羅薇 舒斯云 馬林 王斌
[摘要] 粒細胞集落刺激因子作為一種刺激骨髓粒系造血的生長因子,在臨床上被用于治療各種原因引起的粒細胞減少癥。然而,越來越多體內(nèi)外研究實驗及臨床試驗表明粒細胞集落刺激因子通過激活多種信號轉(zhuǎn)導(dǎo)通路在神經(jīng)系統(tǒng)損傷性疾病中發(fā)揮神經(jīng)保護作用,包括動員外周干細胞遷移至神經(jīng)系統(tǒng)、減輕神經(jīng)細胞凋亡、平衡炎癥反應(yīng)、促進神經(jīng)干細胞再生及血管生成等,但也存在一定的爭議。目前在腦卒中、肌萎縮性側(cè)索硬化及脊髓損傷等神經(jīng)系統(tǒng)疾病中采用粒細胞集落刺激因子治療已進入臨床試驗階段,在缺氧缺血性腦損傷新生動物模型中也證實其療效?,F(xiàn)將粒細胞集落刺激因子的神經(jīng)保護作用及臨床試驗安全性及療效作一綜述。
[關(guān)鍵詞] 粒細胞集落刺激因子;神經(jīng)損傷疾??;新生兒缺血缺氧性腦損傷;神經(jīng)保護;臨床試驗
[中圖分類號] R743.3 [文獻標識碼] A [文章編號] 1673-9701(2018)14-0164-05
[Abstract] Granulocyte colony-stimulating factor, as a growth factor that stimulates bone marrow hematopoiesis, is clinically used to treat neutropenia caused by various causes. However, more and more in vitro and in vivo research experiments and clinical trials have shown that granulocyte colony-stimulating factor exerts neuroprotective effects in nervous system injury diseases by activating multiple signal transduction pathways, including mobilizing peripheral stem cells to migrate to the nervous system, reducing nerves apoptosis, balancing inflammatory responses, and promoting neural stem cell regeneration and angiogenesis, but there is also some controversy. Currently, the use of granulocyte colony-stimulating factor therapy in stroke, amyotrophic lateral sclerosis and spinal cord injury has entered clinical trials, and its efficacy has also been confirmed in a neonatal animal model of hypoxic-ischemic brain damage. The neuroprotective effects of granulocyte colony-stimulating factor and the safety and efficacy of clinical trials are reviewed.
[Key words] Granulocyte colony-stimulating factor; Nerve injury disease; Neonatal hypoxic-ischemic brain damage; Neuroprotection; Clinical trials
