王迅 任彤 郭天林
【摘要】 目的:研究土木香內(nèi)酯(ALT)聯(lián)合替莫唑胺(TMZ)對膠質(zhì)瘤干細(xì)胞增殖的作用及其機(jī)制。方法:取人膠質(zhì)瘤細(xì)胞U87MG、U251MG進(jìn)行培養(yǎng),ALT、TMZ單獨或聯(lián)合干預(yù)。使用MTT檢測細(xì)胞增殖情況,流式細(xì)胞術(shù)檢測細(xì)胞凋亡情況,蛋白免疫印跡法(Western blot)檢測凋亡通路蛋白Cleaved-caspase-9、Caspase-9、Bcl-2和Bcl-xl等表達(dá)量。結(jié)果:ALT和TMZ聯(lián)合使用后膠質(zhì)瘤干細(xì)胞生存率明顯低于單獨用藥組差異有統(tǒng)計學(xué)意義(P<0.05);ALT和TMZ聯(lián)合使用后膠質(zhì)瘤干細(xì)胞凋亡比例明顯高于單獨用藥組,差異有統(tǒng)計學(xué)意義(P<0.05);與單獨使用TMZ相比,ALT與TMZ聯(lián)合使用后,促凋亡蛋白Cleaved-caspase-9明顯增強(qiáng),抑凋亡蛋白Bcl-2和Bcl-xl明顯降低,差異有統(tǒng)計學(xué)意義(P<0.05)結(jié)論:ALT可增加TMZ抑制膠質(zhì)瘤干細(xì)胞增殖的效果,且其主要通過上調(diào)促凋亡蛋白,下調(diào)抑凋亡蛋白實現(xiàn)。
【關(guān)鍵詞】 土木香內(nèi)酯 替莫唑胺 膠質(zhì)瘤 干細(xì)胞 增殖 凋亡
[Abstract] Objective: To study the effect and mechanism of Alantolactone combined with Temozolomide on the proliferation of glioma stem cells. Method: Human glioma cells were cultured with U87MG?and U251MG, and were interacted with Alantolactone and Temozolomide alone or in combination. Cell proliferation was detected by MTT. Apoptosis was detected by flow cytometry. The expressions of Cleaved-caspase-9, Caspase-9, Bcl-2 and Bcl-xl were detected by Western blot. Result: The survival rate of glioma stem cells was significantly lower than that of the control group (P<0.05). The apoptosis rate of glioma stem cells after the combination of Alantolactone and Temozolomide was significantly higher than that of the single drug group, and the difference was statistically significant (P<0.05). Compared with used alone for Temozolomide, the combination of Alantolactone and Temozolomide promote the apoptosis protein cleaved Caspase-9 enhanced obviously, suppression of apoptosis protein significantly lower the Bcl-2 and the Bcl-xl, the differences were statistically significant (P<0.05). Conclusion: ALT can increase the inhibitory effect of TMZ on the proliferation of glioma stem cells, which is mainly achieved by up-regulating apoptotic protein and down-regulating apoptotic protein.
