation and activity must be elucidated. Gene researches in humans and mice have established Wnt signaling as a key mechanism for stimulating osteoblast differentiation and activity.This paper reviews the related mechanisms of Wnt signaling pathway and bone formation and the treatment of osteoporosis.
[Key words] Bone cell; Wnt; Osteoporosis; Review
骨細(xì)胞主要存在于骨礦化基質(zhì)中提供骨支撐。成人骨骼一直處于重塑的狀態(tài),這對于維持正常的骨骼結(jié)構(gòu)和功能非常重要。成骨細(xì)胞和破骨細(xì)胞是參與骨重塑過程的兩個(gè)主要細(xì)胞[1]。健康成人骨重塑過程中需要依靠體內(nèi)的骨吸收和骨形成過程的動(dòng)態(tài)平衡。在人類生活中,隨著年齡的不斷增長以及相關(guān)骨代謝異常情況下,骨重塑的動(dòng)態(tài)平衡遭到破壞:若骨吸收超過骨形成將導(dǎo)致骨量的丟失,嚴(yán)重患者會(huì)出現(xiàn)骨質(zhì)疏松;反之,將出現(xiàn)骨量的增加的相關(guān)疾病。因成骨細(xì)胞是骨形成的最主要的細(xì)胞類型,因此闡明成骨細(xì)胞分化和活性的調(diào)節(jié)機(jī)制不僅可以了解骨的生理機(jī)能,而且可設(shè)計(jì)出有效的治療骨疾病的方法。目前關(guān)于骨機(jī)制的研究主要集中在內(nèi)分泌、旁分泌以及轉(zhuǎn)錄調(diào)節(jié)方面[2]。這些研究沒有涉及到關(guān)鍵的生長因子:Wnt蛋白和骨重建過程關(guān)系密切,可通過多層面調(diào)節(jié)相關(guān)蛋白表達(dá)來影響骨的形成和吸收[3]。對骨質(zhì)疏松發(fā)病機(jī)制的深入研究及治療方案探索有一定的指導(dǎo)意義。
1 Wnt信號通路的概述
Wnt信號通路在骨骼的維持和修復(fù)過程中起到關(guān)鍵作用。Wnt蛋白在小鼠和人類功能相似,均為參與胚胎、器官和形態(tài)發(fā)生過程的分泌型糖蛋白家族,是成骨細(xì)胞分化和活性的關(guān)鍵調(diào)控因子,通過自分泌或者旁分泌發(fā)揮作用[3]。至少存在19個(gè)與人類密切相關(guān)的Wnt基因家族成員,含有約350個(gè)氨基酸殘基[4]。Wnt信號由卷曲蛋白(Frizzled)家族和低密度脂蛋白(LRP)家族的一種受體組成的跨膜蛋白結(jié)合受體所轉(zhuǎn)導(dǎo)[5]。Wnt與Frizzled受體及共同受體的結(jié)合后可激活細(xì)胞內(nèi)GTP酶、鈣調(diào)蛋白依賴性激酶2(CaMK2)、c-jun氨基末端激酶(JNK)、蛋白激酶A(PKA)和AKT等[6]多個(gè)不同的細(xì)胞內(nèi)的信號級聯(lián)反應(yīng)。
2 Wnt/β-catenin信號通路
依據(jù)Wnt蛋白轉(zhuǎn)導(dǎo)信號的方式將Wnt信號通路劃分為經(jīng)典的β-catenin-依賴性通路和非經(jīng)典的β-catenin-獨(dú)立通路。
經(jīng)典的Wnt通路可使β-catenin處于穩(wěn)定,并通過轉(zhuǎn)位使β-catenin進(jìn)入細(xì)胞核。β-catenin由Catnnb1編碼,是一種重要的轉(zhuǎn)錄聯(lián)合激活劑,負(fù)責(zé)調(diào)控基因轉(zhuǎn)錄,以響應(yīng)Wnt信號的傳導(dǎo)。在經(jīng)典Wnt信號通路中,β-catenin是通路中最為關(guān)鍵和核心的信號轉(zhuǎn)導(dǎo)因子,廣泛的分布于細(xì)胞質(zhì)和細(xì)胞膜[7]。正常情況下,在未接觸配體的細(xì)胞中,β-catenin的細(xì)胞質(zhì)水平與β-catenin破壞復(fù)合體的相互作用保持在低水平。Wnt配體激活的通路由許多因素決定,包括特定的配體受體相互作用,不同的受體/共受體作用,或存在的細(xì)胞內(nèi)蛋白等共同調(diào)節(jié)β-catenin活性[8]。Wnt蛋白通過與Fzd受體復(fù)合體結(jié)合,使LRP受體復(fù)合體磷酸化。