馮 濤,曾小蘭,王 珂,Osvaldo Campanella
?
短鏈葡聚糖-姜黃素納米乳液的制備及結(jié)構(gòu)表征
馮 濤1,曾小蘭1,王 珂2,Osvaldo Campanella3
(1. 上海應(yīng)用技術(shù)大學(xué)香料香精技術(shù)與工程學(xué)院,上海 201418;2. 江南大學(xué)食品學(xué)院,無(wú)錫 214000; 3. 普度大學(xué)食品科學(xué)系惠斯特勒碳水化合物研究中心,西拉斐特 43845,美國(guó))
利用短鏈葡聚糖(short glucan chains,SGC)的螺旋空間結(jié)構(gòu)來(lái)包埋姜黃素(curcumin,CUR)。通過(guò)使用高剪切分散乳化機(jī)高速剪切溶液5 min,用納米均質(zhì)機(jī)在50 MPa壓力下高壓均質(zhì)經(jīng)剪切后的乳液2次制備成納米乳液以提高其包埋率和載藥量。XRD (x-ray diffraction)和TGA (thermogravimetric analysis)很好的驗(yàn)證了包合物的形成,通過(guò)TGA、SEM (scanning electron microscopy)、激光粒徑分析儀等各種表征分析得出短鏈葡聚糖-姜黃素納米乳液制備成功,所制得的乳液對(duì)姜黃素的包埋率和載藥量都高于短鏈葡聚糖-姜黃素包合物,分別達(dá)到了71.11%和12.07%,說(shuō)明制備成納米乳液對(duì)姜黃素的包埋率和載藥量都有了明顯的提高。所制備的納米乳液的粒徑小于300 nm,粒徑分布均一,Zeta電位觀測(cè)表明所制得的乳液的穩(wěn)定性有所提高。為提高食品及醫(yī)藥領(lǐng)域姜黃素的生物利用率提供了一定的參考意義。
乳液;納米包合材料;微觀結(jié)構(gòu);蠟質(zhì)玉米淀粉;短鏈葡聚糖;普魯蘭酶;姜黃素;納米乳液
姜黃素 [(E,E)-1,7-雙(4-羥基-3-甲氧基 - 苯基)庚二烯-3,5-離子]是從姜黃中提取的主要酚類(lèi)色素[1]。它通常用作香料,食品防腐劑,調(diào)味劑和著色劑。過(guò)去50 a的廣泛研究表明,姜黃素具有強(qiáng)力的抗氧化劑[2-3],抗炎[4-5],抗腫瘤[6],抗HIV[7],抗菌和抗微生物特性[8-9]。還抑制脂質(zhì)過(guò)氧化和清除超氧陰離子氧、一氧化氮和羥基[10-11],新研究證明其對(duì)治療呼吸系統(tǒng)疾病有很大的貢獻(xiàn)。然而由于姜黃素的生物利用率很低,水溶性差,穩(wěn)定性也很低,因此其在食品工業(yè)和醫(yī)藥鄰域的廣泛應(yīng)用受到了極大的限制,從而影響了這種重要化合物對(duì)人類(lèi)的健康益處的發(fā)揮[12-14],這使得解決上面這些問(wèn)題成為了一個(gè)熱門(mén)的話(huà)題。有研究表明,包埋具有生物活性的物質(zhì)可以提高生物分子在人體胃腸道中的利用率,包埋可以提高生物活性物質(zhì)的水溶性,保護(hù)他們免遭人體胃腸道中某部位的不良條件影響,并在人體中靶向吸收以提高吸收率。
淀粉是人們食物的主要來(lái)源,主要儲(chǔ)存在植物的根莖當(dāng)中,是目前食品工業(yè)中用量最大的原料,直徑大小在1~100m范圍內(nèi)[15]。淀粉是由直鏈淀粉和支鏈淀粉組成的聚合物,不同來(lái)源的淀粉其直鏈和支鏈的組成比有很大的差別,其具有安全、無(wú)毒、價(jià)廉,良好的生物相容性,可降解等優(yōu)點(diǎn)。同時(shí)單一酶和復(fù)合酶作用淀粉時(shí)對(duì)生成的短鏈葡聚糖顆粒表面體積大小會(huì)有一定的影響[16]。短鏈葡聚糖是1種低分子量的親水性線性聚合物,其聚合度約為17,是由支鏈淀粉通過(guò)酶解(普魯蘭酶)脫支制備而得[17]。支鏈淀粉經(jīng)酶解脫支,形成具有一定聚合度的線性直鏈淀粉短鏈,線性短鏈通過(guò)兩兩碰撞、纏繞并形成雙螺旋分子,使支鏈淀粉的消化性降低,改善了天然淀粉作為壁材輸送生物活性物質(zhì)易被人體胃腸道中酸和酶侵蝕的缺點(diǎn)。以短的直鏈淀粉為宿主的包合體系正受到越來(lái)越多的關(guān)注。Fanta等[18]通過(guò)蒸汽噴射糊化法制備了納米級(jí)的直鏈淀粉-油酸包合物。Marinopoulou等[19]利用堿消化法制備了直鏈淀粉與癸酸、肉豆蔻酸和油酸的包合物。Le Bail等[20]以高壓法制備了穩(wěn)定的直鏈淀粉-癸酸以及香荊芥酚的包合物。Zhu等[21]以化學(xué)或酶法變性的高直鏈玉米淀粉成功制備了與-萘酚的包合物。Ades等[22]采用直鏈淀粉包合了薄荷酮,薄荷醇。
