国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

大載體轉(zhuǎn)染豬胎兒成纖維細(xì)胞的電轉(zhuǎn)條件優(yōu)化

2019-02-20 05:37:06鐘翠麗李國(guó)玲王豪強(qiáng)莫健新全絨張獻(xiàn)偉李紫聰吳珍芳顧婷蔡更元
關(guān)鍵詞:超螺旋質(zhì)粒脈沖

鐘翠麗,李國(guó)玲,王豪強(qiáng),莫健新,全絨,張獻(xiàn)偉,李紫聰,吳珍芳,,顧婷,蔡更元,

?

大載體轉(zhuǎn)染豬胎兒成纖維細(xì)胞的電轉(zhuǎn)條件優(yōu)化

鐘翠麗1,李國(guó)玲1,王豪強(qiáng)1,莫健新1,全絨1,張獻(xiàn)偉2,李紫聰1,吳珍芳1,2,顧婷1,蔡更元1,2

(1華南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院/國(guó)家生豬種業(yè)工程研究中心,廣州 510642;2溫氏食品集團(tuán)股份有限公司,廣東新興 527400)

【背景】隨著生物技術(shù)發(fā)展,研究的生理機(jī)制和生物功能日益復(fù)雜,提高大載體的轉(zhuǎn)染效率對(duì)多基因共表達(dá)系統(tǒng)、基因編輯技術(shù)、轉(zhuǎn)基因育種等具有重要的意義。在轉(zhuǎn)基因育種中,使用的轉(zhuǎn)基因載體相對(duì)較大,而且轉(zhuǎn)基因動(dòng)物的制備效率也與供體細(xì)胞豬胎兒成纖維(porcine Fetal Fibroblasts,PFFs)細(xì)胞的轉(zhuǎn)染效率有關(guān)?!灸康摹垦芯恐饕獜霓D(zhuǎn)染參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)三方面,比較3種電轉(zhuǎn)儀ECM?830/NEPA 21/NucleofectorTM2b的大載體轉(zhuǎn)染效率,以探索大載體轉(zhuǎn)染PFFs的最佳條件?!痉椒ā渴褂?種不同電轉(zhuǎn)儀將長(zhǎng)達(dá)26 kb的攜帶增強(qiáng)型綠熒光蛋白基因的pPXAT-EGFP質(zhì)粒轉(zhuǎn)染1×106個(gè)PFFs,48 h后使用流式細(xì)胞儀測(cè)定熒光細(xì)胞比例,從電轉(zhuǎn)參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)三方面分別比較瞬時(shí)轉(zhuǎn)染效率。【結(jié)果】首先比較電轉(zhuǎn)儀不同參數(shù)的轉(zhuǎn)染效率,結(jié)果顯示當(dāng)電轉(zhuǎn)參數(shù)為脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖間隔50 ms,脈沖次數(shù)3次,NEPA 21轉(zhuǎn)染PFFs的效率最高,為13.24%±1.63%,而NucleofectorTM2b的最佳電轉(zhuǎn)參數(shù)為U-023,其轉(zhuǎn)染效率高達(dá)46.36%±3.95%。然后在最佳電轉(zhuǎn)參數(shù)下分別比較6、8、10和12 μg的26 kb超螺旋質(zhì)粒的轉(zhuǎn)染效率,ECM?830和NucleofectorTM2b轉(zhuǎn)染PFFs的最佳質(zhì)粒用量為12 μg,其轉(zhuǎn)染效率分別為8.44%±0.90%(電轉(zhuǎn)參數(shù):脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖次數(shù)3 次)和14.63%±3.21%(電轉(zhuǎn)參數(shù):U-023),而NEPA 21使用10 μg質(zhì)粒轉(zhuǎn)染PFFs時(shí)效率達(dá)到最高(6.09%±0.72%)。最后比較不同質(zhì)粒拓?fù)浣Y(jié)構(gòu)的轉(zhuǎn)染效率,結(jié)果顯示線性化質(zhì)粒的轉(zhuǎn)染效率較低,僅為超螺旋質(zhì)粒轉(zhuǎn)染效率的34.96%—48.39%。【結(jié)論】因此NucleofectorTM2b轉(zhuǎn)染PFFs的最佳條件為:U-023程序、12 μg超螺旋質(zhì)粒;NEPA 21為:脈沖電壓200 V,脈沖長(zhǎng)度3 ms,脈沖間隔50 ms,脈沖次數(shù)3次、10 μg超螺旋質(zhì)粒;ECM?830則在脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖次數(shù)3 次條件下轉(zhuǎn)染12 μg超螺旋質(zhì)粒可獲得最佳轉(zhuǎn)染效率。綜合比較上述3種電轉(zhuǎn)儀,26 kb大載體轉(zhuǎn)染PFFs的最佳電轉(zhuǎn)儀是NucleofectorTM2b。