糖原合成酶激酶-3β(gsk-3β)和軸素蛋白(Axin)在配體受體復(fù)合體中被激活。這一復(fù)合物隨后可通過吸收的方式進(jìn)入多泡內(nèi)胚層,并直接作用于β-catenin,抑制其降解,以此達(dá)到胞質(zhì)內(nèi)β-catenin的穩(wěn)定和積累[9]。Jho等[10]的研究表明,穩(wěn)定的β-catenin通過轉(zhuǎn)位進(jìn)入到細(xì)胞核中,與高移動(dòng)性組(HMG)-型轉(zhuǎn)錄因子家族的淋巴增強(qiáng)因子/T細(xì)胞因子(Lef/Tcf)相互作用,激活處于抑制狀態(tài)的靶基因,從而刺激目標(biāo)基因進(jìn)行表達(dá)。
3 Wnt信號通路與骨細(xì)胞
3.1 Wnt信號與成骨細(xì)胞
Wnt/β-catenin信號通路在整個(gè)骨骼的生長、發(fā)育以及修復(fù)和重建過程中起著關(guān)鍵的調(diào)控作用。Maupin等[11]的實(shí)驗(yàn)證明Wnt信號在整個(gè)骨形成過程中成骨細(xì)胞的增殖分化和破骨細(xì)胞的抑制都需要β-catentin的參與。Chen等[12]的研究表明β-catenin可在調(diào)節(jié)骨形成的同時(shí)調(diào)節(jié)骨吸收,通過兩方面共同作用來控制骨量。β-catenin是骨形成的必要條件,并在成骨細(xì)胞分化的多個(gè)階段作用,以調(diào)節(jié)成骨細(xì)胞和破骨細(xì)胞。在成骨細(xì)胞分化過程中,β-catenin發(fā)揮作用時(shí)作用的直接靶基因并沒有得到確定性的研究結(jié)果,但是β-catenin與Tcf1的結(jié)合已被證明可以直接刺激Runx2轉(zhuǎn)錄[13]。骨保護(hù)素(OPG)在Wnt通路過程中編碼一個(gè)抗破骨細(xì)胞因子,被認(rèn)為是β-catenin促進(jìn)成骨細(xì)胞分化時(shí)發(fā)揮作用的直接目標(biāo)[14]。雖然β-catenin在骨骼中的重要性已經(jīng)確立,但β-catenin獨(dú)立的Wnt信號對骨骼形成的作用正變得越來越清晰。多個(gè)Wnt蛋白可激活哺乳動(dòng)物雷帕霉素復(fù)合物1(mTORC1)的絲氨酸激酶,促進(jìn)蛋白質(zhì)合成和骨形成。增強(qiáng)或減弱小鼠mTORC1的一項(xiàng)遺傳研究進(jìn)一步證實(shí)了mTORC1對骨形成的刺激作用[15-16]。此外,Wnt激活mTORC2,以響應(yīng)機(jī)械負(fù)荷或抗硬化的中和抗體[17-18]。由于mTOR通路是營養(yǎng)傳感和代謝調(diào)控的核心,Wnt信號已經(jīng)成為成骨細(xì)胞調(diào)節(jié)細(xì)胞代謝的重要機(jī)制。Hu等[19]發(fā)現(xiàn)Wnt3a可激活前成骨細(xì)胞和成熟的成骨細(xì)胞中的PI3K/AKT、ERK信號通路抑制細(xì)胞的凋亡促進(jìn)成骨。Wnt1、Wnt7b、Wnt10b、Wnt16等多個(gè)Wnts蛋白已被證明可以有效參與調(diào)節(jié)骨形成[5,15]。
3.2 Wnt信號調(diào)節(jié)骨髓間充質(zhì)干細(xì)胞向成骨轉(zhuǎn)化
Wnt信號通路在骨髓間充質(zhì)干細(xì)胞(BMSC)向成骨細(xì)胞分化的過程中發(fā)揮著重要作用。關(guān)于BMSC的研究比較廣泛,BMSC是促進(jìn)骨和其他間充質(zhì)組織再生的多功能細(xì)胞,能保持其自我更新能力,并具有分化為骨組織的潛力,使它們成為臨床應(yīng)用修復(fù)或重建骨缺損的有吸引力的候選體[20]。BMSC向成骨細(xì)胞分化受到抑制的同時(shí),脂肪細(xì)胞的分化將會(huì)增多,這將導(dǎo)致骨質(zhì)疏松的發(fā)生。在促進(jìn)BMSC向成骨細(xì)胞的分化的同時(shí)抑制其向脂肪細(xì)胞的分化可有效減少骨吸收的同時(shí)促進(jìn)骨形成,可作為骨質(zhì)疏松的有效治療方法[21-22]。Wnt信號通路可促進(jìn)BMSC向成骨細(xì)胞轉(zhuǎn)化,抑制其向脂肪細(xì)胞和破骨細(xì)胞等的分化。β-catenin的積聚也可促進(jìn)MSC的成骨分化。在小鼠BMSC中的基因編碼中敲除β-catentin基因,可導(dǎo)致成骨細(xì)胞分化缺失,進(jìn)而出現(xiàn)骨骼發(fā)育嚴(yán)重缺陷。Yu等[23]發(fā)現(xiàn)Wnt4通過Wnt通路抑制巨噬細(xì)胞和破骨前體細(xì)胞中TGFβ激活激酶1介導(dǎo)的NF-κB,抑制BMSC向成骨方向分化。