但目前所制得短鏈葡聚糖-姜黃素包合物還存在一些缺點(diǎn),例如包合物粒徑是微米級(jí)、包埋率和載藥量都很低、溶解度不是很好等。為了解決利用廉價(jià)安全的短直鏈淀粉作為壁材包埋姜黃素時(shí)少量存在的問(wèn)題,該文在制備了短鏈葡聚糖-姜黃素包合物后將其制備成納米乳液,試驗(yàn)發(fā)現(xiàn)后者可以很好的提高包合物的穩(wěn)定性、包埋率和載藥量。姜黃素被制備成納米顆粒后,其游離基氧化穩(wěn)定性較游離態(tài)姜黃素得到顯著提高[23]。納米粒子的粒徑通過(guò)影響被包埋的分子在胃腸道中的保留時(shí)間、溶解速率和消化酶的行為來(lái)影響被包埋分子的生物利用率[24]。短鏈葡聚糖-姜黃素納米乳液的粒徑在150~300 nm,被包埋的姜黃素延長(zhǎng)了消化時(shí)間,得以靶向釋放,生物價(jià)值得以利用。以O(shè)SA(octenyl succinic anhydride)變性淀粉為乳化劑,對(duì)脂溶性功能成分中易揮發(fā)和不易溶解的營(yíng)養(yǎng)素類(lèi)物質(zhì)構(gòu)建穩(wěn)定、高效、生物兼容性強(qiáng)的水包油(O/W)型納米乳液[25]。楊寶玲等[26]通過(guò)玉米淀粉和辛烯基琥珀酸發(fā)生淀粉酯化反應(yīng)成功地包埋了亞麻油并制備成微膠囊。本試驗(yàn)將制備好的短鏈葡聚糖-姜黃素包合物采用剪切分散乳化的方法制備成納米乳液,表征包合物的成功制備,觀察其動(dòng)力學(xué)乳液穩(wěn)定性,以提高其包埋率和載藥量。
蠟質(zhì)玉米淀粉(國(guó)民淀粉),普魯蘭酶(1 000 U/g,諾維信),姜黃素(≥94%姜黃色素含量,≥80%姜黃素含量,Sigma),姜黃素標(biāo)準(zhǔn)品(Sigma,色譜純),吐溫80(國(guó)藥試劑有限公司,分析純),卵磷脂(來(lái)自雞蛋)(梯希愛(ài)化成工業(yè)發(fā)展有限公司,分析純),一水合檸檬酸,磷酸氫二鈉,無(wú)水乙醇(國(guó)藥(上海)試劑有限公司,分析純)。
熱重分析儀(TGA,thermogravimetric analysis,Q5000 IR,美國(guó)TA儀器公司)、掃描式電子顯微鏡(日本高新那珂事業(yè)所)、激光粒度分布儀(Zetasizer Nano ZS,馬爾文儀器(中國(guó))有限公司)、Nano Homogenize Machine(美國(guó)ATS Engineering 有限公司)、PC型紫外可見(jiàn)分光光度計(jì)(UNICO公司)、Hishear 高剪切分散乳化機(jī)(上海躍迪機(jī)械設(shè)備有限公司)。
1.3.1 短鏈葡聚糖的制備[27]
將稱(chēng)量好的蠟質(zhì)玉米淀粉中分別加入200 mL緩沖液(pH值為5.0的磷酸氫鈉一水合檸檬酸緩沖液),配制成質(zhì)量濃度為10%、15%、20%、25%的淀粉溶液。先攪拌均勻,然后在沸水浴中繼續(xù)加熱攪拌30~40 min直到淀粉溶液充分糊化以后溫度降至58 ℃,加入普魯蘭酶(1 000 U/g),保溫8 h并不斷攪拌,之后快速離心(10 000 r/min, 2 min),取上清液并在100℃下加熱30 min,消除普魯蘭酶的活性,4℃冰箱里儲(chǔ)存6~8 h之后冷凍干燥72 h,即得短鏈葡聚糖。短鏈葡聚糖分別依次記為SGC1,SGC2,SGC3,SGC4。
1.3.2 短鏈葡聚糖-姜黃素納米乳液的制備