粒細胞集落刺激因子(Granulocyte colony-stimulating factor,G-CSF)是一種刺激骨髓粒系造血細胞增殖、分化和存活的生長因子,在臨床上應(yīng)用廣泛,常用于原發(fā)性或繼發(fā)性中性粒細胞減少癥。越來越多的證據(jù)表明,粒細胞集落刺激因子易透過血腦屏障與其受體結(jié)合后發(fā)揮動員造血干細胞及骨髓間充質(zhì)干細胞、抗凋亡、抗炎、促進神經(jīng)元分化及血管發(fā)生等作用[1]。近年來,國內(nèi)外應(yīng)用粒細胞集落刺激因子治療多種神經(jīng)損傷性疾病已進入Ⅰ、Ⅱ期臨床試驗階段;另外,粒細胞集落刺激因子在多種缺氧缺血性腦損傷新生動物模型中被證明在神經(jīng)保護方面擁有巨大的前景。
1 粒細胞集落刺激因子及其受體
粒細胞集落刺激因子是由四個反向平行的α-螺旋組成的分子量為19.6 kDa的糖蛋白,由單個基因編碼,位于17號染色體q21~22上,可由骨髓基質(zhì)細胞、內(nèi)皮細胞、巨噬細胞、成纖維細胞和星形膠質(zhì)細胞等產(chǎn)生[2]。粒細胞集落刺激因子受體(Granulocyte colony-stimulating factor receptor,G-CSFR)是位于1號染色體p35~p34.3上的一種Ⅰ型膜蛋白,其胞外區(qū)域是由免疫球蛋白樣結(jié)構(gòu)域、細胞因子受體-同源結(jié)構(gòu)域和三個纖連蛋白Ⅲ型結(jié)構(gòu)域組成的復(fù)合結(jié)構(gòu)。G-CSFR不僅表達在各種造血細胞,如嗜中性粒細胞及其前體、單核細胞、血小板、淋巴細胞和白血病細胞,同時也表達在非造血細胞上,如內(nèi)皮細胞、滋養(yǎng)細胞、惡性實體腫瘤組織、神經(jīng)元和神經(jīng)膠質(zhì)細胞等[3]。而在中樞神經(jīng)系統(tǒng)中,該受體被證明表達于齒狀回、嗅覺皮層和嗅球、海馬CA3區(qū)等皮質(zhì)層中的錐體細胞(尤其是Ⅱ和V層),小腦中的浦肯野細胞,腦室下區(qū)和小腦中央核等區(qū)域[4]。G-CSF結(jié)合其受體后激活細胞內(nèi)多種信號轉(zhuǎn)導(dǎo)通路激活下游底物,從而影響細胞的增殖、分化和存活,發(fā)揮動員造血干細胞及骨髓間充質(zhì)干細胞、抗凋亡、抗炎、誘導(dǎo)神經(jīng)發(fā)生及血管生成等神經(jīng)保護作用。
2 G-CSF的神經(jīng)保護作用
2.1 動員造血干細胞及骨髓間充質(zhì)細胞
G-CSF可動員造血干細胞(hemopoietic stem cells,HSCs)及骨髓間充質(zhì)細胞(bone marrow mesenchymal stem cells,BM-MSCs)從骨髓進入血液循環(huán)中發(fā)揮作用。G-CSF的使用可減少動物腦梗死面積,提高存活率,可能與造血干細胞的動員有關(guān)。有研究表明[5-7],造血干細胞存在于骨髓HSCs龕內(nèi),通過相互粘附錨定。To LB等[5]研究表明G-CSF可通過巨噬細胞介導(dǎo)和腎上腺素能的交感神經(jīng)通路動員HSCs,通過減少骨髓中特定的巨噬細胞,釋放蛋白水解酶來切割趨化因子,使其失活,同時激活補體級聯(lián)反應(yīng)及溶栓途徑,從而減弱粘附;另一方面,G-CSF可增加交感神經(jīng)通路介導(dǎo)的HSCs釋放的晝夜規(guī)律峰值。Pierce H等[8]研究發(fā)現(xiàn),G-CSF可能通過骨髓微環(huán)境中毒蕈堿的受體Ⅰ型信號傳導(dǎo)途徑誘導(dǎo)的HSC遷移,且在中樞神經(jīng)系統(tǒng)中通過下丘腦-垂體-腎上腺軸來調(diào)節(jié)來自骨髓中的HSC動員,長期調(diào)控中樞神經(jīng)系統(tǒng)中HSC的遷移,從而實現(xiàn)神經(jīng)保護。陸英等[9]采用缺血性腦梗死的大鼠模型發(fā)現(xiàn),腹腔注射G-CSF可減小大鼠梗死灶體積,同時,在腦梗死部位出現(xiàn)CD34+單個核細胞浸潤并有向神經(jīng)樣細胞生長分化的趨勢。Wu CC等[10]研究通過阿爾茲海默病小鼠模型發(fā)現(xiàn)G-CSF可動員HSC及BM-MSC進入血液循環(huán)并滲入大腦,而只有動員的BM-MSC參與神經(jīng)發(fā)生,此發(fā)現(xiàn)可能為未來內(nèi)源性干細胞應(yīng)用打下了基礎(chǔ)。