最近,人類的外顯子測序發(fā)現(xiàn)了Wnt1基因與早期發(fā)病的骨質(zhì)疏松癥和骨生成不全癥相關(guān)的多種突變密切相關(guān)[24]。與人類的研究結(jié)果一致,小鼠的基因研究已經(jīng)證實(shí)了Wnt信號與骨形成之間存在明顯的因果關(guān)系。在全球的成骨細(xì)胞研究中缺乏Lrp5的小鼠具有明顯的骨質(zhì)減少,而突變Lrp5等位基因的表達(dá)與人類的高骨質(zhì)量綜合征有關(guān),可明顯增加小鼠的骨質(zhì)量[25]。Maruyama等[26]研究發(fā)現(xiàn),靶向缺失Wnt配體的分泌的Gpr177,可明顯抑制小鼠的骨形成。值得注意的是,由于個(gè)體Wnt配體或Fzd受體缺失導(dǎo)致的骨表型比Gpr177敲除小鼠的骨質(zhì)表型要輕,這就說明Wnt配體和Fzd受體之間存在顯著的功能冗余。這一觀點(diǎn)與成骨細(xì)胞在發(fā)育過程中表達(dá)多個(gè)Wnt配體的事實(shí)是一致的[27]。
4 Wnt信號抑制蛋白在治療骨質(zhì)疏松的應(yīng)用
4.1 糖原合成酶激酶-3β
研究發(fā)現(xiàn)骨代謝過程中GSK-3β也是Wnt/β-catenin信號通路中的一個(gè)核心成員[28]。GSK-3β與Axin 、腺瘤息肉病桿菌(APC)和酪蛋白激酶1(CK1)共同形成復(fù)合體降解β-catenin。GSK-3β抑制劑可降低GSK-3β活性,減少GSK-3β對β-catenin 的降解,增加胞質(zhì)內(nèi)β-catenin積累和轉(zhuǎn)位,通過增強(qiáng)Runx2轉(zhuǎn)錄因子,促進(jìn)成骨細(xì)胞的成骨分化。GSK-3β抑制劑可作用于Wnt/β-catenin信號通路調(diào)節(jié)骨形成和骨代謝過程。El-Hoss等[29]通過與正常野生小鼠比較,存在GSK-3β基因缺陷的小鼠β-catenin和Runx2的水平明顯增強(qiáng),在受到嚴(yán)重骨損傷后骨的再生率增強(qiáng)。此外,GSK-3β抑制的小鼠,骨折愈合速度明顯增快,骨質(zhì)強(qiáng)度也得到增加。GSK-3β抑制劑的相關(guān)研究已證實(shí)能其能促進(jìn)骨質(zhì)疏松大鼠的骨形成,增加骨量和促進(jìn)骨生物力學(xué)性能的恢復(fù)[30]。也有嚙齒類動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn)[31],GSK-3β受到抑制后破骨細(xì)胞的數(shù)量并沒有受到影響以及減少卵巢切除后小鼠骨誘發(fā)質(zhì)疏松的發(fā)生率。甚至在健康骨中抑制GSK-3β出現(xiàn)破骨細(xì)胞數(shù)目未受影響,或略有增加。這些報(bào)道表明GSK-3β抑制根據(jù)病理狀態(tài)對骨組織影響不盡相同。
4.2 骨硬化蛋白
骨硬化蛋白(SOST)主要表達(dá)于成熟的骨細(xì)胞中,是骨形態(tài)發(fā)生蛋白(BMP)的抑制因子,對骨形成活動(dòng)起抑制作用。Semenov等[32]發(fā)現(xiàn)SOST可與成骨細(xì)胞Lrp5/6的胞外域結(jié)合,從而競爭性的抑制阻斷Lrp5/6與Wnt蛋白的結(jié)合,干擾其與Wnt蛋白的相互作用,使β-catenin蛋白在細(xì)胞質(zhì)中被GSK-3β降解,這樣β-catenin蛋白在細(xì)胞核內(nèi)與Tcf/Lcf的結(jié)合減少。以影響成骨細(xì)胞的分化和增殖,使成骨活動(dòng)受到影響。SOST單克隆抗體的應(yīng)用研究已在許多的動(dòng)物實(shí)驗(yàn)中進(jìn)行。Li等[33]通過對骨質(zhì)疏松小鼠造模后使用SOST單克隆抗體治療后與對照組相比骨膜及骨質(zhì)骨形成活動(dòng)明顯增強(qiáng),甚至較正常大鼠骨密度更高。目前逐步應(yīng)用于臨床試驗(yàn)[34]。
4.3 Dickkopf1