[Key words] Alantolactone Temozolomide Glioma Stem cell proliferation Apoptosis
First-authors address: Dalian Third Peoples Hospital, Dalian 116033, China
doi:10.3969/j.issn.1674-4985.2019.31.006
膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)中發(fā)病率最高的原發(fā)性腫瘤,約占腦部腫瘤的42.6%[1],其中惡性膠質(zhì)瘤占全部膠質(zhì)瘤的60%左右,是致命性非常強(qiáng)的腫瘤之一[2]。目前針對膠質(zhì)瘤傳統(tǒng)的治療方式主要是手術(shù)切除病灶,并結(jié)合放化療治療[3]。然而,由于神經(jīng)膠質(zhì)瘤主要表現(xiàn)為浸潤性生長,通過手術(shù)難以徹底將腫瘤組織和腦組織分開并切除[4],膠質(zhì)瘤干細(xì)胞對其具有一定耐藥性,目前治療效果不理想[5]。因此,需要尋求一種更優(yōu)的治療化療方案。凋亡是細(xì)胞的一種程序性死亡,在細(xì)胞增殖生長狀態(tài)中發(fā)揮重要作用[6]。正常生長的細(xì)胞受到精密調(diào)控,然而腫瘤細(xì)胞可無限增殖,研究證實腫瘤細(xì)胞的無限增殖主要是由于凋亡受到抑制[7]。替莫唑胺(temozolomide,TMZ)是目前臨床上治療神經(jīng)膠質(zhì)瘤的一線藥物[8],其可誘導(dǎo)膠質(zhì)瘤細(xì)胞DNA損傷,抑制細(xì)胞增長,促進(jìn)膠質(zhì)瘤細(xì)胞死亡,其可促進(jìn)膠質(zhì)瘤細(xì)胞凋亡。土木香內(nèi)酯(ALT)是植物土木香中的倍半萜化合物,具有祛痰、鎮(zhèn)咳和抗菌等作用[9]。近年來研究發(fā)現(xiàn)ALT有抗腫瘤細(xì)胞增殖的作用。目前已有的報道發(fā)現(xiàn),ALT可抗肺癌、結(jié)腸癌、肝癌、白血病等[10-14]。ALT分子量小,吸收快,對肝腎無毒性。然而目前關(guān)于ALT是否能影響TMZ對膠質(zhì)瘤干細(xì)胞的作用研究尚少,因此本研究將側(cè)重于探索ALT聯(lián)合TMZ對膠質(zhì)瘤干細(xì)胞增殖的作用,現(xiàn)報道如下。
1 材料與方法
1.1 細(xì)胞株 人膠質(zhì)瘤細(xì)胞系U87MG和U251MG購自ATCC細(xì)胞庫,由本實驗室培養(yǎng)傳代凍存。
1.2 實驗藥品及制備 TMZ購自美國ATCC公司,用DMSO 解稀釋成50 mM,凍存在-20 ℃?zhèn)溆?。ALT購于上海永葉科技有限公司。DMEM高糖培養(yǎng)基、特級胎牛血清購自艾萊薩生物科技有限公司,Annexin V-PE/7-AAD 凋亡試劑盒購自上海碧云天生物技術(shù)有限公司;cleaved-caspase-9、caspase-9、Bcl-2和Bcl-xl購于Cell Signaling Technology。
1.3 主要儀器及設(shè)備 二氧化碳培養(yǎng)箱,NUAIRE,美國;電泳槽、電泳儀,BIO-RAD,美國;流式細(xì)胞儀,BD,美國。
1.4 細(xì)胞培養(yǎng) U87MG、U251MG細(xì)胞培養(yǎng)于含10%胎牛血清、1%青鏈霉素的DMEM培養(yǎng)基中;在37 ℃,CO2濃度為5%的培養(yǎng)箱中培養(yǎng)。