按照表1中配方制備葡聚糖-姜黃素納米乳液,共6個(gè)處理。具體制備過(guò)程如下:1)15%(SGC2)的短鏈葡聚糖結(jié)晶度最高,且熱穩(wěn)定性最好,故選其作為包埋姜黃素的壁材,并按照5 mg/mL的濃度配置成100 mL的溶液,按表1配方的量加入吐溫80,超聲15 min使短鏈葡聚糖充分均勻分散到體系中,90~100 ℃加熱30~40 min直至溶液徹底糊化均勻。2)按表1配方稱(chēng)取姜黃素于2 mL無(wú)水乙醇(助溶)中,加入卵磷脂并將配置好的姜黃素溶液緩慢滴加入上步制備的短鏈葡聚糖溶液中,后25 ℃加熱攪拌2 h,后初去乙醇,再用Hishear 高剪切分散乳化(D檔,5 min)。納米均質(zhì)機(jī)在50 MPa壓力下高壓均質(zhì)經(jīng)剪切2次后的乳液即得短鏈葡聚糖-姜黃素納米乳液。短鏈葡聚糖-姜黃素包合物的制備同上,少去乳化劑的加入和均質(zhì)剪切。
表1 空白對(duì)照及短鏈葡聚糖-姜黃素納米乳液配方
1.3.3 短鏈葡聚糖-姜黃素及其納米乳液包埋率和載藥量的測(cè)定
本文選用紫外分光光度法測(cè)定短鏈葡聚糖-姜黃素包合物及其納米乳液的包埋率和載藥量,測(cè)定方法如下:1)繪制姜黃素標(biāo)準(zhǔn)曲線:取姜黃素標(biāo)準(zhǔn)品用無(wú)水乙醇配置濃度為0.598 mg/mL的溶液,并用250 mL的容量瓶定容。然后量取比色皿2/3體積的量進(jìn)行檢測(cè)并找到姜黃素的最大吸收波長(zhǎng)。接著從母液中分別移取5.000、2.500、1.250、1.000、0.625、0.500 mL的姜黃素溶液置于100 mL容量瓶中,用無(wú)水乙醇定容,得到濃度分別為29.90、14.95、7.48、5.98、3.74、2.99g/mL梯度稀釋的標(biāo)樣溶液,分光光度計(jì)測(cè)定被稀釋溶液的吸光度值,得出的一列數(shù)據(jù)建立標(biāo)準(zhǔn)曲線。2)游離姜黃素的測(cè)定:取一定量的短鏈葡聚糖-姜黃素包合物,用無(wú)水乙醇配置成濃度為0.2 mg/mL的包合物溶液,超聲振蕩萃取2 min,靜置后取上清液,并測(cè)定其在最大吸收波長(zhǎng)處的吸光度,代入標(biāo)準(zhǔn)曲線計(jì)算對(duì)應(yīng)姜黃素的質(zhì)量濃度。3)姜黃素總量的測(cè)定:同樣的方法配置質(zhì)量濃度為0.2 mg/mL的溶液,用高速離心(10 000 r/min,20 min)使其結(jié)構(gòu)完全破壞,姜黃素游離出來(lái),同樣離心后取上清液測(cè)姜黃素最大吸收波長(zhǎng)處的吸光度,根據(jù)標(biāo)準(zhǔn)曲線計(jì)算對(duì)應(yīng)姜黃素濃度。
包埋率=(1-樣品中游離姜黃素的質(zhì)量/樣品中姜黃素總質(zhì)量)×100% (1)
載藥量=(樣品中姜黃素的總質(zhì)量/樣品中短鏈葡聚糖的總質(zhì)量)×100% (2)
1.3.4 短鏈葡聚糖-姜黃素納米乳液包合物的表征
1)短鏈葡聚糖-姜黃素納米乳液包合物的外觀
姜黃素作為食品工業(yè)和醫(yī)藥鄰域廣泛需要的原料,其包合物溶解度的穩(wěn)定性也至關(guān)重要,因此本試驗(yàn)采用靜置的方式,每隔一天對(duì)樣品觀察一次,觀察樣品的溶解度變化及是否有分層和沉淀現(xiàn)象發(fā)生。
2)短鏈葡聚糖-姜黃素納米乳液動(dòng)態(tài)光散射(dynamic light scattering)
粒徑分布、PDI(particle distribution index)和Zeta電位通過(guò)Zetasizer Nano ZS型激光粒度分布儀測(cè)定的。測(cè)定前,先將樣品配置成均勻分散的體系,所有樣品需過(guò)0.45m的微孔濾膜,以便除去掉大顆粒的聚集體。將樣品溶液于室溫條件下分別放置1和7 d測(cè)定納米乳液的Zeta電位。測(cè)定時(shí)粒徑池和電位池裝樣量約為該容器體積的1/3,樣品設(shè)置測(cè)定3次取其平均值。
3)短鏈葡聚糖-姜黃素包合物的X射線衍射(X-ray diffraction)
