王坤,劉開(kāi)培,張志軒,李威,秦亮
(1. 武漢大學(xué) 電氣工程學(xué)院,武漢 430072; 2. 南京南瑞集團(tuán)公司(國(guó)網(wǎng)電力科學(xué)研究院),南京 210003)
基于電壓源型換流器的高壓直流輸電技術(shù)(Voltage Source Converter-High Voltage Direct Current, VSC-HVDC)可以將分布式能源以經(jīng)濟(jì)、環(huán)保的方式并入電網(wǎng)[1-2]。目前在高壓大功率領(lǐng)域,VSC-HVDC中常用的是模塊化多電平換流器(Modular Multilevel Converter,MMC)[3]。MMC結(jié)構(gòu)上高度模塊化,易于擴(kuò)展到不同的電壓和功率等級(jí),避免了IGBT的直接串聯(lián)。同時(shí),MMC具有開(kāi)關(guān)頻率低、輸出波形好、故障保護(hù)能力強(qiáng)等優(yōu)勢(shì),成為中高壓領(lǐng)域的研究熱點(diǎn)[4-5]。
MMC中作為儲(chǔ)能元件的電容分布于子模塊中,彼此獨(dú)立,電容的充放電時(shí)間、損耗和參數(shù)的不同會(huì)造成子模塊電容電壓的差異,使模塊電容電壓之間出現(xiàn)不平衡,從而危害換流器的正常運(yùn)行[6]。因此在MMC運(yùn)行過(guò)程中,需要采取適當(dāng)?shù)淖幽K電容電壓均衡策略來(lái)保證系統(tǒng)的正常運(yùn)行[7-8]。
國(guó)內(nèi)外學(xué)者對(duì)MMC電容均壓策略進(jìn)行了大量詳實(shí)的研究并取得了豐碩的成果。目前,主要有電容電壓排序法和通過(guò)附加控制器輸出調(diào)制波補(bǔ)償值兩種方法實(shí)現(xiàn)電容電壓的均衡。文獻(xiàn)[9]提出了一種基于排序算法的電容電壓均衡策略,適用于階梯波調(diào)制技術(shù),原理簡(jiǎn)單,效果優(yōu)異,但是排序計(jì)算量將隨著模塊數(shù)的增多而增加。文獻(xiàn)[10]在文獻(xiàn)[9]的基礎(chǔ)上引入了子模塊最大電壓偏差量,避免了同一模塊不必要的反復(fù)投切,大大減少了開(kāi)關(guān)次數(shù),但是該方法對(duì)偏差允許值的選擇較為敏感。文獻(xiàn)[11]基于文獻(xiàn)[12]中的質(zhì)因子分解法提出一種優(yōu)化的混合排序法,引入希爾排序算法降低排序次數(shù),減少仿真時(shí)間,但是由于分組排序處理,排序精度和均壓效果都有所下降。文獻(xiàn)[13-14]基于載波移相SPWM調(diào)制提出通過(guò)附加控制器輸出調(diào)制波補(bǔ)償值,對(duì)每個(gè)子模塊的調(diào)制波進(jìn)行調(diào)節(jié)以實(shí)現(xiàn)電容電壓均衡。通過(guò)上述分析,傳統(tǒng)均衡策略在模塊數(shù)較多時(shí)占據(jù)大量的計(jì)算資源,將會(huì)降低系統(tǒng)的運(yùn)行速度甚至動(dòng)態(tài)響應(yīng)特性,對(duì)硬件要求較高[15]。而現(xiàn)有的改進(jìn)策略為達(dá)到降低計(jì)算量的目的,不同程度地犧牲了部分電壓均衡效果。
首先根據(jù)MMC拓?fù)浞治瞿K電壓不均衡的原因,為了減少電壓均衡策略的計(jì)算量,改善均衡策略性能,以傳統(tǒng)電容電壓排序法為基礎(chǔ),提出一種基于快速排序算法的電容電壓均衡策略。該策略能夠大幅降低排序次數(shù),提高運(yùn)行速度,維持電壓平衡效果不變,且不會(huì)對(duì)系統(tǒng)的外特性產(chǎn)生影響。最后,通過(guò)DSP控制器TMS320F28335及PSCAD/EMTDC中搭建的仿真模型,驗(yàn)證了所提出的均衡控制策略的正確性和有效性。
MMC每相有兩個(gè)橋臂,每個(gè)橋臂由一個(gè)電感L和N個(gè)完全相同的子模塊(Sub-module,SM)串聯(lián)組成,如圖1所示。直流側(cè)中性點(diǎn)為O,正負(fù)直流母線(xiàn)間的直流電壓為Vd,從上下橋臂的結(jié)合點(diǎn)輸出交流電壓。