電轉(zhuǎn)染;大載體;豬胎兒成纖維細(xì)胞;ECM?830;NEPA 21;NucleofectorTM2b

0 引言

【研究意義】為滿足日益復(fù)雜的生物研究需求,運(yùn)用的載體分子量越來(lái)越大(如本試驗(yàn)所用到26 kb載體),其主要原因有以下兩點(diǎn):(1)載體中兩側(cè)同源臂較大:運(yùn)用同源重組的原理,需要在載體上根據(jù)靶點(diǎn)上下序列設(shè)計(jì)約600—6 000 bp兩側(cè)同源臂以定點(diǎn)敲入外源DNA[1-3];(2)多基因共表達(dá)的應(yīng)用:多基因共表達(dá)系統(tǒng)能夠滿足研究復(fù)雜的生理機(jī)制和實(shí)現(xiàn)多種生物功能的需求,在腫瘤多基因治療和蛋白工程等方面具有重大的應(yīng)用價(jià)值。目前主要提高經(jīng)濟(jì)性質(zhì)的轉(zhuǎn)基因模型載體都在10 kb以上,如腮腺生物反應(yīng)器的轉(zhuǎn)基因載體[4]。因此優(yōu)化大載體轉(zhuǎn)染條件對(duì)多基因共表達(dá)系統(tǒng)、基因編輯、轉(zhuǎn)基因育種等具有重要的意義?!厩叭搜芯窟M(jìn)展】轉(zhuǎn)基因豬的制備效率與大載體轉(zhuǎn)染供體細(xì)胞PFFs的效率有關(guān),大載體轉(zhuǎn)染至PFFs后外源基因可通過(guò)隨機(jī)整合和定點(diǎn)整合兩種基因整合方式制備轉(zhuǎn)基因動(dòng)物。隨機(jī)整合如系統(tǒng)具有基因轉(zhuǎn)移能力強(qiáng)、整合效率高、轉(zhuǎn)基因穩(wěn)定表達(dá)和遺傳等優(yōu)點(diǎn),而且整合位點(diǎn)相對(duì)安全[5-8]。據(jù)統(tǒng)計(jì)48.8%的整合位點(diǎn)位于已注釋的基因位點(diǎn)[9];而杜新華等(2013)獲得的8個(gè)轉(zhuǎn)座子的有效整合位點(diǎn)中有5個(gè)位于?;蚪M的非調(diào)控區(qū)內(nèi)[10]。因此可借助增強(qiáng)型綠色熒光蛋白(enhanced green fluorescent protein, EGFP)基因報(bào)告載體和系統(tǒng)獲得有效整合位點(diǎn),分析外源基因的表達(dá)效果和對(duì)內(nèi)源基因表達(dá)的影響等以評(píng)估位點(diǎn)的安全性[11]。而基于同源重組的定點(diǎn)整合技術(shù)整合效率較低,效率僅0.5%—20%,可選的安全位點(diǎn)較少,主要以為靶點(diǎn)插入外源基因制備轉(zhuǎn)基因動(dòng)物,如小鼠[12]、羊[13]、豬[11, 14],對(duì)20 kb以上的大片段定點(diǎn)整合仍存在極大的技術(shù)難度。目前轉(zhuǎn)染方法主要有碳酸鈣化學(xué)法、脂質(zhì)體轉(zhuǎn)染法和電穿孔法等。雖然有研究人員通過(guò)脂質(zhì)體法和碳酸鈣法可獲得陽(yáng)性PFFs細(xì)胞,但是碳酸鈣轉(zhuǎn)染效率低,脂質(zhì)體轉(zhuǎn)染法細(xì)胞毒性大[15]。而電穿孔法主要將額外加入的遺傳物質(zhì)從電擊形成的瞬時(shí)孔隙導(dǎo)入細(xì)胞膜甚至細(xì)胞核內(nèi)的一種轉(zhuǎn)染方式,這種方式快速簡(jiǎn)易、毒性低、而且轉(zhuǎn)染效率相對(duì)較高,約30%—90%[16-18]。故相比之下,電穿孔法更適合大載體轉(zhuǎn)染PFFs。市面上電轉(zhuǎn)儀種類繁多,如ECM?830、NEPA 21和NucleofectorTM2b等。ECM?830具有方形波電穿孔系統(tǒng),通過(guò)擊穿細(xì)胞膜將質(zhì)粒導(dǎo)入細(xì)胞質(zhì)內(nèi)來(lái)實(shí)現(xiàn)高效轉(zhuǎn)染,而NEPA 21和 Nucleofector?2b均能擊穿細(xì)胞膜及核膜。三者相比,ECM?830轉(zhuǎn)染成本較低;NEPA 21不需要特殊轉(zhuǎn)染試劑盒,多數(shù)用于活體轉(zhuǎn)染[19-20],甚少用于體外轉(zhuǎn)染,Ishino等[21]使用NEPA 21成功轉(zhuǎn)染牛耳成纖維細(xì)胞,但效率很低(0.35%)。Nucleofector?2b雖然根據(jù)細(xì)胞類型使用專用轉(zhuǎn)染試劑盒,但無(wú)需自行摸索電轉(zhuǎn)條件?!颈狙芯壳腥朦c(diǎn)】研究表明上述3種電轉(zhuǎn)儀轉(zhuǎn)染PFFs的小載體(10 kb以內(nèi))轉(zhuǎn)染效率可以達(dá)到50%以上[16-17, 22],但大載體轉(zhuǎn)染PFFs的效率較低,且相關(guān)研究甚少,因此可通過(guò)優(yōu)化電轉(zhuǎn)儀(如ECM?830、NEPA 21和Nucleofector?2b)、電轉(zhuǎn)參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)的轉(zhuǎn)染條件來(lái)提高大載體轉(zhuǎn)染PFFs的效率,為新型轉(zhuǎn)基因環(huán)保豬的制備提供參考?!緮M解決的關(guān)鍵問(wèn)題】本文比較上述3種常用電轉(zhuǎn)儀的電轉(zhuǎn)參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)對(duì)26 kb質(zhì)粒轉(zhuǎn)染PFFs的影響,以尋找針對(duì)豬胎兒成纖維細(xì)胞的更高效、合適的大載體轉(zhuǎn)染條件,為多基因共表達(dá)系統(tǒng)、基因編輯、轉(zhuǎn)基因育種等的應(yīng)用提供參考。