2.2 抗凋亡
G-CSF能夠激活多種獨立抗凋亡途徑,其中包括JAK/STAT、Ras/MAPK和PI3K/Akt信號通路[1]。通過活化Janus激酶進而激活轉(zhuǎn)錄因子STAT3,產(chǎn)生信號轉(zhuǎn)導(dǎo)級聯(lián),從而抑制細胞凋亡。Ghorbani M等[11]通過一氧化碳中毒腦損傷大鼠模型發(fā)現(xiàn)G-CSF可減少皮質(zhì)區(qū)神經(jīng)細胞凋亡及Caspase 3的表達,同時檢測到STAT3和磷酸化的STAT3表達水平升高。另外,G-CSF對PI3K/Akt和細胞外調(diào)節(jié)蛋白激酶(ERK)家族的ERK1/2具有激活的作用[12]。另一方面,有研究表明,G-CSF在中樞神經(jīng)系統(tǒng)中對T細胞介導(dǎo)的炎性和脫髓鞘性疾病有潛在的保護作用。Peng W等[13]采用實驗性過敏性腦脊髓炎小鼠模型研究提示G-CSF可能誘導(dǎo)自身反應(yīng)性T細胞的細胞周期從靜息的G0或G1期進入到S期,促進自身反應(yīng)性T細胞凋亡從而抑制其增殖。
2.3 抗炎
眾所周知,腦損傷誘發(fā)大腦及外周組織的免疫細胞產(chǎn)生炎癥反應(yīng),來自外周組織的免疫細胞如中性粒細胞、單核及巨噬細胞浸潤至腦實質(zhì)內(nèi)釋放炎癥因子引起損傷,而小膠質(zhì)細胞是中樞神經(jīng)系統(tǒng)內(nèi)的免疫細胞,根據(jù)不同表型在腦損傷引起的炎癥反應(yīng)進程中起關(guān)鍵作用,Th1表型小膠質(zhì)細胞釋放促炎因子及氧化介質(zhì)損害神經(jīng)元,而Th2表型小膠質(zhì)細胞釋放神經(jīng)營養(yǎng)因子促進腦功能恢復(fù)[14]。Song S等[15]通過創(chuàng)傷性腦損傷模型觀察到G-CSF通過活化小膠質(zhì)細胞向受損部位遷移并產(chǎn)生神經(jīng)營養(yǎng)因子實現(xiàn)修復(fù)功能。眾多研究表明,G-CSF可抑制炎癥介質(zhì)的產(chǎn)生[16-18]。Strecker JK等[18]在MCAO小鼠模型中證實,單獨使用G-CSF治療可使腦功能得到改善、減小梗死體積、增加血管穩(wěn)定性、減少炎癥反應(yīng)。Solaroglu I等[17]研究表明G-CSF治療明顯抑制神經(jīng)元TNFα和IL-1β的表達。Li L等[16]在新生大鼠缺血缺氧模型中發(fā)現(xiàn)給予G-CSF治療后減少促炎細胞因子IKKβ、NF-κB、TNF-α、IL-1β和IL-12、增強抗炎細胞因子IL-10的表達。Lu F等[19]發(fā)現(xiàn)在沙鼠模型中,使用G-CSF可降低TNFα水平抑制炎癥,減輕急性短暫性前腦缺血的感覺運動缺陷,且呈劑量依賴性,在缺氧缺血早產(chǎn)綿羊模型中也觀察到G-CSF減輕腦部的炎癥反應(yīng)[20]。
2.4 誘導(dǎo)神經(jīng)發(fā)生
大腦缺血缺氧后發(fā)生神經(jīng)元的壞死或凋亡,G-CSF與成年神經(jīng)干細胞表達的G-CSFR相互作用,促進神經(jīng)發(fā)生[21-22]。Song S等[15]在創(chuàng)傷性腦損傷小鼠模型中發(fā)現(xiàn)G-CSF的使用可使海馬新生神經(jīng)元數(shù)量增加,以及大腦兩側(cè)紋狀體和額葉皮質(zhì)中的星形細胞增多癥和小膠質(zhì)細胞增生,從而改善小鼠學(xué)習記憶功能。Griva M等[23]發(fā)現(xiàn)G-CSF與豐富的周圍環(huán)境聯(lián)合刺激在缺氧缺血的新生大鼠模型中進一步增強了其認知功能。老年缺血性腦卒中小鼠模型研究[24]發(fā)現(xiàn),慢性期使用G-CSF與干細胞因子合用增加了梗死區(qū)遠端樹突密度,誘導(dǎo)并重新連接神經(jīng)元網(wǎng)絡(luò)。