圖1 MMC拓?fù)浣Y(jié)構(gòu)
子模塊由兩個(gè)IGBT管開(kāi)關(guān)器件TU、TL和一個(gè)直流電容C組成,可以實(shí)現(xiàn)四象限運(yùn)行,在正常工作情況下,TU和TL處于互補(bǔ)工作狀態(tài),交替開(kāi)通和關(guān)斷。子模塊有三種工作狀態(tài),分別稱(chēng)為投入、切除和閉鎖。MMC正常工作時(shí),子模塊應(yīng)當(dāng)處于投入或者切除狀態(tài),子模塊輸出電壓uo在電容電壓VC和0之間變化。為了保證直流電壓恒定和系統(tǒng)穩(wěn)定運(yùn)行,橋臂中處于投入狀態(tài)的子模塊數(shù)應(yīng)當(dāng)保持一致。
可以看出,MMC中能量分布在各個(gè)子模塊懸浮電容中,能夠減小直流側(cè)故障時(shí)的電容沖擊電流,提高系統(tǒng)故障保護(hù)能力,但是由于任意時(shí)刻橋臂子模塊處于投入和切除狀態(tài)并不一致,電容沖放電時(shí)間以及器件參數(shù)等差異將會(huì)造成子模塊電容電壓不平衡,因此需要采取電容電壓均衡策略保障系統(tǒng)穩(wěn)定運(yùn)行。電容電壓的均衡控制策略受制于采用的調(diào)制控制策略,對(duì)于不同的調(diào)制策略,相應(yīng)的電壓均衡策略也就不同。
MMC調(diào)制方式有很多,主要分為兩類(lèi)。一類(lèi)是基于較高開(kāi)關(guān)頻率的PWM調(diào)制,如載波移相PWM、載波層疊PWM等,在同一電平處反復(fù)斬波,通過(guò)高頻的開(kāi)關(guān)動(dòng)作以減小輸出波形的諧波含量,但是PWM調(diào)制會(huì)帶來(lái)較大的器件損耗,并不適用于模塊數(shù)較多的場(chǎng)景。另一類(lèi)是低頻的階梯波調(diào)制技術(shù),主要有空間矢量調(diào)制(Space Vector Modulation, SVM)、最近電平逼近調(diào)制(Nearest Level Modulation, NLM)等。SVM所需的電壓矢量和開(kāi)關(guān)狀態(tài)隨著電平數(shù)的增多呈幾何級(jí)數(shù)增長(zhǎng),算法的實(shí)現(xiàn)變得非常困難,因此在MMC中基本不使用SVM。NLM實(shí)現(xiàn)簡(jiǎn)單,效果優(yōu)異,特別適用于模塊數(shù)較多的場(chǎng)景,在實(shí)際工程中得到了廣泛應(yīng)用,其基本思想是利用階梯波逼近正弦調(diào)制波,隨著電平數(shù)的增加,階梯波越來(lái)越接近調(diào)制波形。以A相為例,具體過(guò)程如圖2所示。
圖2 最近電平逼近調(diào)制
Fig.2 Nearest level approximation modulation
根據(jù)換流站級(jí)控制輸出的調(diào)制波瞬時(shí)值uam,除以模塊電壓的額定值VC,取最近整數(shù),得到上、下橋臂投入的模塊數(shù)na1和na2,最后根據(jù)電壓均衡控制選取相應(yīng)的模塊投入。其中,na1和na2滿(mǎn)足:
(1)
式中N橋臂子模塊數(shù)量,Round是取最近整數(shù)函數(shù),上、下橋臂投入的子模塊總數(shù)是恒定值N,這樣可以維持直流電壓恒定,保證系統(tǒng)正常穩(wěn)定運(yùn)行。根據(jù)投入的子模塊數(shù)和采用的模塊電容電壓均衡策略觸發(fā)子模塊,可以在控制輸出交流電壓的同時(shí)實(shí)現(xiàn)橋臂各模塊的電壓平衡。