1 材料與方法

1.1 材料

電轉(zhuǎn)儀:ECM?830(BTX,美國(guó));Nucleofector?2b(LONZA,德國(guó));NEPA 21(NEPA GENE,日本)。PFFs細(xì)胞:由廣東溫氏食品集團(tuán)股份有限公司提供。質(zhì)粒pPXAT-EGFP(26 kb):由國(guó)家生豬種業(yè)工程技術(shù)研究中心提供。

1.2 試驗(yàn)時(shí)間和地點(diǎn)

2016年7月廣東省廣州市華南農(nóng)業(yè)大學(xué)國(guó)家生豬種業(yè)工程技術(shù)研究中心。

1.3 方法

1.3.1 質(zhì)粒準(zhǔn)備 pPXAT-EGFP質(zhì)粒依照Endo-free Plasmid Maxi Kit(Omega,美國(guó))說(shuō)明書進(jìn)行抽提,取部分超螺旋質(zhì)粒使用FastDigest?I(Thermo Scientific,美國(guó))進(jìn)行酶切線性化,純化回收備用(圖1)。

1.3.2 電轉(zhuǎn)染 將PFFs細(xì)胞于39℃、12%胎牛血清(Fetal bovine serum,F(xiàn)BS)的DMEM完全培養(yǎng)基中培養(yǎng)至融合度至80%—90%,胰酶消化后取1×106個(gè)細(xì)胞懸液至新的離心管中,棄上清,根據(jù)不同試驗(yàn)分組添加電轉(zhuǎn)預(yù)混液(由電轉(zhuǎn)液和質(zhì)粒組成的,不電轉(zhuǎn)的空白組以相應(yīng)體積的電轉(zhuǎn)液代替電轉(zhuǎn)預(yù)混液),輕柔打散成單細(xì)胞懸浮液,全部轉(zhuǎn)至無(wú)菌的2 mm間距電轉(zhuǎn)杯中,根據(jù)不同電轉(zhuǎn)參數(shù)進(jìn)行電轉(zhuǎn),然后轉(zhuǎn)移至含有12% FBS的DMEM完全培養(yǎng)基6孔板,置于39℃,5% CO2的培養(yǎng)箱中培養(yǎng)。電轉(zhuǎn)6 h后更換成含有1×青鏈霉素(penicillin-streptomycin solution,PS)、12% FBS的DMEM完全培養(yǎng)基繼續(xù)培養(yǎng)。電轉(zhuǎn)48 h后0.05%胰酶消化,90×g離心5 min,添加1 mL/孔PBS重懸后用流式細(xì)胞儀檢測(cè)轉(zhuǎn)染效率[轉(zhuǎn)染效率=(綠色熒光細(xì)胞/細(xì)胞總數(shù))×100%]。

圖1 pPXAT-EGFP質(zhì)粒圖譜

1.3.3 電轉(zhuǎn)參數(shù)優(yōu)化 ECM?830電轉(zhuǎn)PFFs的最佳電轉(zhuǎn)參數(shù)可參考Ross等[18]研究結(jié)果(脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖次數(shù)3次),而NEPA 21和Nucleofector?2b轉(zhuǎn)染PFFs細(xì)胞的電轉(zhuǎn)參數(shù)有待優(yōu)化。

為獲得NEPA 21最佳電轉(zhuǎn)參數(shù),分別采用廣州市華粵行儀器有限公司(NEPA 21供貨商)提供的4種電轉(zhuǎn)參數(shù)轉(zhuǎn)染PFFs,即分為4個(gè)處理組(NEPA-1、NEPA-2、NEPA-3和NEPA-4,表1)和一個(gè)空白組(不電轉(zhuǎn),100 μL NEPA電轉(zhuǎn)液代替電轉(zhuǎn)預(yù)混液),每個(gè)組3個(gè)重復(fù),其他電轉(zhuǎn)步驟及檢測(cè)見1.3.2。此外,NEPA 21電轉(zhuǎn)參數(shù)見表1,其電轉(zhuǎn)預(yù)混液由100 μL NEPA 21電轉(zhuǎn)液和8 μg質(zhì)粒組成,而NEPA 21電轉(zhuǎn)液為無(wú)血清Opti-MEM。

NucleofectorTM2b則選取文獻(xiàn)報(bào)道中適用于PFFs的電轉(zhuǎn)參數(shù)進(jìn)行優(yōu)化[17],即分為2個(gè)處理組(LONZA-A:A-033和LONZA-U:U-023,表2)和一個(gè)空白組(不電轉(zhuǎn),100 μL NucleofectorTM2b電轉(zhuǎn)液代替電轉(zhuǎn)預(yù)混液),每個(gè)處理組重復(fù)3次,其他電轉(zhuǎn)步驟及檢測(cè)見1.3.2。此外,NucleofectorTM2b電轉(zhuǎn)參數(shù)為A-033和U-023,其電轉(zhuǎn)預(yù)混液由100 μL NucleofectorTM2b電轉(zhuǎn)液和8 μg質(zhì)粒組成,而 NucleofectorTM2b電轉(zhuǎn)液則來(lái)自電轉(zhuǎn)試劑盒Basic Nucleofector Kit for Primary Mammalian Fibroblasts (Amaxa,德國(guó))中Nucleofector?Solution 和supplement按比例4.5﹕1混合的液體。

表1 NEPA21的穿孔脈沖參數(shù)

NEPA 21電轉(zhuǎn)參數(shù)參考分為兩部分:轉(zhuǎn)移脈沖和穿孔脈沖,其中轉(zhuǎn)移脈沖參數(shù)不變(脈沖電壓20 V,脈沖長(zhǎng)度50 ms,脈沖間隔50 ms,脈沖次數(shù)5次,電壓衰減幅度40%,電極+/-)。上述4種電轉(zhuǎn)參數(shù)由NEPA 21供貨商廣州市華粵行儀器有限公司提供。NEPA 21電轉(zhuǎn)液為無(wú)血清Opti-MEM