2.5 促進血管再生
缺血性腦卒中患者通常伴隨血腦屏障的破壞及內(nèi)皮細胞的損傷,G-CSF能夠通過促進血管生成及穩(wěn)定血腦屏障,進而減少梗死面積,影響神經(jīng)功能的修復(fù)。目前研究表明血管內(nèi)皮生長因子(VEGF)是血管生成的重要因素[22]。Chu H等[25]研究發(fā)現(xiàn)在顱內(nèi)出血的小鼠模型中,G-CSF可通過上調(diào)血腫周圍VEGF的表達水平,發(fā)揮神經(jīng)保護的作用。多項大鼠大腦中動脈閉塞模型研究證實G-CSF的使用使VEGF及其相關(guān)受體表達增強,提示存在促血管生成作用[26-27]。
3 G-CSF在多種神經(jīng)損傷性疾病中的臨床應(yīng)用
3.1 腦卒中
腦卒中是多種腦血管疾病的嚴重表現(xiàn)形式,具有極高的致殘率和較高的致死率,是當今世界危害人類生命健康的最主要疾病之一[28]。多項體內(nèi)外實驗已經(jīng)顯示G-CSF在實驗性卒中模型中可減少病變體積并改善神經(jīng)運動功能結(jié)局。然而,其目前在腦卒中患者中的療效及安全性仍然不確定。Mizuma A等[29]進行了Ⅱ期臨床試驗,選取了急性缺血性中風患者49例,采用不同劑量的G-CSF進行治療,最終根據(jù)梗死面積、神經(jīng)運動功能評分等方面進行評估發(fā)現(xiàn)G-CSF有良好的耐受性,但與對照組相比,療效方面無顯著差異。另外,F(xiàn)an ZZ等[30]的薈萃研究納入了10項RCT研究,結(jié)果提示G-CSF的耐受性良好,有助于提高腦卒中患者的美國國立衛(wèi)生研究院卒中量表(NIHSS)和改良Rankin量表(mRS)評分、CD34+和白細胞計數(shù)的增加。然而,Barthel指數(shù)評分及嚴重不良事件方面沒有顯著差異。Shin YK等[31]采用G-CSF聯(lián)合促紅細胞生成素(EPO)治療慢性腦卒中患者,隨訪6個月后觀察到G-CSF聯(lián)合EPO治療組較對照組提高了優(yōu)勢手的握力,所有患者未發(fā)生心血管及造血系統(tǒng)的不良事件。
3.2 肌萎縮性側(cè)索硬化
肌萎縮性側(cè)索硬化是一種運動神經(jīng)元進行性喪失的神經(jīng)退行性疾病,其臨床表現(xiàn)多為運動缺陷和肌肉消瘦,多數(shù)因呼吸衰竭而死亡,目前仍無行之有效的治療藥物或方案。Duning T等[32]10例確定性ALS患者進行雙盲、對照的隨機試驗研究提示皮下注射G-CSF治療或是可行的。雖然對臨床資料的探索性分析顯示無明顯療效,但DTI測量結(jié)果提示微結(jié)構(gòu)神經(jīng)損傷可得到改善。Chio A等[33]的多中心研究也表明G-CSF治療ALS療效確切且較安全。經(jīng)G-CSF治療的患者促炎細胞因子MCP-1和IL-17水平降低,表明G-CSF誘導(dǎo)中樞性抗炎反應(yīng),而這些研究可能對使用生長因子治療ALS的進一步臨床試驗產(chǎn)生重大影響。
3.3脊髓損傷