由前文分析可知,MMC子模塊投切狀態(tài)的不一致和器件參數(shù)的離散性,將會(huì)導(dǎo)致正常工作時(shí)同一橋臂的子模塊電容電壓之間存在差異,因此實(shí)現(xiàn)模塊電壓均衡是MMC穩(wěn)定運(yùn)行的必要條件。利用MMC調(diào)制自由度多的特點(diǎn),將電容電壓均衡策略和調(diào)制策略結(jié)合,在實(shí)現(xiàn)調(diào)制的同時(shí)實(shí)現(xiàn)電壓均衡。工程上主流的調(diào)制策略是最近電平逼近調(diào)制,通過(guò)對(duì)模塊電壓大小排序選擇觸發(fā)實(shí)現(xiàn)均衡。隨著模塊數(shù)的增加,電容電壓排序?qū)⒄紦?jù)大量的計(jì)算資源,合理高效的排序算法顯得尤為重要。
在實(shí)際工程中,無(wú)論是軟件還是硬件均有足夠的存儲(chǔ)空間滿(mǎn)足空間復(fù)雜度的需求,因此,基于時(shí)間復(fù)雜度分析,采用高效、快捷的排序算法將會(huì)降低實(shí)際工程控制器的設(shè)計(jì)難度和硬件要求。
傳統(tǒng)的冒泡排序算法簡(jiǎn)單、穩(wěn)定、可靠,適用于各種場(chǎng)景。主要思想是交換排序,相鄰兩個(gè)元素依次進(jìn)行比較,按照從大到小或從小到大的順序進(jìn)行交換。以n個(gè)元素序列為例,第一趟交換次數(shù)為n-1,第二趟交換次數(shù)為n-2,并以此類(lèi)推,我們可以得到冒泡算法的交換次數(shù)S,時(shí)間復(fù)雜度為O(n2)。
(2)
Tony Hoare在1962年首次提出了快速排序算法[16-17],在過(guò)去50多年里,對(duì)快速排序方法的研究表明,快速排序算法至今仍然是流傳久遠(yuǎn)的最實(shí)用的排序算法。以排序元素A[low,…,high]為例,快速排序最簡(jiǎn)單的形式概況如下:通過(guò)簡(jiǎn)單的劃分算法使得原先A[low]中的元素占據(jù)其正確的順序位置A[w],并且所有小于或等于A(yíng)[w]的元素所處的位置為A[low,…,w-1],而所有大于A(yíng)[w]的元素所處的位置為A[w+1,…,high]。子數(shù)組A[low,…,w-1]和A[w+1,…,high]按照以上過(guò)程進(jìn)行遞歸,從而產(chǎn)生整個(gè)排序數(shù)組。以排序8個(gè)子模塊為例,假設(shè)8個(gè)子模塊的電壓大小排序?yàn)閇4,6,3,1,8,7,2,5],則具體的快速排序過(guò)程如圖3所示。
可以看出,快速排序算法基于比較、劃分,采用分治技術(shù),首先將模塊電壓將子模塊根據(jù)電壓大小分成若干大小不同的模塊組,再通過(guò)遞歸分別對(duì)每一個(gè)模塊組進(jìn)行排序,最后將每組排序結(jié)果合并,實(shí)現(xiàn)每相橋臂的模塊電壓排序。
為了簡(jiǎn)便起見(jiàn),假定輸入數(shù)據(jù)是互不相同的,注意算法的性能與輸入數(shù)據(jù)值無(wú)關(guān),有關(guān)系的是它們之間的相對(duì)次序。由于這個(gè)原因可以不失一般性地假定進(jìn)行排序的元素是前n個(gè)正整數(shù)1,2,…,n。進(jìn)一步假定元素的每個(gè)排序出現(xiàn)是等可能的,這一點(diǎn)確保了在數(shù)組中的每個(gè)數(shù)以同樣可能作為第一個(gè)元素,并被選為主元,也就是說(shuō),數(shù)組中的任意一個(gè)元素被選為主元的概率為1/n。設(shè)C(n)表示對(duì)大小為n的輸入數(shù)據(jù)算法所做的平均比較次數(shù),從假設(shè)中可以知道,所有的元素是互不相同的,并且成為主元的概率是相同的,這樣算法的平均耗費(fèi)可以如下方法計(jì)算得到。
觀(guān)察圖3的第1次,第2次和第5次調(diào)用,以此類(lèi)比大小為n個(gè)元素的排序過(guò)程,這三次分別耗費(fèi)了n-1,C(w-1)和C(n-w)次比較,因此總的比較次數(shù)為:
(3)
由于:
(4)
對(duì)式(3)進(jìn)行簡(jiǎn)化處理,可得:
(5)
令D(n)=C(n)/(n+1),得:
(6)
解得:
≈ 1.44log2n
(7)
故可以得到快速排序的時(shí)間復(fù)雜度為:
C(n)=(n+1)D(n)≈1.44nlog2n
(8)
以最近電平逼近調(diào)制為基礎(chǔ),引入快速排序算法,根據(jù)電流方向選擇模塊觸發(fā),形成基于快速排序算法的電容電壓均衡策略,具體過(guò)程如圖4所示。