The electroporation parameter of NEPA 21 is divided into two parts: transfer pulse and poring pulse. The transfer pulse remains fixed(pulse voltage of 20 V, pulse length50 ms , pulse interval 50 ms, pulse number 5 times, Voltage attenuation range 40% , + / -). And the above 4 kinds of poring pulse are provided by Guangzhou Hua Yue Enterprise Holdings Ltd which is the supplier of NEPA 21. In addition, the transfection mixture of NEPA 21 is Opti-MEM without serum

表2 優(yōu)化Nucleofector? 2b電轉(zhuǎn)參數(shù)的試驗(yàn)分組

1)A-033;2)U-023;3)Nucleofector?2b的電轉(zhuǎn)液由電轉(zhuǎn)試劑盒Basic Nucleofector Kit for Primary Mammalian Fibroblasts(Amaxa,德國(guó))中Nucleofector?Solution 和supplement(4.5﹕1)

1)A-033;2)U-023;3)The transfection mixture of Nucleofector?2b is composed of Nucleofector?Solution and supplement(4.5﹕1) whcih is from Basic Nucleofector Kit for Primary Mammalian Fibroblasts(Amaxa, Germany)

1.3.4 優(yōu)化質(zhì)粒用量 使用上述優(yōu)化的NEPA 21和Nucleofector?2b電轉(zhuǎn)儀參數(shù),及ECM?830電轉(zhuǎn)參數(shù)(脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖次數(shù)3次)[18],分別使用6、8、10和12 μg的超螺旋質(zhì)粒進(jìn)行轉(zhuǎn)染,即根據(jù)電轉(zhuǎn)儀分為3個(gè)處理組(ECM?830、NEPA 21和Nucleofector?2b)和對(duì)應(yīng)的3個(gè)空白組(不電轉(zhuǎn),相應(yīng)電轉(zhuǎn)液代替電轉(zhuǎn)預(yù)混液),每個(gè)處理組根據(jù)質(zhì)粒用量分為4個(gè)小組(6、8、10和12 μg的超螺旋質(zhì)粒),每個(gè)處理小組重復(fù)3次,電轉(zhuǎn)步驟及檢測(cè)見1.3.2。此外ECM?830電轉(zhuǎn)預(yù)混液由200 μL的ECM?830電轉(zhuǎn)液和質(zhì)粒組成,其中電轉(zhuǎn)液是25% Opti-MEM和75% cytosalts(120 mmol·L-1KCl,0.15 mmol·L-1CaCl2,10 mmol·L-1K2HPO4;pH 7.6,5 mmol·L-1MgCl2)的混合液[18]。

1.3.5 質(zhì)粒拓?fù)浣Y(jié)構(gòu)的影響 使用3種電轉(zhuǎn)儀的最優(yōu)電轉(zhuǎn)參數(shù)和摸索的最適質(zhì)粒用量,分別使用超螺旋和線性化的質(zhì)粒進(jìn)行轉(zhuǎn)染,即根據(jù)電轉(zhuǎn)儀分為3個(gè)處理組(ECM?830、NEPA 21和Nucleofector?2b)和對(duì)應(yīng)的3個(gè)空白組(不電轉(zhuǎn),相應(yīng)電轉(zhuǎn)液代替電轉(zhuǎn)預(yù)混液),每個(gè)處理組根據(jù)質(zhì)粒分子結(jié)構(gòu)分為2個(gè)小組(超螺旋質(zhì)粒和線性化質(zhì)粒),每個(gè)處理小組重復(fù)3次,電轉(zhuǎn)步驟及檢測(cè)見1.3.2。

1.3.6 比較電轉(zhuǎn)儀的轉(zhuǎn)染效率 根據(jù)上述探索的ECM?830,NEPA 21和Nucleofector?2b的最佳電轉(zhuǎn)條件(電轉(zhuǎn)參數(shù)、質(zhì)粒用量和結(jié)構(gòu))轉(zhuǎn)染PFFs以探索電轉(zhuǎn)儀對(duì)轉(zhuǎn)染效率的影響,即分為3個(gè)處理組和對(duì)應(yīng)的3個(gè)空白組(不電轉(zhuǎn),相應(yīng)電轉(zhuǎn)液代替電轉(zhuǎn)預(yù)混液),每個(gè)處理組重復(fù)3次,電轉(zhuǎn)步驟及檢測(cè)見1.3.2。

1.3.7 統(tǒng)計(jì)學(xué)處理 采用 SPSS 18軟件進(jìn)行單因素分析(Duncan)。數(shù)據(jù)以 Mean ± SD表示,顯著性水平<0. 05則表示差異有統(tǒng)計(jì)學(xué)顯著性意義。

2 結(jié)果

2.1 不同電轉(zhuǎn)參數(shù)的比較

分別在不同的電轉(zhuǎn)參數(shù)下以8 μg質(zhì)粒轉(zhuǎn)染PFFs,研究結(jié)果表明NEPA 21的最佳電轉(zhuǎn)參數(shù)為NEPA-4(脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖間隔50 ms,脈沖次數(shù)3次),轉(zhuǎn)染效率為13.24%±1.63%(>0.05,圖2-A)。在Nucleofector?2b的最佳電轉(zhuǎn)參數(shù)為U-023,其轉(zhuǎn)染效率高達(dá)46.36%±3.95%(<0.05,圖2-B)。

A:4種NEPA21電轉(zhuǎn)參數(shù)的轉(zhuǎn)染效率比較,NEPA-1~NEPA-4的電轉(zhuǎn)參數(shù)見表2;B:2種Nucleofector? 2b電轉(zhuǎn)參數(shù)的轉(zhuǎn)染效率比較,LONZA-A:A-033;LONZA-U:U-023