1.5 MTT法檢測細(xì)胞生存率 取對數(shù)生長期的U87MG、U251MG細(xì)胞,吸出細(xì)胞培養(yǎng)基,用PBS清洗后向培養(yǎng)皿中加入500 μL胰酶消化液,充分搖晃混勻,1 min后加入含有血清的細(xì)胞培養(yǎng)基終止胰酶的消化,用移液器輕輕吹打細(xì)胞,制成8×104個/mL密度的單細(xì)胞懸液,接種于96孔細(xì)胞培養(yǎng)板中,100 μL/孔,在二氧化碳培養(yǎng)箱中培養(yǎng)過夜,待細(xì)胞貼壁后,棄掉正常培養(yǎng)基,分別加入含有ALT(20 μm)、TMZ(25 μm)、ALT(20 μm)+TMZ(25 μm)的藥物培養(yǎng)基,另外設(shè)定DMSO(二甲基亞砜)對照組,共4組,每組實驗設(shè)立6復(fù)孔,于37 ℃培養(yǎng)箱中培養(yǎng)48 h后,每孔加入10 μL MTT液混勻,培養(yǎng)3 h后,吸出原培養(yǎng)基,每孔各加100 μL DMSO,充分震蕩混勻10 min,用酶標(biāo)儀檢測雙波長490 nm處吸光度(OD值),計算細(xì)胞生存率。
1.6 流式細(xì)胞儀凋亡檢測 膠質(zhì)瘤細(xì)胞成球后,向細(xì)胞中分別加入ALT(20 μm)、TMZ(25 μm)、ALT(20 μm)+TMZ(25 μm),在37 ℃培養(yǎng)箱中培養(yǎng)48 h后,收集細(xì)胞。在1 000 r轉(zhuǎn)速下離心5 min,棄上清。細(xì)胞經(jīng)PBS清洗1次后用StemPro Accutase消化液消化細(xì)胞5 min,并輕輕吹打混勻,再1 000 r/min的轉(zhuǎn)速下離心5 min,棄上清。取未做任何處理的細(xì)胞分裝3管作為對照組,每個樣品加300 μL的Binding Buffer 輕輕吹打混勻,各加4 μL Annexin V和4 μL PI 染色,對照組兩個單染對照,一個空白對照,室溫避光孵育30 min,用過濾網(wǎng)過濾后,用流式細(xì)胞儀檢測膠質(zhì)瘤干細(xì)胞的凋亡比率。
1.7 Western Blot檢測 膠質(zhì)瘤細(xì)胞成球后,加入ALT(20 μm)、TMZ(25 μm)、ALT(20 μm)+TMZ(25 μm)處理48 h,輕輕吹打細(xì)胞球,移入離心管中,置于低速離心機(jī)中1 000 r/min,離心5 min,結(jié)束后棄上清獲得膠質(zhì)瘤干細(xì)胞沉淀。加入100 μL細(xì)胞裂解液裂解30 min,隨后在12 000×g ?4 ℃的條件下離心15 min,取上清即為膠質(zhì)瘤干細(xì)胞蛋白。測定并調(diào)整蛋白濃度,加入loading buffer,100 ℃煮5 min,制樣完畢,保存在-80 ℃冰箱備用。將蛋白樣本進(jìn)行電泳、轉(zhuǎn)膜、封閉后,加入對應(yīng)的Cleaved-caspase-9、Caspase-9、Bcl-2和Bcl-xl等一抗孵育過夜,用TBST洗膜15 min,然后與對應(yīng)的二抗孵育1 h,洗膜30 min。2 h內(nèi)用ECL化學(xué)發(fā)光,用凝膠成像儀成像。
1.8 統(tǒng)計學(xué)處理 使用SPSS 21.0統(tǒng)計軟件進(jìn)行分析,計量資料用(x±s)表示,兩組間比較采用t檢驗,多組比較采用單因素方差分析,以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 ALT和TMZ單獨或聯(lián)合使用對膠質(zhì)瘤干細(xì)胞生存率的影響 單獨使用ALT、TMZ及其兩者聯(lián)合對U87MG及U251MG來源的膠質(zhì)瘤干細(xì)胞進(jìn)行干預(yù)48 h后,用MTT檢測膠質(zhì)瘤干細(xì)胞生存率。研究結(jié)果顯示,無論是U87還是U251,與對照組相比,使用25 μm TMZ后細(xì)胞生存率無明顯下降,差異無統(tǒng)計學(xué)意義(P>0.05);然而與20 μm ATL聯(lián)用后細(xì)胞生存率明顯下降,差異有統(tǒng)計學(xué)意義(P<0.05)。見表1、圖1。
2.2 ALT和TMZ單獨或聯(lián)合使用對膠質(zhì)瘤干細(xì)胞凋亡的影響 ALT、TMZ單獨及其二者聯(lián)合對U87MG及U251MG來源的膠質(zhì)瘤干細(xì)胞處理后,使用流式細(xì)胞儀檢測細(xì)胞凋亡情況。研究結(jié)果顯示,無論是對U87還是U251,ALT和TMZ聯(lián)合使用后細(xì)胞凋亡比例均高于單獨使用TMZ,差異均有統(tǒng)計學(xué)意義(P<0.05)。見表2、圖2。