短鏈葡聚糖-姜黃素包合物、短鏈葡聚糖-姜黃素混合物和姜黃素的結(jié)晶度和晶型通過(guò)X-射線衍射儀測(cè)定。XRD測(cè)試儀器的電壓為30 kV,電流為30 mA, 掃描角度范圍為5°~50°,掃描速度為4(°)/min,間隔時(shí)間為0.4 s,間隔寬度為0.02°,發(fā)散狹縫寬度為0.2 mm,衍射狹縫寬度為0.6 mm,接收狹縫寬度為0.2 mm,測(cè)試時(shí)講冷凍干燥好的樣品取1~2 mg置于樣品臺(tái)上進(jìn)行觀測(cè)。
4)納米乳液掃描電子顯微鏡觀察(scanning electron microscopy,SEM)
短鏈葡聚糖-姜黃素納米乳液的微觀形貌采用掃描電子顯微鏡觀察。 取0.1 mg樣品至于10 mL超純水中分散,超聲處理10 min,取1滴樣品于導(dǎo)電膠上并固定到樣品臺(tái)上,后將樣品進(jìn)行噴金處理,然后在電流3 mA,加速電壓15 kV條件下觀察微觀形貌。
5)納米乳液熱重分析(thermogravimetric analysis,DSC)
測(cè)定短鏈葡聚糖-姜黃素納米乳液的高溫質(zhì)量損失情況來(lái)分析卵磷脂添加量對(duì)納米乳液包埋效果的影響。樣品盤(pán)裝樣之前最好酒精灼燒5 s以除去盤(pán)中的雜質(zhì),稱(chēng)取3~5 mg的樣品于坩堝中,置于熱重分析儀系統(tǒng)。設(shè)置氮?dú)饬髁?0 mL/min,升溫速率為10 ℃/min,樣品在30~600 ℃范圍內(nèi)進(jìn)行熱重分析。
6)統(tǒng)計(jì)分析方法
試驗(yàn)數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差形式表示,采用SPSS 18.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(ANOVA),顯著性水平<0.05。
圖1為樣品初始和第7天的分散情況。姜黃素水溶液本身溶解性差(圖1中A),配置好的溶液中大部分姜黃素沉淀于瓶底,還有一部分懸浮于水溶液中。Aditya等[28]報(bào)導(dǎo)的結(jié)果與圖1所顯示的結(jié)果類(lèi)似,天然姜黃素的溶解度極低,為0.39±0.05g/mL??瞻讓?duì)照2(圖中C)中姜黃素均勻的溶解在水溶液中,這說(shuō)明乳化劑吐溫80和卵磷脂對(duì)姜黃素起到了很好的乳化效果,并提高了姜黃素的溶解性。其中4在制備過(guò)程中未加乳化劑,這說(shuō)明姜黃素溶解度的提高不只是由與吐溫80和卵磷脂的乳化作用而引起,短鏈葡聚糖對(duì)姜黃素的包埋也提高了姜黃素的溶解度。這可能是由于蠟質(zhì)玉米淀粉制備成短鏈葡聚糖產(chǎn)生的氫鍵與姜黃素形成了一定的相互作用,阻止了姜黃素結(jié)晶的生長(zhǎng),使其保持在無(wú)定型狀態(tài),從而提高其水溶性,這與Gomand等[29]淀粉制備成納米顆粒形成大量的氫鍵研究一致,納米乳液D(吐溫/卵磷脂=300/100)、E(吐溫/卵磷脂=300/200)、F(吐溫/卵磷脂=300/300)、G(無(wú)吐溫和卵磷脂),從圖7可以看出,F(xiàn)始終都沒(méi)有形成沉淀,這是由于隨著卵磷脂濃度的增加,額外的水/油界面的形成。
注:A(姜黃素水溶液),B(空白對(duì)照1,短鏈葡聚糖/乳化劑),C(空白對(duì)照2,姜黃素/乳化劑),D:1(配方1),E:2(配方2),F(xiàn):3(配方3),G:4(配方4)。
2.2.1 短鏈葡聚糖-姜黃素包合物的粒徑、粒徑分布指數(shù)(PDI)、包埋率、載藥量測(cè)定
從表2[30]可以看出,利用普魯蘭酶水解得到的單一短鏈葡聚糖包埋率和載藥量都不高,分別是28.46%和1.27%。為了改進(jìn)短鏈葡聚糖-姜黃素包合物包埋率和載藥量偏低的問(wèn)題,從而提高姜黃素的生物利用價(jià)值,后面進(jìn)一步研究了將短鏈葡聚糖-姜黃素包合物制備成納米乳液。
表2 短鏈葡聚糖-姜黃素包合物物化參數(shù)
注:同一列不同字母表示顯著性差異,<0.05,下同。
Note: Different letters in the same column indicate significant differences,<0.05, the same below.