2.2 不同質(zhì)粒用量的比較

在最佳電轉(zhuǎn)參數(shù)下使用3種電轉(zhuǎn)儀分別轉(zhuǎn)染6、8、10和12 μg的26 kb超螺旋質(zhì)粒。由圖3可知當(dāng)質(zhì)粒用量為12 μg時(shí),ECM?830和Nucleofector?2b轉(zhuǎn)染效率最高,分別為8.44%±0.90%(<0.05)和14.63%±3.21%(>0.05)。而NEPA 21使用10 μg質(zhì)粒轉(zhuǎn)染PFFs時(shí)效率達(dá)到最高(6.09%±0.72%),但與12 μg質(zhì)粒的轉(zhuǎn)染效率差異不顯著(5.12%±1.96%,>0.05)。

2.3 不同質(zhì)粒拓?fù)浣Y(jié)構(gòu)的比較

在上述摸索的最佳參數(shù)下ECM?830,NEPA 21和Nucleofector?2b分別將12 μg超螺旋和線性化質(zhì)粒轉(zhuǎn)染PFFs細(xì)胞。結(jié)果顯示3種電轉(zhuǎn)儀分別使用超螺旋和線性化質(zhì)粒的轉(zhuǎn)染效率為:16.18%±1.45%和7.83%±1.27%;5.64%±1.12%和2.20%±0.23%;33.15%±1.30%和11.59%±1.20%(圖4)。由此可知線性化質(zhì)粒的轉(zhuǎn)染效率為顯著低于其超螺旋結(jié)構(gòu)(<0.05),且僅為超螺旋質(zhì)粒轉(zhuǎn)染效率的34.96%—48.39%。

2.4 不同電轉(zhuǎn)儀的比較

在最佳電轉(zhuǎn)參數(shù)下比較ECM?830、NEPA 21和Nucleofector?2b轉(zhuǎn)染12 μg超螺旋質(zhì)粒的效率。結(jié)果顯示3種電轉(zhuǎn)儀的轉(zhuǎn)染效率分別為:16.18%±1.45%、5.64%±1.12%和33.15%±1.30%,即3種電轉(zhuǎn)儀中Nucleofector?2b轉(zhuǎn)染PFFs的轉(zhuǎn)染效率最高(圖5)。

BTX:ECM? 830的最佳電轉(zhuǎn)參數(shù)(脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖次數(shù)3次);NEPA-4:NEPA 21的最佳電轉(zhuǎn)參數(shù)(脈沖電壓200 V,脈沖長(zhǎng)度3 ms,脈沖間隔50 ms,脈沖次數(shù)3次); LONZA-U:Nucleofector? 2b的最佳電轉(zhuǎn)參數(shù)(U-023)

BTX:ECM? 830的最佳電轉(zhuǎn)參數(shù)(脈沖電壓300 V,脈沖長(zhǎng)度1 ms,脈沖次數(shù)3次);NEPA-4:NEPA 21的最佳電轉(zhuǎn)參數(shù)(脈沖電壓200 V,脈沖長(zhǎng)度3 ms,脈沖間隔50 ms,脈沖次數(shù)3次); LONZA-U:Nucleofector? 2b的最佳電轉(zhuǎn)參數(shù)(U-023)

3 討論

市面上電轉(zhuǎn)儀種類繁多,除了使用廣泛的ECM?830以外,還出現(xiàn)了很多轉(zhuǎn)染效率高的新型電轉(zhuǎn)儀,如NEPA 21和NucleofectorTM2b,本研究主要是與ECM?830相比,探索新型電轉(zhuǎn)儀轉(zhuǎn)染PFFs的效果并優(yōu)化大載體轉(zhuǎn)染條件。ECM?830轉(zhuǎn)染條件借鑒Ross等[18]研究,文獻(xiàn)結(jié)果顯示在優(yōu)化的轉(zhuǎn)染參數(shù)下將2.5 μg/200 μL的5.8 kb超螺旋質(zhì)粒電轉(zhuǎn)1×106個(gè)PFFs,其最高轉(zhuǎn)染效率在70%左右。據(jù)報(bào)道使用NEPA 21將7 μg/100 μL的9 kb環(huán)狀質(zhì)粒轉(zhuǎn)染至牛耳成纖維細(xì)胞,其轉(zhuǎn)染效率僅為0.35%[21]。而Nakayama等[17]使用Nucleofector?2b的U-023程序轉(zhuǎn)染3.5 kb超螺旋質(zhì)粒,PFFs的轉(zhuǎn)染效率為79%。

相比之下,本試驗(yàn)結(jié)果顯示26 kb質(zhì)粒轉(zhuǎn)染至PFFs的轉(zhuǎn)染效率最高僅為46.36%±3.95%(Nucleofector?2b),NEPA 21的效率不足10%,而ECM?830在Ross等[18]優(yōu)化的電轉(zhuǎn)參數(shù)下轉(zhuǎn)染26 kb超螺旋質(zhì)粒的效率低于16%,而明顯低于上述小載體的轉(zhuǎn)染效率,表明質(zhì)粒大小與轉(zhuǎn)染效率成反比的關(guān)系。本試驗(yàn)還探索不同拓?fù)浣Y(jié)構(gòu)的質(zhì)粒對(duì)轉(zhuǎn)染效率的影響,結(jié)果顯示超螺旋質(zhì)粒轉(zhuǎn)染PFFs的效率高于線性化質(zhì)粒效率的兩倍(圖4),這可能由于線性質(zhì)粒的空間位阻較大[23]。而且有報(bào)道顯示超螺旋質(zhì)粒和線性化質(zhì)粒的細(xì)胞死亡率和轉(zhuǎn)染效率分別為:15%和35%、76%和11%[24]。推測(cè)線性化質(zhì)粒對(duì)細(xì)胞的毒性較大,很可能影響后期豬體細(xì)胞克隆效率,因此超螺旋質(zhì)粒更利于轉(zhuǎn)染。