2.3 ATL和TMZ單獨或聯(lián)合使用對膠質(zhì)瘤干細(xì)胞凋亡蛋白表達(dá)的影響 ALT、TMZ單獨及其二者聯(lián)合對U87MG及U251MG來源的膠質(zhì)瘤干細(xì)胞進(jìn)行干預(yù)后,使用Western blot檢測細(xì)胞凋亡相關(guān)蛋白。結(jié)果顯示,與單獨使用TMZ相比,ALT與TMZ聯(lián)合使用后,促凋亡蛋白Cleaved-caspase-9明顯增強(qiáng),抑凋亡蛋白Bcl-2和Bcl-xl明顯降低,差異均有統(tǒng)計學(xué)意義(P<0.05)。見表3、4及圖3。
3 討論
膠質(zhì)瘤是腦部腫瘤中發(fā)病率和致死率較高的惡性腫瘤[15],其傳統(tǒng)治療方式主要是手術(shù)切除結(jié)合術(shù)后放化療治療[16]。然而,神經(jīng)膠質(zhì)瘤在外科手術(shù)中很難完全切除,且通常對放射治療不敏感并容易損害正常的神經(jīng)系統(tǒng)[17]。TMZ作為治療膠質(zhì)瘤的臨床一線化療藥,其價格昂貴、副作用大(骨髓抑制明顯)、且耐藥率顯著升高[18]。已有研究證實ALT能從多途徑發(fā)揮抗膠質(zhì)母細(xì)胞瘤的作用,且獲取方便,價格低廉,毒副作用小,并能通過血腦屏障[19]。若能進(jìn)一步證實ALT與TMZ對膠質(zhì)瘤干細(xì)胞具有協(xié)同增效作用并確定其作用機(jī)制,不僅能促進(jìn)ALT的臨床轉(zhuǎn)化,而且達(dá)到了降低TMZ用量的目的,從而在減少患者痛苦的同時,減輕了家庭和社會的經(jīng)濟(jì)負(fù)擔(dān),使更多的膠質(zhì)瘤患者獲益,應(yīng)用前景廣闊。本次研究發(fā)現(xiàn),ALT可以提高膠質(zhì)瘤干細(xì)胞對TMZ的敏感性,ALT聯(lián)合TMZ能降低膠質(zhì)瘤干細(xì)胞的生存率,證明ALT與TMZ對膠質(zhì)瘤干細(xì)胞具有協(xié)同增效作用。
腫瘤的發(fā)生發(fā)展是一受多因素調(diào)控的復(fù)雜過程,細(xì)胞凋亡在腫瘤發(fā)生發(fā)展過程中發(fā)揮重要作用,研究證實,膠質(zhì)瘤干細(xì)胞的過度增長是由于細(xì)胞凋亡受到抑制[20]。細(xì)胞凋亡主要受到促凋亡基因和抗凋亡基因兩大類基因的調(diào)控。兩種凋亡相關(guān)基因失衡時,即當(dāng)細(xì)胞促凋亡基因活性受抑制和/或抗凋亡基因被激活,細(xì)胞無法正常發(fā)生凋亡,生命周期延長,最終可能導(dǎo)致細(xì)胞癌變和腫瘤形成。目前研究較為清除的與腫瘤發(fā)生發(fā)展密切相關(guān)的凋亡相關(guān)基因主要有 Bcl-2基因家族,其中Bcl-2和Bcl-xl為兩個重要抗凋亡基因[21]。ALT能有效提高膠質(zhì)瘤細(xì)胞凋亡水平[22],然而ALT聯(lián)合TMZ是否也能通過凋亡途徑實現(xiàn)對膠質(zhì)瘤干細(xì)胞的控制目前尚未知。本研究結(jié)果顯示,ALT可增強(qiáng)TMZ促進(jìn)膠質(zhì)瘤干細(xì)胞凋亡的作用。并能通過促進(jìn)粒體凋亡通路下游的促凋亡蛋白Caspase-9的裂解活化,下調(diào)抑凋亡蛋白Bcl-2和Bcl-xl的表達(dá),從而增強(qiáng)TMZ誘導(dǎo)膠質(zhì)瘤干細(xì)胞凋亡的能力。
綜上所述,ALT可增加TMZ抑制膠質(zhì)瘤干細(xì)胞增殖的效果,且其主要通過上調(diào)促凋亡蛋白,下調(diào)抑凋亡蛋白實現(xiàn),這可能為以后膠質(zhì)瘤的化學(xué)治療提供新的聯(lián)合治療方案。
參考文獻(xiàn)
[1] Ostrom Q T,Gittleman H,F(xiàn)arah P,et al.CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010[J].Neuro-Oncology,2013,15(2):111-156.