脊髓損傷是一種常見的創(chuàng)傷性疾病,其病理生理表現(xiàn)為直接挫裂和壓迫為特點的初次機械損傷和隨后數(shù)分鐘內(nèi)即發(fā)生的可以持續(xù)數(shù)天的細胞、分子水平的二次損傷,包括炎癥滲出、神經(jīng)元壞死和凋亡等,導(dǎo)致患者出現(xiàn)神經(jīng)麻痹和癱瘓[34]。急性期時G-CSF可抑制神經(jīng)細胞凋亡和炎性細胞因子的表達[35];亞急性期,Takahashi H等[36]研究表明G-CSF通過動員外周血中的干細胞抑制脊髓損傷引起的凋亡及脫髓鞘,促進血管再生,改善肢體功能?;谶@些發(fā)現(xiàn),多項研究[37, 38]進行了Ⅰ/Ⅱa期臨床試驗,提示G-CSF的使用是安全有效的,且能夠改善神經(jīng)功能的恢復(fù)。Ropper AE等[39]在24例胸段脊髓損傷患者中發(fā)現(xiàn),與對照組相比,G-CSF組肌肉力量和疼痛感覺明顯改善。
4 G-CSF在新生兒缺氧缺血性腦損傷實驗中的研究
缺氧缺血性腦損傷(hypoxia ischemia brain damage,HIBD)是由腦血流破壞和缺氧引起的,新生兒的大腦防御功能尚不完善,較成人更容易受到缺血缺氧的影響,導(dǎo)致神經(jīng)系統(tǒng)損傷(如學(xué)習障礙、癲癇、智力低下、腦癱等)甚至死亡風險增加。在HIBD的新生動物模型中,粒細胞集落刺激因子能通過抗凋亡、抑制皮質(zhì)酮合成、減輕炎癥、穩(wěn)定血腦屏障等作用改善神經(jīng)功能[16,40,41]。Fathali N等[42]在HIBD新生大鼠模型研究表明,皮下注射G-CSF能夠促進細胞生長,防止腦萎縮,改善感覺、運動協(xié)調(diào)性、記憶力等結(jié)局。Charles MS等[40]發(fā)現(xiàn)G-CSF可以通過激活JAK2 / PI3K / PDE3B通路抑制皮質(zhì)酮合成從而減小新生鼠腦梗死面積。Li L等[16]在HIBD新生大鼠模型中發(fā)現(xiàn)G-CSF可能通過激活PI3K/Akt繼而使GSK-3β失活來下調(diào)炎癥因子的表達和穩(wěn)定血腦屏障。另外,在Doycheva DM等[43]的研究中證實G-CSF聯(lián)合抗中性粒細胞抗體治療能夠減少梗死體積,改善神經(jīng)功能的同時可減少嗜中性粒細胞計數(shù),提高藥物使用安全性。
5 總結(jié)與展望
大量研究表明,G-CSF存在潛在的神經(jīng)保護作用,但其背后的分子生物學(xué)機制是相互作用、相互影響的,目前仍知之甚少,有待進一步明確。在多種神經(jīng)損傷的動物模型中,G-CSF已經(jīng)證實通過抗凋亡、抗炎、誘發(fā)神經(jīng)再發(fā)生和血管再生等方面發(fā)揮神經(jīng)保護的作用。近年來,國內(nèi)外采用G-CSF治療神經(jīng)損傷性疾病已進行了Ⅰ、Ⅱ期臨床試驗,在肌萎縮性側(cè)索硬化、脊髓損傷等疾病中觀察到安全且改善神經(jīng)功能結(jié)局的作用,而缺血性腦卒中方面暫未見到明顯療效,這仍需要進行大樣本對照試驗以驗證及完善其安全性和療效,進一步進行長期的縱向研究來明確G-CSF的潛在益處。在缺氧缺血性腦損傷新生大鼠模型中,G-CSF的神經(jīng)保護作用已得到了多項研究的證明,但仍有必要進一步探索G-CSF使用的安全性、最佳劑量、最佳治療時間窗、潛在治療靶點及聯(lián)合用藥等方面。總之,G-CSF作為新型神經(jīng)保護劑之一,在多種神經(jīng)損傷性疾病的治療及改善預(yù)后方面具有強大的臨床前景。
[參考文獻]
[1] Solaroglu I,Digicaylioglu M,Keles GE,et al. New missions for an old agent: Granulocyte-colony stimulating factor in the treatment of stroke patients[J]. Curr Med Chem,2015,22(10):1302-1309.
[2] Dale DC.The discovery,development and clinical applications of granulocyte colony-stimulating factor[J].Trans Am Clin Climatol Assoc,1998,109:27-36, 36-38.