此外,電轉(zhuǎn)儀也是顯著影響轉(zhuǎn)染效率的一個(gè)重要因素。3種電轉(zhuǎn)儀相比,Nucleofector?2b的轉(zhuǎn)染效率顯著高于ECM?830和NEPA 21(圖5),而且應(yīng)用于小載體轉(zhuǎn)染時(shí)效率亦可高達(dá)79%,這可能由于Nucleofector?2b的電流同時(shí)擊穿細(xì)胞膜和細(xì)胞核膜更利于外源遺傳物質(zhì)轉(zhuǎn)染。因此轉(zhuǎn)染26 kb大載體的最佳電轉(zhuǎn)儀是Nucleofector?2b,而且被廣泛大量運(yùn)用于轉(zhuǎn)染成纖維細(xì)胞以制備轉(zhuǎn)基因動(dòng)物。結(jié)合鐘翠麗等[22]研究結(jié)果認(rèn)為電轉(zhuǎn)成本較低且轉(zhuǎn)染效率高達(dá)90%的ECM?830、ECM?2001等電轉(zhuǎn)儀更適合小載體轉(zhuǎn)染PFFs。此外ECM?830還具有對(duì)細(xì)胞損傷小的優(yōu)勢(shì),如圖4-A中雖然ECM?830轉(zhuǎn)染12 μg線性化質(zhì)粒的效率低于NEPA 21和Nucleofector?2b,但是存活率較高且熒光細(xì)胞總數(shù)相對(duì)較多。最后,NEPA 21在本試驗(yàn)中應(yīng)用于轉(zhuǎn)染PFFs,26 kb超螺旋質(zhì)粒的轉(zhuǎn)染效率較低(4%—13%),而7.6 kb超螺旋質(zhì)粒的效率可達(dá)80%以上[22]。相比之下,NEPA 21不適合大載體轉(zhuǎn)染PFFs。

本試驗(yàn)主要通過(guò)優(yōu)化電轉(zhuǎn)參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)等條件以提高大載體轉(zhuǎn)染效率,對(duì)多基因共表達(dá)系統(tǒng)、基因編輯和轉(zhuǎn)基因育種等的應(yīng)用具有重要的意義。大載體的低轉(zhuǎn)染效率是上述技術(shù)的難點(diǎn)之一,因此除了通過(guò)探索電轉(zhuǎn)條件,還可以通過(guò)降低載體大小來(lái)提高轉(zhuǎn)染效率。結(jié)合本試驗(yàn)結(jié)果及前人研究提出以下策略:(1)構(gòu)建單啟動(dòng)子表達(dá)多基因或無(wú)啟動(dòng)子基因打靶載體,其中單啟動(dòng)子載體需要選擇一個(gè)強(qiáng)啟動(dòng)子以啟動(dòng)多個(gè)基因表達(dá),而無(wú)啟動(dòng)子基因載體則是借助內(nèi)源啟動(dòng)子實(shí)現(xiàn)多基因表達(dá)[25-26];(2)運(yùn)用IRES和2A序列等元件構(gòu)建多順?lè)醋覽27-28];(3)縮短同源臂長(zhǎng)度(短至300 bp)[29],能大幅度降低載體負(fù)載量,有利于提高轉(zhuǎn)染效率,或運(yùn)用同源臂長(zhǎng)度僅5—25 bp的微同源重組技術(shù)[30]。

4 結(jié)論

針對(duì)目前大載體轉(zhuǎn)染PFFs的效率較低且優(yōu)化轉(zhuǎn)染條件的研究甚少的情況,本研究通過(guò)在不同的電轉(zhuǎn)儀(ECM?830/NEPA 21/Nucleofector?2b)、電轉(zhuǎn)參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)的條件下轉(zhuǎn)染PFFs以優(yōu)化大載體的轉(zhuǎn)染條件,為多基因共表達(dá)系統(tǒng)、基因編輯、轉(zhuǎn)基因育種等提供參考數(shù)據(jù)。本研究結(jié)果顯示3種電轉(zhuǎn)儀中,Nucleofector?2b是大載體轉(zhuǎn)染PFFs的理想電轉(zhuǎn)儀,且在U-023的程序下轉(zhuǎn)染12 μg的26 kb超螺旋質(zhì)粒時(shí)可達(dá)到最高轉(zhuǎn)染效率。

[1] RUAN J, LI H, XU K, WU T, WEI J, ZHOU R, LIU Z, MU Y, YANG S, OUYANG H, CHEN-TSAI R Y, LI K. Highly efficient CRISPR/Cas9-mediated transgene knock in at the H11 locus in pigs., 2015, 5: 14253.

[2] 王金霞, 徐影琪, 魏政立, 楊葳, 張梅英, 鄭志紅. 一種能實(shí)現(xiàn)蛋白可逆表達(dá)的敲入載體構(gòu)建方法. 遼寧農(nóng)業(yè)科學(xué), 2016(4): 27-32.

WANG J X, XU Y Q, WEI Z L, YANG W, ZHANG M Y, ZHENG Z H. A method of constructing a knock-in vector which can achieve reversible protein expression.2016(4): 27-32. (in Chinese)

[3] 張駒. CRISPR/Cas9系統(tǒng)介導(dǎo)羊MSTN基因敲除和定點(diǎn)整合fat-1基因的研究[D]. 呼和浩特: 內(nèi)蒙古大學(xué), 2016.