Dickkopf1(Dkk1)在Wnt信號通路中可抑制β-catenin蛋白表達(dá)從而抑制成骨細(xì)胞分化,并促進(jìn)成骨細(xì)胞凋亡。人類基因?qū)W研究發(fā)現(xiàn),Dkk1的基因變化與骨密度的變化存在明顯的相關(guān)性。Dkkl通過CRDl與LRP6結(jié)合,并抑制Wnt信號通路的激活,Dkkl與LRP6具有很高的親和力。同樣Dkkl可與兩個(gè)跨膜蛋白Kremenl/Kremen2結(jié)合,Kremen2、Dkkl及LRP6可形成復(fù)合物抑制Wnt/LRP信號通道[35]下調(diào)去卵巢鼠Dkk1表達(dá)會(huì)下降NF-κB受體活化因子配體的表達(dá),抑制破骨細(xì)胞分化,增加成骨細(xì)胞數(shù)量,出現(xiàn)骨量增加[36]。因雌激素缺乏引起的骨質(zhì)疏松癥狀的小鼠,通過干擾RNA和抗Dkk1抗體治療后骨質(zhì)疏松癥狀可得到明顯改善[37]。Dkk1在骨質(zhì)疏松靶向治療方面存在著巨大的潛力,應(yīng)用于臨床治療中可發(fā)揮較大作用。
5 總結(jié)與展望
Wnt信號通路可通過多層面對骨生長和重建等相關(guān)代謝產(chǎn)生影響,與骨質(zhì)疏松的發(fā)生機(jī)制密切相關(guān)。通過對骨質(zhì)疏松發(fā)生過程中其通路相關(guān)蛋白表達(dá)的作用機(jī)理進(jìn)行的深入研究,可為骨質(zhì)疏松癥的治療以及其他骨代謝相關(guān)疾病有效治療的研究提供新的思路和方法。
[參考文獻(xiàn)]
[1] Matsuoka K,Park KA,Ito M,et al. Osteoclast-derived complement component 3a stimulates osteoblast differentiation [J]. J Bone Miner Res,2014,29(7):1522-1530.
[2] Tu X,Joeng KS,Nakayama KI,et al. Noncanonical Wnt signaling through G protein-Linked PKCdelta activation promotes bone formation [J]. Dev Cell,2007,12(1):113-127.
[3] Zhong Z,Ethen NJ,Williams BO. WNT signaling in bone development and homeostasis [J]. Wiley Interdiscip Rev Dev Biol,2014,3(6):489-500.
[4] Karner CM,Long F. Wnt signaling and cellular metabolism in osteoblasts [J]. Cell Mol Life Sci,2017,74(9):1649-1657.
[5] Lu W,Yamamoto V,Ortega B,et al. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth [J]. Cell,2004,119(1):97-108.
[6] Wu X,Tu X,Joeng KS,et al. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling [J]. Cell,2008,133(2):340-353
[7] Valenta T,Hausmann G,Basler K. The many faces and functions of beta-catenin [J]. EMBO J,2012,31(12):2714-2736.
[8] Van Amerongen R,F(xiàn)uerer C,Mizutani M,et al. Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development [J]. Dev Biol,2012,369(1):101-114.
[9] Taelman VF,Dobrowolski R,Plouhinec JL,et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes [J]. Cell,2010,143(7):1136-1148.
[10] Jho EH,Zhang T,Domon C,et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2,a negative regulator of the signaling pathway [J]. Mol Cell Biol,2002,22(4):1172-1183.
[11] Maupin KA,Droscha CJ,Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/b-catenin signaling in humans and mice [J]. Bone Res,2013,1(1):27-71.