[3] Avalos BR.Molecular analysis of the granulocyte colony-stimulating factor receptor[J].Blood,1996,88(3):761-777.
[4] Schneider A, Kruger C, Steigleder T, et al.The hemato- poietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis[J].J Clin Invest,2005,115(8):2083-2098.
[5] To LB, Levesque JP, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly[J].Blood,2011,118(17):4530-4540.
[6] Ratajczak MZ, Kim CH, Wojakowski W,et al.Innate immunity as orchestrator of stem cell mobilization[J]. Leukemia,2010,24(10):1667-1675.
[7] Levesque JP, Helwani FM, Winkler IG. The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization[J]. Leukemia,2010,24(12):1979-1992.
[8] Pierce H, Zhang D, Magnon C, et al. Cholinergic signals from the CNS Regulate G-CSF-Mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay[J]. Cell Stem Cell,2017,20(5):648-658.
[9] 陸英,鐘雪云,歐瑞明,等. 粒細胞集落刺激因子動員骨髓干細胞治療大鼠缺血性腦梗死[J].中國病理生理雜志,2004,20(4):560-565.
[10] Wu CC, Wang IF, Chiang PM, et al.G-CSF-mobilized bone marrow mesenchymal stem cells replenish neural lineages in alzheimer's disease mice via CXCR4/SDF-1 chemotaxis[J]. Mol Neurobiol,2017,54(8):6198-6212.
[11] Ghorbani M, Mohammadpour AH, Abnous K, et al. G-CSF administration attenuates brain injury in rats following carbon monoxide poisoning via different mechanisms[J]. Environ Toxicol,2017,32(1):37-47.
[12] Su J, Zhou H, Tao Y, et al. G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling[J]. PLoS One,2015,10(4):e120707.
[13] Peng W. G-CSF treatment promotes apoptosis of autoreactive T cells to restrict the inflammatory cascade and accelerate recovery in experimental allergic encephalomyelitis[J].Exp Neurol,2017,289(2017):73-84.
[14] Savitz SI, Cox CJ. Concise review: Cell therapies for stroke and traumatic brain injury: Targeting microglia[J]. Stem Cells,2016,34(3):537-542.
[15] Song S, Kong X, Acosta S, et al. Granulocyte-colony stimulating factor promotes brain repair following traumatic brain injury by recruitment of microglia and increasing neurotrophic factor expression[J].Restor Neurol Neurosci,2016,34(3):415-431.
[16] Li L, Mcbride DW, Doycheva D, et al. G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3beta signaling pathway following neonatal hypoxia-ischemia in rats[J].Exp Neurol,2015,272(2015):135-144.
[17] Solaroglu I, Cahill J, Tsubokawa T, et al. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation[J].Neurol Res,2009,31(2):167-172.
[18] Strecker JK, Olk J, Hoppen M, et al. Combining growth factor and bone marrow cell therapy induces bleeding and alters immune response after stroke in mice[J]. Stroke,2016,47(3):852-862.
[19] Lu F, Nakamura T, Toyoshima T, et al. Neuroprotection of granulocyte colony-stimulating factor during the acute phase of transient forebrain ischemia in gerbils[J]. Brain Res,2014,1548(2014):49-55.
[20] Jellema RK, Lima PV, Ophelders DR, et al. Systemic G-CSF attenuates cerebral inflammation and hypomyelination but does not reduce seizure burden in preterm sheep exposed to global hypoxia-ischemia[J].Exp Neurol,2013,250(2013):293-303.
[21] Sanchez-Ramos J, Song S, Sava V, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice[J]. Neuroscience,2009,163(1):55-72.
[22] Jung KH, Chu K, Lee ST, et al. Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation[J]. Brain Res,2006,1073-1074(2006):190-201.
[23] Griva M, Lagoudaki R, Touloumi O, et al. Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior,BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF[J]. Brain Res,2017,1667(2017):55-67.
[24] Cui L, Murikinati SR, Wang D, et al. Reestablishing neuronal networks in the aged brain by stem cell factor and granulocyte-colony stimulating factor in a mouse model of chronic stroke[J].PLo S One,2013,8(6):e64684.