首先利用快速排序算法橋臂子模塊電壓大小進(jìn)行比較、劃分,得到橋臂模塊的有序排列,過(guò)程如圖3所示,通過(guò)調(diào)制波和模塊電壓額定值得到當(dāng)前時(shí)刻投入模塊數(shù)量n。判斷電流i的方向,若橋臂電流是給子模塊電容充電,則將橋臂中子模塊電壓最低的n個(gè)子模塊投入運(yùn)行,其余子模塊切除;若橋臂電流方向?yàn)榉烹姺较颍瑒t將上、下橋臂中子模塊電壓最高的n個(gè)子模塊投入運(yùn)行,其他的子模塊均切除。該策略可以迅速使橋臂各子模塊電壓趨于一致,進(jìn)入均衡狀態(tài)。
圖4 快速排序過(guò)程
均衡策略的核心環(huán)節(jié)是有序電壓序列的生成和觸發(fā)模塊的選擇,相比于傳統(tǒng)冒泡排序,快速排序算法不改變有序電壓序列的準(zhǔn)確性,進(jìn)而保證模塊觸發(fā)機(jī)制和電壓平衡效果不變,同時(shí)能夠大幅提升模塊電壓的排序效率。實(shí)際工程中隨著MMC-HVDC電壓和功率等級(jí)要求的提高,模塊數(shù)不斷增加(最新投入運(yùn)行的廈門(mén)柔性直流輸電工程單個(gè)橋臂子模塊數(shù)多達(dá)216個(gè)),傳統(tǒng)冒泡排序算法交換次數(shù)和時(shí)間復(fù)雜度將按照幾何倍數(shù)提高,占用大量計(jì)算資源,導(dǎo)致系統(tǒng)運(yùn)行速度下降,控制器負(fù)擔(dān)加重。當(dāng)MMC-HVDC處于高頻運(yùn)行時(shí),排序運(yùn)算帶來(lái)的延時(shí)將無(wú)法滿(mǎn)足控制系統(tǒng)的要求,甚至影響控制系統(tǒng)的動(dòng)態(tài)響應(yīng)特性。基于以上分析,快速排序算法時(shí)間復(fù)雜度低,排序效率高,能夠節(jié)省大量計(jì)算資源,改善MMC均衡控制策略的性能。隨著子模塊數(shù)量的增加,基于快速排序算法的電容電壓均衡策略在排序效率和計(jì)算量上的優(yōu)勢(shì)愈加明顯,進(jìn)一步可以提高控制系統(tǒng)的動(dòng)態(tài)響應(yīng)特性。
在Matlab中對(duì)算法進(jìn)行隨機(jī)實(shí)驗(yàn),對(duì)傳統(tǒng)冒泡排序和快速排序算法的比較次數(shù)進(jìn)行測(cè)量,排序元素個(gè)數(shù)分別為100、200、300、400,取5 000次測(cè)量的平均值為實(shí)驗(yàn)結(jié)果,并和利用3.2節(jié)所推導(dǎo)的公式計(jì)算的理論值曲線(xiàn)進(jìn)行對(duì)比分析,如圖5所示??梢钥闯?,排序次數(shù)的實(shí)測(cè)值基本吻合理論計(jì)算值,驗(yàn)證了式(2)和式(8)的正確性。同時(shí),可以很明顯地發(fā)現(xiàn),隨著排序元素(模塊數(shù))的增加,兩種算法的排序次數(shù)差值越來(lái)越大,算法的選擇顯得越來(lái)越重要。實(shí)際中MMC的橋臂子模塊數(shù)量已經(jīng)達(dá)到200,此時(shí)傳統(tǒng)冒泡算法的排序次數(shù)將是快速排序算法的9倍。
圖5 兩種算法排序元素個(gè)數(shù)和排序次數(shù)的關(guān)系
進(jìn)一步,采用DSP控制器TMS320F28335測(cè)量快速排序算法在不同排序元素?cái)?shù)量時(shí)對(duì)模塊電壓進(jìn)行排序的實(shí)際執(zhí)行時(shí)間,并和傳統(tǒng)冒泡算法進(jìn)行對(duì)比分析,結(jié)果如圖6所示??刂菩酒蠩CAP模塊含有一個(gè)TSCTR計(jì)數(shù)器,每一個(gè)時(shí)鐘脈沖后計(jì)數(shù)器數(shù)值加1。實(shí)驗(yàn)中,時(shí)鐘頻率設(shè)定為150 MHz,即計(jì)數(shù)器數(shù)值每0.67 ns增加1。因此,通過(guò)記錄計(jì)數(shù)器在算法開(kāi)始和結(jié)束時(shí)的數(shù)值,用差值乘以0.67 ns即可測(cè)得算法的執(zhí)行時(shí)間。測(cè)試結(jié)果表明,隨著排序元素(模塊數(shù))的增加,冒泡排序算法實(shí)際執(zhí)行時(shí)間迅速增長(zhǎng),曲線(xiàn)符合O(n2);快速排序算法執(zhí)行時(shí)間的增長(zhǎng)較為平緩,執(zhí)行時(shí)間遠(yuǎn)遠(yuǎn)低于快速排序算法,曲線(xiàn)符合O(nlog2n)。