[12] Chen J,Long F. Beta-catenin promotes bone formation and suppresses bone resorption in postnatal growing mice [J]. J Bone Miner Res,2013,28(5):1160-1169.
[13] Song L,Dokas J,Neuendorf F,et al. Loss of wnt/beta-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes [J]. J Bone Miner Res,2012, 27(11):2344-2358.
[14] Witte F,Dokas J,Neuendorf F,et al. Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation [J]. Gene Expr Patterns,2009,9(4):215-223.
[15] Chen J,Tu X,Esen E,et al. Wnt7v promotes bone formation in part through mTORC1 [J]. PLoS Genet,2014,10(1):e1 004 145.
[16] Chen J,Long F. mTORC1 signaling promotes osteoblast differentiation from preosteoblasts [J]. PLoS One,2015, 10(6):e0 130 627.
[17] Sun W,Shi Y,Lee WC,et al. Rictor is required for optimal bone accrual in response to anti-sclerostin therapy in the mouse [J]. Bone,2016,85:1-8.
[18] Chen J,Shi Y,Lee WC,et al. mTORC2 signaling promotes skeletal growth and bone formation in mice [J]. J Bone Miner Res,2015,30(2):369-378.
[19] Hu H,Hilton MJ,Tu X,et al. Sequential roles of hedgehog and Wnt signaling in osteoblast development [J]. Development,2005,132(1):49-60.
[20] Fischer J,Aulmann A,Dexheimer V,et al. Intermittent PTHrP(1-34) exposure augments chondrogenesis and reduces hypertrophy of mesenchymal stromal cells [J]. Stem Cells Dev,2014,23(20):2513-2523.
[21] Kim M,Lee YJ,Jee SC,et al. Anti-adipogenic effects of sesamol on human mesenchymal stem cells [J]. Biochem Biophys Res Commun,2016,469(1):49-54.
[22] An Q,Wu D,Ma Y,et al. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro [J]. Int J Mol Med,2015,36(6):1615-1622.
[23] Yu B,Chang J,Liu Y,et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB [J]. Nat Med,2014,20(9):1009-1017.
[24] Fahiminiya S,Majewski J,Mort J,et al. Mutations in Wnt1 are a cause of osteogenesis imperfecta[J]. J Med Genet,2013,50(5):345-348.
[25] Riddle RC, Diegel CR,Leslie JM,et al. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition [J]. PLoS One,2013,8(5):e63 323.
[26] Maruyama T,Jiang M,Hsu W. Gpr177,a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development [J]. J Bone Miner Res,2013,28(5):1150-1159.
[27] Witte F ,Dokas J,Neuendorf F,et al. Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation [J]. Gene Expr Patterns,2009,9(4):215-223.
[28] Jin N,Yin X,Yu D,et al. Truncation and activation of GSK-3beta by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease [J]. Scientific reports,2015,5:81-87.
[29] El-Hoss J,Arabian A,Dedhar S,et al. Inactivation of the integrin-linked kinase(ILK)in osteoblasts increases mineralization [J]. Gene,2014,533(1):246-252.
[30] Yun SI,Yoon HY,Jeong SY,et al. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta [J]. J Bone Miner Metab,2009,27(2):140-148.
[31] Zahoor M,Cha PH,Min do S,et al. Indirubin-3′-oxime reverses bone loss in ovariectomized and hindlimb-unloaded mice via activation of the Wnt/β-catenin signaling [J]. J Bone Miner Res,2014,29(5):1196-1205.
[32] Semenov M,Tamai K,He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor[J]. J Biol Chem,2005,280(29):26 770-26 775.
[33] Li X,Ominsky MS,Warmington KS,et al.Sclerostin antibody treatment increases bone formation,bone mass,and bone strength in a rat model of postmenopausal osteoporosis [J]. J Bone Miner Res,2009,24(4):578-588.
[34] Arti DS,Dolores S,E Michael L. Sclerostin inhibition:a novel therapeutic approach in the treatment of osteoporosis [J]. Int J Women's Health,2015,7:565-580.
[35] Mao B,Wu W,Davidson G,et al. Kremen proteins are Dickkopf receptors that regulate Wnt/bets—catenin signaling [J]. Nature,2002,417(6889):664-667.
[36] Wang FS,Ko JY,Lin Cl,et al. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss.A histormorphological study in ovaricetomized rats [J]. Bone,2007,40(2):485-492.
[37] Glantschnig H,Scott K,Hampton R,et al. A rate-limiting role for dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody [J]. J Pharmacol Exp Ther,2011,338(2):568-578.
(收稿日期:2018-01-04 本文編輯:李岳澤)