[25] Chu H, Tang Y, Dong Q. Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: Effects of vascular endothelial growth factor and aquaporin-4[J].Neuroscience,2014,260(2014):59-72.
[26] Dela PI, Yoo A, Tajiri N,et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis[J].J Cereb Blood Flow Metab,2015,35(2):338-346.
[27] Sun BL, He MQ, Han XY,et al. Intranasal delivery of granulocyte colony-stimulating factor enhances its neuroprotective effects against ischemic brain injury in rats[J]. Mol Neurobiol,2016,53(1):320-330.
[28] 趙冬. 我國人群腦卒中發(fā)病率、死亡率的流行病學(xué)研究[J]. 中華流行病學(xué)雜志,2003,24(3):236-239.
[29] Mizuma A, Yamashita T, Kono S, et al. Phase II trial of intravenous sow-dose granulocyte colony-stimulating factor in acute ischemic stroke[J]. J Stroke Cerebrovasc Dis,2016,25(6):1451-1457.
[30] Fan ZZ, Cai HB, Ge ZM,et al. The efficacy and safety of granulocyte colony-stimulating factor for patients with stroke[J].J Stroke Cerebrovasc Dis,2015,24(8):1701-1708.
[31] Shin YK, Cho SR. Exploring Erythropoietin and G-CSF combination therapy in chronic stroke patients[J]. Int J Mol Sci,2016,17(4):463.
[32] Duning T, Schiffbauer H, Warnecke T, et al. G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: A pilot trial[J]. PLoS One,2011,6(3):e17770.
[33] Chio A,Mora G,La Bella V,et al.Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis:Clinical and biological results from a prospective multicenter study[J]. Muscle Nerve,2011,43(2):189-195.
[34] 孔祥溢,高俊,楊義,等. 甲基潑尼松龍在治療急性脊髓損傷中的應(yīng)用及研究進展[J]. 中國醫(yī)學(xué)科學(xué)院學(xué)報,2014,36(6):680-685.
[35] Guo Y,Liu S,Wang P,et al. Granulocyte colony-stimulating factor improves neuron survival in experimental spinal cord injury by regulating nucleophosmin-1 expression[J].J Neurosci Res,2014,92(6):751-760.
[36] Takahashi H,Koda M,Hashimoto M,et al. Transplanted peripheral blood stem cells mobilized by granulocyte colony-stimulating factor promoted hindlimb functional recovery after spinal cord injury in mice[J].Cell Transplant,2016,25(2):283-292.
[37] Kamiya K, Koda M,F(xiàn)uruya T,et al. Neuroprotective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: A comparison with high-dose methylprednisolone as a historical control[J].Eur Spine J,2015,24(5):963-967.
[38] Takahashi H, Yamazaki M, Okawa A, et al. Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial[J]. Eur Spine J,2012,21(12):2580-2587.
[39] Ropper AE, Chi JH. Granulocyte-stimulating colony factor neuroprotection for thoracic myelopathy[J]. Neurosurgery,2012,71(6):N21-N22.
[40] Charles MS, Drunalini PP, Doycheva DM, et al. Granulocyte-colony stimulating factor activates JAK2/PI3K/PDE3B pathway to inhibit corticosterone synthesis in a neonatal hypoxic-ischemic brain injury rat model[J].Exp Neurol,2015, 272(2015):152-159.
[41] Li L, Klebe D,Doycheva D, et al. G-CSF ameliorates neuronal apoptosis through GSK-3beta inhibition in neonatal hypoxia-ischemia in rats[J]. Exp Neurol,2015, 263(2015):141-149.
[42] Fathali N,Lekic T, Zhang JH, et al. Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats[J]. Intensive Care Med,2010,36(9):1602-1608.
[43] Doycheva DM, Hadley T, Li L, et al. Anti-neutrophil antibody enhances the neuroprotective effects of G-CSF by decreasing number of neutrophils in hypoxic ischemic neonatal rat model[J].Neurobiol Dis,2014,69(2014):192-199.
(收稿日期:2018-01-12)