2.2.2 短鏈葡聚糖-姜黃素納米乳液的粒徑、粒徑分布指數(shù)(PDI)、Zeta電位、包埋率、載藥量測(cè)定
姜黃素水溶液的粒徑目前有很多人做過(guò)研究,可關(guān)于短鏈葡聚糖-姜黃素納米乳液粒徑分布和電位與姜黃素穩(wěn)定性的關(guān)系的研究還比較少,如表3所示。上面測(cè)得包合物的顆粒大小為2到20m。而后制備成納米乳液之后的粒徑分布在150~300 nm,主要集中在200 nm左右,與試驗(yàn)得出的SEM圖結(jié)果相符。Zeta電位代表納米乳液的體外穩(wěn)定性。Marsh等[31]發(fā)現(xiàn)淀粉由于含有脂類(lèi)、蛋白及金屬離子等,從而導(dǎo)致淀粉納米乳液有Zeta電位的存在。他與表面可電離基團(tuán)的種類(lèi)、數(shù)量直接相關(guān)。從表3可知,所有樣品的Zeta電位均小于20 mV,表明乳液的穩(wěn)定性偏低,這與2.1部分的乳液第7天穩(wěn)定性直觀觀測(cè)的結(jié)果一致。從表3中空白的短鏈葡聚糖乳液Zeta電位為負(fù),這是因?yàn)槌曁幚硎沟矸哿u基基團(tuán)在水溶液中更傾向于電離[32]。表3納米乳液樣品1、2、3的Zeta電位值隨加入卵磷脂的量的增加而變大,表明卵磷脂可以提高所制備乳液的穩(wěn)定性,粒徑由238.33降低到170.87 nm,這可能是由于隨著乳化劑量的增多,額外的水/油界面形成,支持了更小液滴的形成[33],這與2.1直觀觀測(cè)的結(jié)果一致。PDI值越小,粒徑分布越均一,則形成的乳液越穩(wěn)定。從表3中可以看出,放置7 d后,樣品Blank 1、1、2、4的PDI值均大于0.3,說(shuō)明所得乳液粒徑分布不均一,樣品Blank 2、3的PDI值小于0.3,說(shuō)明所得乳液粒徑分布均一。綜合表2表3可以看出制備成納米乳液之后姜黃素的溶解性有了很好的改善,包埋率和載藥量都有很大的提高,且包埋率和載藥量在一周的時(shí)間基本上沒(méi)有變化,包埋效果穩(wěn)定。
表3 短鏈葡聚糖-姜黃素包合物納米乳液物化參數(shù)
短鏈葡聚糖-姜黃素包合物的結(jié)晶特性和物理狀態(tài)通過(guò)X射線衍射來(lái)表征。由圖2可知,短鏈葡聚糖SC2樣品分別在14.0°,16.8°,19.42°,22.0°,23.9°處出現(xiàn)衍射峰,可以判斷晶型為B+V型。圖2b姜黃素的衍射峰較尖銳,說(shuō)明姜黃素的結(jié)晶性很好,短鏈葡聚糖姜黃素混合物的衍射峰基本上為短鏈葡聚糖和姜黃素的衍射峰疊加。短鏈葡聚糖-姜黃素包合物4個(gè)樣品基本都在14.10°,16.93°,21.93°附近出現(xiàn)衍射峰,其中14.10°是V型結(jié)晶結(jié)構(gòu)衍射峰,16.93°,21.93°是B型結(jié)晶結(jié)構(gòu)衍射峰。這說(shuō)明包合物的晶型結(jié)構(gòu)為B+V型。從圖中可以看出,包合物與短鏈葡聚糖的衍射峰出峰位置相同且沒(méi)有表現(xiàn)出明顯的姜黃素晶體的衍射峰,說(shuō)明短鏈葡聚糖-姜黃素包合物的成功形成且姜黃素被包埋后呈無(wú)定形狀態(tài)。為后續(xù)制備成納米乳液的包合物提供基礎(chǔ)。
短鏈葡聚糖-姜黃素納米乳液和空白的SEM如圖3所示。樣品Blank 1, 1, 2, 3沒(méi)有獨(dú)立的球形存在,而樣品4傾向于形成均勻且大小均一的球形或者橢圓??赡苁怯捎诘矸郾幻附庵笊傻亩替溒暇厶牵w粒變小,表面有被腐蝕的痕跡,大多呈現(xiàn)出不規(guī)則的形狀,表面粗糙,部分有裂紋但整體保持叫完成的形態(tài),顆粒之間部分粘連,而且乳化劑的雙重作用使得顆粒大小均一。Kim等[34]也發(fā)現(xiàn)了淀粉納米顆粒聚集的現(xiàn)象,這也與Sihem等[35]研究淀粉納米顆粒表觀形態(tài)互相聚集的結(jié)果相似。另外,由于酶解而生成了短鏈葡聚糖,使得淀粉結(jié)晶區(qū)域容易形成大量氫鍵,而導(dǎo)致淀粉納米顆粒的互相吸引,這與Gomand等[29]研究的淀粉納米顆粒通過(guò)氫鍵相互吸引的結(jié)果類(lèi)似。
短鏈葡聚糖納米乳液及空白對(duì)照的TGA和DTG如圖所示。由圖4所見(jiàn),Blank 1為添加乳化劑最多的,其質(zhì)量曲線緩慢下降,在20~104℃范圍內(nèi),出現(xiàn)1個(gè)失質(zhì)量峰,失質(zhì)量率僅為1.15%,該階段主要是樣品中水分的損失或小分子量碳?xì)浠衔锓纸鈁36]。分析樣品熱重曲線得出,在200~358℃范圍內(nèi),Blank 1曲線位于樣品1、2、3的下方,該階段主要是由于壁材短鏈葡聚糖的熱分解速率大于包合物。根據(jù)圖4中DTG曲線可知,短鏈葡聚糖最大失質(zhì)量速率對(duì)應(yīng)溫度約為302 ℃,這與苑春苗等[37]用TGA測(cè)定的玉米淀粉的最大失質(zhì)量速率對(duì)應(yīng)的溫度是一致的,包合物樣品1、2、3可能是由于短鏈葡聚糖與姜黃素分子間形成了氫鍵而減緩了短鏈葡聚糖的分解速度。