圖6 兩種算法執(zhí)行時(shí)間
為驗(yàn)證所提出的基于快速排序算法電容電壓均衡策略的有效性和正確性,在PSCAD/EMTDC中分別搭建三相21、31、41電平MMC-HVDC仿真平臺(tái),對(duì)應(yīng)模塊數(shù)分別20、30、40。采取NLM調(diào)制方式,具體仿真參數(shù)見(jiàn)表1。
表1 主電路參數(shù)
為了全面、系統(tǒng)地驗(yàn)證快速排序算法的有效性和正確性,MMC-HVDC仿真平臺(tái)進(jìn)行了三類(lèi)情況下的驗(yàn)證,分別是:(1)不同子模塊數(shù)。仿真時(shí)間設(shè)定為5 s,仿真步長(zhǎng)為50 μs,子模塊數(shù)分別為20、30、40;(2)不同仿真時(shí)間。模塊數(shù)設(shè)置為40,仿真步長(zhǎng)為50 μs,仿真時(shí)間為5 s、8 s、10 s;(3)不同仿真步長(zhǎng)。模塊數(shù)設(shè)置為40,仿真時(shí)間5 s,仿真步長(zhǎng)分別為50 μs、100 μs、150 μs。經(jīng)過(guò)多次仿真實(shí)驗(yàn)取平均值,得到三種情況下采用兩種不同電壓均衡策略的仿真實(shí)際用時(shí)(四舍五入取整)如圖7所示。由圖7可知,在不同模塊數(shù)、仿真步長(zhǎng)和仿真設(shè)定時(shí)間三種情況下,基于快速排序的電容電壓均衡策略比經(jīng)典冒泡排序的實(shí)際仿真用時(shí)要短,證明了快速排序?qū)MC-HVDC系統(tǒng)提高排序效率、降低運(yùn)算量、減少仿真用時(shí)具有顯著的作用。同時(shí),可以看出,模塊數(shù)越多、仿真設(shè)定時(shí)間越長(zhǎng),其優(yōu)勢(shì)越加明顯。
最后,分析兩種算法對(duì)電壓均衡效果及系統(tǒng)外特性的影響。仿真設(shè)置子模塊數(shù)為20,仿真步長(zhǎng)50 μs,仿真時(shí)間設(shè)定為5 s,主電路參數(shù)如表1所示。圖8是采用傳統(tǒng)算法和快速排序算法時(shí)MMC的電容電壓,可以看出兩種算法的電容電壓波形完全相同,每個(gè)子模塊電壓額定值為20 kV,電壓波動(dòng)值0.1 kV,表明快速排序算法并不會(huì)改變模塊的觸發(fā)機(jī)制,電壓平衡效果不變,均可以較好地實(shí)現(xiàn)電容電壓均衡。圖9是采用兩種算法時(shí)的直流電壓、交流輸出電壓和交流電流波形。由圖可知,兩種算法中直流電壓、交流輸出電壓和交流電流等特征量完全一致,快速排序算法在提升排序效率緩解控制器負(fù)擔(dān)的同時(shí)并不會(huì)改變系統(tǒng)的外特性,算法適應(yīng)性較好。
圖7 兩種算法仿真速度比較
圖8 兩種算法電容電壓
圖9 兩種算法系統(tǒng)外特性
提出一種基于快速排序算法的電容電壓均衡策略,通過(guò)比較、劃分的遞歸處理快速實(shí)現(xiàn)模塊電壓的排序,算法時(shí)間復(fù)雜度僅為O(nlog2n)。采用DSP控制器TMS320F28335測(cè)量算法的實(shí)際執(zhí)行時(shí)間并在PSCAD/EMTDC中搭建仿真驗(yàn)證平臺(tái),表明和傳統(tǒng)算法相比,基于快速排序算法的電容電壓均衡策略可以有效減少排序次數(shù),提高排序效率,縮短仿真時(shí)間,同時(shí)模塊電壓均衡效果和系統(tǒng)的外特性并不會(huì)發(fā)生改變,具有較好的算法適應(yīng)性,適用于含大量子模塊的MMC。