ZHANG J. Generation ofgene knock-out andgene Knock-in goat via CRISPER/CAS9[D]. Huhhot: Inner Mongolia University, 2016. (in Chinese)

[4] GUAN L Z, SUN Y P, XI Q Y, WANG J L, ZHOU J Y, SHU G, JIANG Q Y, ZHANG Y L. β-Glucanase specific expression in the parotid gland of transgenic mice., 2013, 22(4): 805-812.

[5] CLARK K J, CARLSON D F, FAHRENKRUG S C. Pigs taking wing with transposons and recombinases., 2007, 8(Suppl 1): S13.

[6] DING S, WU X, LI G, HAN M, ZHUANG Y, XU T. Efficient transposition of the(PB) transposon in mammalian cells and mice., 2005, 122(3): 473-483.

[7] LI M A, TURNER D J, NING Z, YUSA K, LIANG Q, ECKERT S, RAD L, FITZGERALD T W, CRAIG N L, BRADLEY A. Mobilization of gianttransposons in the mouse genome., 2011, 39(22): e148.

[8] WU S C, MEIR Y J, COATES C J, HANDLER A M, PELCZAR P, MOISYADI S, KAMINSKI J M. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells., 2006, 103(41): 15008-15013.

[9] WILSON M H, COATES C J, GEORGE AL JR.transposon-mediated gene transfer in human cells., 2007, 15(1): 139-145.

[10] 杜新華, 高雪, 張路培, 高會(huì)江, 李俊雅, 許尚忠. Piggybac轉(zhuǎn)座子在?;蚪M的整合位點(diǎn)及特征分析. 遺傳, 2013, 35(6): 771-777.

DU X H, GAO X, ZHANG L P, GAO H J, LI J Y, XU S Z. Integration sites and their characteristic analysis oftransposon in cattle genome., 2013, 35(6): 771-777. (in Chinese)

[11] Xie Z, Pang D, Wang K, Li M, Guo N, Yuan H, Li J, Zou X, Jiao H, Ouyang H, Li Z, Tang X. Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts., 2017, 7(1): 3036.

[12] CHU V T, WEBER T, GRAF R, SOMMERMANN T, PETSCH K, SACK U, VOLCHKOV P, RAJEWSKY K, KüHN R. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes., 2016, 16: 4.

[13] WU M, WEI C, LIAN Z, LIU R, ZHU C, WANG H, CAO J, SHEN Y, ZHAO F, ZHANG L, MU Z, WANG Y, WANG X, DU L, WANG C. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system., 2016, 6: 24360.

[14] LAI S, WEI S, ZHAO B, OUYANG Z, ZHANG Q, FAN N, LIU Z, ZHAO Y, YAN Q, ZHOU X, LI L, XIN J, ZENG Y, LAI L, ZOU Q. Generation of knock-in pigs carrying oct4-tdtomato reporter through CRISPR/Cas9-mediated genome engineering., 2016, 11(1). doi:10.1371/journal.pone.0146562.

[15] 覃兆鮮, 潘天彪, 謝炳坤. 豬成纖維細(xì)胞轉(zhuǎn)染方法的比較. 江蘇農(nóng)業(yè)科學(xué), 2011(3): 250-251.

QIN Z X, PAN T B, XIE B K. Comparison of the transfection methods for porcine fibroblasts cell., 2011(3): 250-251. (in Chinese)

[16] RICHTER A, KUROME M, KESSLER B, ZAKHARTCHENKO V, KLYMIUK N, NAGASHIMA H, WOLF E, WUENSCH A. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig., 2012, 12(1): 84.

[17] NAKAYAMA A, SATO M, SHINOHARA M, MATSUBARA S, YOKOMINE T, AKASAKA E, YOSHIDA M, TAKAO S. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection System?., 2007, 9(4): 523-534.

[18] ROSS J W, WHYTE J J, ZHAO J, SAMUEL M, WELLS K D, PRATHER R S. Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts., 2009, 19(4): 611-620.

[19] BARNABé-HEIDER F, MELETIS K, ERIKSSON M, BERGMANN O, SABELSTR?M H, HARVEY MA, MIKKERS H, FRISéN J. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation., 2008, 5(2): 189-196.

[20] Zou M, Koninck P D, Neve R L, Friedrich R W. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (hsv-1) and electroporation: methods and optogenetic applications.s, 2014, 8(7): 41.

[21] ISHINO T, HASHIMOTO M, AMAGASA M, SAITO N, DOCHI O, KIRISAWA R. Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for somatic cell nuclear transplantation., 2018, 39(2): 95-104.

[22] 鐘翠麗, 李國(guó)玲, 莫健新, 全絨, 王豪強(qiáng), 李紫聰, 吳珍芳, 張獻(xiàn)偉. 不同電轉(zhuǎn)儀的電轉(zhuǎn)參數(shù)、質(zhì)粒用量和拓?fù)浣Y(jié)構(gòu)對(duì)豬胎兒成纖維細(xì)胞轉(zhuǎn)染效率的影響. 遺傳, 2017(10): 930-938.

ZHONG C L, LI G L, MO J X, QUAN R, WANG H Q, LI Z C, WU Z F, ZHANG X W. Effects of parameters, plasmid dosages and topological structures on transfection efficiency of porcine fetal fibroblasts using different electroporators., 2017(10): 930-938. (in Chinese)

[23] VON GROLL A, LEVIN Y, BARBOSA M C, RAVAZZOLO A P. Linear DNA low efficiency transfection by liposome can be improved by the use of cationic lipid as charge neutralizer., 2006, 22(4): 1220-1224.