這與上面SEM中淀粉納米顆粒聚集通過(guò)氫鍵互相吸引結(jié)果一致。從DTG曲線可以看出,從366 ℃起樣品Blank 1、1、2、3及Blank 1又出現(xiàn)了1個(gè)失質(zhì)量峰,最大失質(zhì)量速率對(duì)應(yīng)的溫度約為405 ℃,而樣品4未出現(xiàn)此峰。其中樣品1、2、3與4的物質(zhì)成分區(qū)別是1、2、3在制備過(guò)程中加入了乳化劑吐溫80和卵磷脂,而4在制備過(guò)程中卵磷脂和吐溫80的加入量都為0,這說(shuō)明了此失質(zhì)量峰可能是乳化劑的失質(zhì)量峰。在358~600 ℃,樣品1、2、3的曲線位于Blank 1的下方,可能因?yàn)楸诓亩替溒暇厶欠纸夂?,被包埋的姜黃素受熱分解。
圖2 不同配方樣品的X射線衍射圖譜
圖3 不同配方樣品的掃描電子顯微鏡圖片
圖4 不同配方樣品的TGA(thermogravimetric analysis)和 DTG(derive temperature gravimetric)曲線
本試驗(yàn)利用Hishear高壓乳化剪切的方法將短鏈葡聚糖-姜黃素包合物制備成納米乳液,比短鏈葡聚糖螺旋空腔結(jié)構(gòu)直接包埋姜黃素后得到包埋物的穩(wěn)定性增加很多,而且很大程度的提高了姜黃素的包埋率和載藥量,使其分別從28.46%、1.27%最高達(dá)到了71.11%、12.07%。對(duì)于短鏈葡聚糖-姜黃素納米乳液,通過(guò)熱重分析、粒徑(150~300 nm)、粒徑分布指數(shù)(PDI< 0.3)、Zeta電位(< 20 mV,穩(wěn)定性好),得出短鏈葡聚糖-姜黃素納米乳液成功制備,而且穩(wěn)定性很好,粒徑分布均一,粒徑小于300 nm。同時(shí)結(jié)合直觀圖還發(fā)現(xiàn)溶液趨向于澄清的狀態(tài),說(shuō)明姜黃素的溶解性也在很大程度上提高了,為醫(yī)學(xué)領(lǐng)域?qū)ふ野窠S素的壁材提供了1個(gè)合適的途徑,也為食品領(lǐng)域更好的發(fā)揮和利用姜黃素的使用價(jià)值提供參考,其動(dòng)力學(xué)穩(wěn)定性將是接下來(lái)需要深入的研究。
[1] Mitchell M S. Isolation of curcumin from turmeric[J]. Journal of Chemical Education, 2000, 77(3): 359-360.
[2] Pizzo P, Scapin C, Vitadello M, et al. Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells[J]. Journal of Cellular & Molecular Medicine, 2010, 14(4): 970-981.
[3] Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin[J]. Biochemical Pharmacology, 1996, 52(4): 519-544.
[4] Srimal R C, Dhawan B N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent[J]. Journal of Pharmacy & Pharmacology, 2011, 25(6): 447-452.
[5] Aggarwal B B, Harikumar K B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. International Journal of Biochemistry & Cell Biology, 2009, 41(1): 40-59.
[6] Lee Y K, Lee W S, Hwang J T, et al. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells[J]. Journal of Agriculture and Food Chemistry, 2009, 57(1): 305-315.
[7] Jordan W C, Drew C R. Curcumin:A natural herb with anti-HIV activity[J]. Journal of the National Medical Association, 1996, 88(6): 333.
[8] De R, Kundu P, Swarnakar S, et al. Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice[J]. Antimicrobial Agents & Chemotherapy, 2009, 53(4): 1592-1599.