[2] Walker M D,Green S B,Byar D P,et al.Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery[J].N Engl J Med,1980,303(23):1323-1329.
[3] Chowdhury F A,Hossain M K,Mostofa A G M,et al.
Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways[J].BioMed Research International,2018,2018(5897):1-15.
[4] Persaudsharma D,Burns J,Govea M,et al.Cerebral gliomas:Treatment, prognosis and palliative alternatives[J].Progress in Palliative Care,2018,26(187):1-7.
[5] Liu C A,Chang C Y,Hsueh K W,et al.Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment[J].International Journal of Molecular Sciences,2018,19(4):1115-1123.
[6] Kerr J F,Winterford C M,Harmon B V.Apoptosis. Its significance in cancer and cancer therapy[J].Cancer,2015,73(8):2013-2026.
[7] Thompson C B.Apoptosis in the pathogenesis and treatment of disease[J].Science,1995,267(5203):1456-1462.
[8] Grek C L,Sheng Z,Naus C C,et al.Novel approach to temozolomide resistance in malignant glioma: connexin43-directed therapeutics[J].Current Opinion in Pharmacology,2018,41(2):79-88.
[9] Wang X,Yu Z,Wang C,et al.Alantolactone, a natural sesquiterpene lactone, has potent antitumor activity against glioblastoma by targeting IKKβ kinase activity and interrupting NF-κB/COX-2-mediated signaling cascades[J].Journal of Experimental & Clinical Cancer Research Cr,2017,36(1):93-108.
[10] Brattlie, Joshua.Progress towards the design and synthesis of novel anti-tumor neo-tanshinlactone analogues[D]. North Carolina:University of North Carolina at Chapel Hill,2014.
[11] Zhao P,Pan Z,Luo Y,et al.Alantolactone Induces Apoptosis and Cell Cycle Arrest on Lung Squamous Cancer SK-MES1 Cells[J].J Biochem Mol Toxicol,2015,29(5):199-206.
[12] Rui X,Gang-Ming X,Xiao-Ming L,et al.Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones[J].Marine Drugs,2015,13(11):7040-7054.
[13] Wei W,Huang H,Zhao S,et al.Alantolactone induces apoptosis in chronic myelogenous leukemia sensitive or resistant to imatinib through NF-κB inhibition and Bcr/Abl protein deletion[J].Apoptosis,2013,18(9):1060-1070.
[14] Rasul A,Khan M,Yu B,et al.Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways[J].Archives of Pharmacal Research,2013,36(10):1262-1269.
[15] Peckhamgregory E C,Montenegro R E,Stevenson D A,et al.Evaluation of racial disparities in pediatric optic pathway glioma incidence: Results from the Surveillance, Epidemiology, and End Results Program,2000-2014[J].Cancer Epidemiology,2018,54(3):90-94.
[16] Persaudsharma D,Burns J,Govea M,et al.Cerebral gliomas: Treatment, prognosis and palliative alternatives[J].Progress in Palliative Care,2018,26(187):1-7.
[17] Choi S H,Yoon H I,Yi S,et al.Treatment outcomes of radiotherapy for primary spinal cord glioma[J].Strahlentherapie und Onkologie,2018,39(9):123-139.
[18] Zhou X,Wu W,Zeng A,et al.MicroRNA-141-3p promotes glioma cell growth and temozolomide resistance by directly targeting p53[J].Oncotarget,2017,8(41):71080-71094.
[19] Khan M,Yi F,Rasul A,et al.Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction[J].Iubmb Life,2012,64(9):783-794.
[20] Wang Y,Wang H,Ge H,et al.AG-1031 induced autophagic cell death and apoptosis in C6 glioma cells associated with Notch-1 signaling pathway[J].Journal of Cellular Biochemistry,2018,119(7):1185-1199.
[21] Alshamsan A,Ssamuel H.The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine[J].Biomaterials,2010,31(6):1420-1428.
[22] Tsai S F,Tao M,Ho L I,et al.Isochaihulactone-induced DDIT3 causes ER stress-PERK independent apoptosis in glioblastoma multiforme cells[J].Oncotarget,2017,8(3):4051-4065.
(收稿日期:2019-08-21) (本文編輯:周亞杰)