[9] Wang Y, Lu Z, Wu H, et al. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens[J]. International Journal of Food Microbiology, 2009, 136(1): 71-74.
[10] Jovanovic S V, Boone Charles W, Steenken, et al. How curcumin works preferentially with water soluble antioxidants [J]. Journal of the American Chemical Society, 2001, 123(13): 3064-3072.
[11] Chignell C F, Bilskj P, Reszka K J, et al. Spectral and photochemical properties of curcumin[J]. Photochemistry & Photobiology, 1994, 59(3): 295-302.
[12] Yang C,Su X , Liu A , et al. Advances in clinical study of curcumin[J]. Current Pharmaceutical Design, 2013, 19(11): 1966-1973.
[13] Aggarwal B B, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets[J]. Trends in Pharmacological Sciences, 2009, 30(2): 85-94.
[14] Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics, 2007, 4(6): 807-818.
[15] Freitas R A, Paula R C, Jpa F, et al. Amylose contents, rheological properties and gelatinization kinetics of yam () and cassava () starches[J]. Carbohydrate Polymers, 2004, 55(1): 3-8.
[16] 方晨璐,黃峻榕,任瑞珍,等. 酶解薯類(lèi)淀粉適用于電鏡觀察其顆粒表面及內(nèi)部結(jié)構(gòu)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22): 306-312. Fang Chenlu, Huang Junrong, Ren Ruizhen, et al. Amylases enzymolysis of tuber starch granules for surface and internal structure observation under scanning electron microscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 306-312. (in Chinese with English abstract)
[17] Chang R, Yang J, Ge S, et al. Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release[J]. Food Hydrocolloids, 2017, 67: 14-26.
[18] Fanta G F, Kenar J A, Felker F C. Nanoparticle formation from amylose-fatty acid inclusion complexes prepared by steam jet cooking[J]. Industrial Crops and Products, 2015, 74: 36-44.
[19] Marinopoulou A, Kalogianni E P, Raphaelides S N. Amylose-fatty acid inclusion complexes as examined by interfacial tension measurements[J]. Colloids Surf B Biointerfaces, 2016, 137: 133-137.
[20] Le Bail P, Chauvet B, Simonin H, et al. Formation and stability of amylose ligand complexes formed by high pressure treatment[J]. Innovative Food Science & Emerging Technologies, 2013, 18: 1-6.
[21] Zhu F, Wang Y J. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch[J]. Food Chemistry, 2013, 138(1): 256-262.
[22] Ades H, Kesselman E, Ungar Y, et al. Complexation with starch for encapsulation and controlled release of menthone and menthol[J]. LWT - Food Science and Technology, 2012, 45(2): 277-288.
[23] 王永輝,楊曉泉,王金梅,等. 蛋白水解物及多糖負(fù)載姜黃素制備納米顆粒及其穩(wěn)定性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):296-302. Wang Yonghui, Yang Xiaoquan, Wang Jinmei, et al. Preparation of curcumin nanoparticles by protein hydrolysates and polysaccharids and its stabilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 296-302. (in Chinese with English abstract)
[24] Yu H, Huang Q. Investigation of the absorption mechanism of solubilized curcumin using Caco-2 cell monolayers[J]. Journal of Agricultural & Food Chemistry, 2011, 59(17): 9120-9126.
[25] Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions[J]. Journal of Agricultural & Food Chemistry, 2012, 60(21): 5373-5382.
[26] 楊寶玲,陳燁. 玉米淀粉-辛烯基琥珀酸淀粉酯制備亞麻油微膠囊[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7): 364-368.Yang Baoling, Chen Ye. Preparation of linseed oil microcapsules by starch octenyl succinate-maize starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010,26(7): 364-368. (in Chinese with English abstract)
[27] Sun Q, Li G, Dai L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry, 2014, 162(11): 223-228.
[28] Aditya N P, Yang H, Kim S, et al. Fabrication of amorphous curcumin nanosuspensions using-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids & Surfaces B Biointerfaces, 2015, 127: 114-121.
[29] Gomand S V, Lamberts L, Grommes C J, et al. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites[J]. Biomacromolecules, 2012, 13(5): 1361-1370.
[30] 馮濤,曾小蘭,張鈺,等. 短鏈葡聚糖包合姜黃素的分子機(jī)制[J]. 現(xiàn)代食品科技,2018, 34(10):111-116. Feng Tao, Zeng Xiaolan, Zhang Yu, et al. Green preparation of short glucan chain and its inclusion behavior of molecular dynamics simulation behavior with curcumin[J]. Modern Food Science and Technology, 2018, 34(10): 111-116. (in Chinese with English abstract)
[31] Marsh M R A, Waight M S G. The Effect of pH on the Zeta Potential of Wheat and Potato Starch[J]. Starch‐St?rke, 1982, 34(5): 149-152.
[32] Liu D, Wu Q, Chen H, et al. Transitional properties of starch colloid with particle size reduction from micro- to nanometer [J]. Journal of Colloid & Interface Science, 2009, 339(1): 117.
[33] Heiati H, Phillips N C, Tawashi R. Evidence for Phospholipid Bilayer Formation in Solid Lipid Nanoparticles Formulated with Phospholipid and Triglyceride[J]. Pharmaceutical Research, 1996, 13(9): 1406-1410.
[34] Kim H Y, Han J A, Kweon D K, et al. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxymaize starch[J]. Carbohydrate Polymers, 2013, 93(2): 582-588.
[35] Sihem Bel Haaj, Magnin Albert. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers, 2013, 92(2): 1625.
[36] Mansaray K G, Ghaly A E. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis[J]. Biomass & Bioenergy, 1999, 17(1): 19-31.
[37] 苑春苗, 李暢,李剛,等. 氮?dú)鈿夥障掠衩椎矸蹮岱纸鈩?dòng)力學(xué)參數(shù)[J]. 東北大學(xué)學(xué)報(bào): 自然科學(xué)版, 2012, 33(4): 584-587. Yuan Chunmiao, Li Chang, Li Gang, et al. Kinetic parameters of thermal decomposition of corn starch under nitrogen atmosphere[J]. Journal of Northeastern University: Natural Science Edition, 2012, 33(4): 584-587. (in Chinese with English abstract)
Preparation and structure characterization of short glucan chain-curcumin nano-emulsion
Feng Tao1, Zeng Xiaolan1, Wang Ke2, Osvaldo Campanella3
(1.201418,; 2.214000; 3.43845)
In order to solve the problem of curcumin’s low biological value in food and drug, the helical space structure of the short glucan chains with a short DP (degree of polymerization) was induced to embed the water insolubility curcumin and to enhance its biological value. This article introduced a way how to make short glucan chains and use short glucan chains to encapsulate with curcumin to make inclusion complexes and nano-emulsions. Short glucan chains were obtained by pullanase’s enzymatic hydrolysis, which came out successfully by the verification of XRD (X-ray diffraction) results. The inclusion complexes were made by mixing, but its poor encapsulation efficiency and loading content were about 28.46% and 1.27%, separately. Short glucan chain-curcumin nano-emulsions were produced by emulsification and shearing to improve the embedding rate and drug loading, using the Hi-shear dispersing emulsifier with D-speed shearing solution for 5 min to get SGC-CUR nano-emulsion, and the nano-homogenizer was used to homogenize the sheared emulsion twice under a pressure of 50 MPa to prepare the emulsion. High embedding rate and drug loading were produced by making curcumin-short glucan chain into nano-emulsions, and we got a good result of embedding rate and drug loading: 71.11% and 12.07%, respectively. Popular methods as SEM (scanning electron microscopy), TGA (thermogravimetric analysis), Zeta etc. were measured to analysis stability, water solubility and structure characterization. Curcumin’s solubility was not only increased by adding emulsifier but also by interaction behaviors between short glucan chains and curcumin, which stop crystal’s growing and kept amorphous state to enhance its solubility. From SEM we knew that the short glucan chain-curcumin had rough surface because of the enzymatic hydrolysis, partially cracked and stuck together, this phenomenon was almost the same with former studies that starch nanoparticles were adhered. As for nano-emulsions’ Zeta potential were below 20 mV which means it has a low stability and has a room to improve, this result was same with the picture showed at the 7thday that the emulsion slowly began to stratify. The nano-emulsion particle size changed from 238.33 to 170.87 nm when fewer emulsifier were added, probably because of more water/oil interface had produced, which supported the formation of smaller droplets. The PDI (particle size distribution index) of nano-emulsions was all less than 0.3, which means the particle size distribution followed a uniform distribution pattern. The process greatly improved the solubility of curcumin, increased the stability of curcumin, and provided a suitable way for the medical field to find better embedding of curcumin wall materials.
emulsions; nanocomposites; microstructure; waxy corn starch; short chain glucan; pullulanase; curcumin; nano-emulsions
2018-07-25
2018-12-03
上海市曙光項(xiàng)目計(jì)劃(2015SG1)
馮 濤,教授,工學(xué)博士,主要從事變性淀粉的相關(guān)研究。 Email:fengtao@sit.edu.cn
10.11975/j.issn.1002-6819.2019.01.037
TS231
A
1002-6819(2019)-01-0303-07
馮 濤,曾小蘭,王 珂,Osvaldo Campanella. 短鏈葡聚糖-姜黃素納米乳液的制備及結(jié)構(gòu)表征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):303-309. doi:10.11975/j.issn.1002-6819.2019.01.037 http://www.tcsae.org
Feng Tao, Zeng Xiaolan, Wang Ke, Osvaldo Campanella. Preparation and structure characterization of short glucan chain-curcumin nano-emulsion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 303-309. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.037 http://www.tcsae.org