[24] AUER T O, DUROURE K, DE CIAN A, CONCORDET J P, DEL BENE F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair., 2014, 24(1): 142-153.

[25] 楚素霞, 姚倫廣, 邢延豪, 周延清. 多基因表達(dá)系統(tǒng)研究進(jìn)展. 中國(guó)生物工程雜志, 2011, 31(6): 116-123.

CHU S X, YAO L G, XING Y H, ZHOU Y Q. Progress in research on multiple gene expression system., 2011, 31(6): 116-123. (in Chinese)

[26] 李瑞國(guó), 苗朝華, 侯健, 關(guān)宏, 安曉榮, 陳永福. 牛β-酪蛋白座位無(wú)啟動(dòng)子基因打靶載體的構(gòu)建. 華北農(nóng)學(xué)報(bào), 2010, 25(4): 17-24.

LI R G, MIAO Z H, HOU J, GUAN H, AN X R, CHEN Y F. Non-promotor gene targeting vector construction for bovine β-casein site., 2010, 25(4): 17-24. (in Chinese)

[27] 沈俊杰, 單娟娟, 駱菁菁, 劉立, 錢程. 構(gòu)建多順?lè)醋颖磉_(dá)載體系統(tǒng)的新策略[J]. 浙江理工大學(xué)學(xué)報(bào), 2009, 26(4): 561-566.

SHEN J J, SHAN J J, LUO J J, LIU L, QIAN C. New strategy for construction of polycistron expression vector., 2009, 26(4): 561-566. (in Chinese)

[28] DENG W, YANG D, ZHAO B, OUYANG Z, SONG J, FAN N, LIU Z, ZHAO Y, WU Q, NASHUN B, TANG J, WU Z, GU W, LAI L. Use of the 2A Peptide for Generation of multi-transgenic pigs through a single round of nuclear transfer., 2011, 6(5): e19986.

[29] SATO M, KAGOSHIMA A, SAITOH I, INADA E, MIYOSHI K, OHTSUKA M, NAKAMURA S, SAKURAI T, WATANABE S. Generation of α-1, 3-galactosyltransferase-deficient porcine embryonic fibroblasts by CRISPR/Cas9-mediated knock-in of a small mutated sequence and a targeted toxin-based selection system., 2015, 50(5): 872-880.

[30] NAKADE S, TSUBOTA T, SAKANE Y, KUME S, SAKAMOTO N, OBARA M, DAIMON T, SEZUTSU H, YAMAMOTO T, SAKUMA T, SUZUKI K T. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9., 2014, 5: 5560.

Optimizing the Electroporation Condition of Porcine Fetal Fibroblasts for Large Plasmid

ZHONG CuiLi1, LI GuoLing1, WANG HaoQiang1, MO JianXin1, QUAN Rong1, ZHANG XianWei2, LI ZiCong1, WU ZhenFang1,2, GU Ting1, CAI GengYuan1,2

(1College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding swine Industry, Guangzhou 510642;2Wenshi Food Group Co. Ltd., Xinxing 527400, Guangdong)

【Background】With the development of biotechnology, the physiological mechanisms and biological functions of research are becoming more and more complex, and improving the transfection efficiency of large vectors is of great significance for multi-gene co-expression systems, genome editing, and transgenic breeding. In transgenic breeding, the transgenic vectors is relatively large, and the efficiency of generating transgenic animals is also attributed to the transfection efficiency of porcine fetal fibroblasts (PFFs). 【Objective】Therefore, this study mainly compared the electroporation efficiency of three electroporation apparatus ECM?830/NEPA 21/NucleofectorTM2b on various parameters, plasmid dosage and topology, to explore the optimal electroporation condition of large vector in PFFs. 【Method】we transfected a 26 kb plasmid, namely pPXAT-EGFP, into the PFFs, and then the electroporation efficiencies of various parameters of three electroporation apparatus ECM? 830/NEPA 21/Nucleofector?2b, and the dosage and topological structure of the plasmid by the flow cytometry were compared.【Result】By comparing the transfection efficiency of different transfection parameters, the results showed that the highest transfection efficiency of NEPA 21 was 13.24%±1.63% at pulse voltage 300 V, pulse length 1 ms, pulse interval 50 ms, pulse number 3 times, and the optimal electrical rotation parameter of NucleofectorTM2b was U-023, whose transfection efficiency was 46.36%±3.95%. In addition, the transfection efficiencies of 6, 8, 10 and 12 μg 26 kb supercoiled plasmids were compared under the optimal electroporation parameters, and the results showed that the optimal plasmid dosage for ECM? 830 and NucleofectorTM2b transfected PFFs was 12 μg with 8.44% ± 0.90% efficiency (transfection parameters: pulse voltage 300 V, pulse length 1 ms, pulse number 3 times) and 14.63% ± 3.21% (U-023), while the NEPA 21 achieved the highest efficiency of 6.09% ± 0.72% with 10 μg plasmid. Finally, we compared the transfection efficiency of different quality topologies and found that the transfection efficiency of linearized plasmids was low, only 34.96%-48.39% of the supercoiled plasmids. 【Conclusion】 Therefore, the optimal electroporation condition of PFFs by Nucleofector?2b was U-023 procedure, 12 μg supercoiled plasmid; NEPA 21 was pulse voltage 200 V, pulse length 3 ms, pulse interval 50 ms, pulse number 3 times, and 10 μg supercoiled plasmid; ECM? 830 was transfected with 12 μg supercoiled plasmid at pulse voltage 300 V, pulse length 1 ms, and pulse number 3 times to obtain the highest transfection efficiency. Comprehensive comparison of the above three kinds of electroporation apparatus, the optimum for transfecting PFFs with 26 kb large carrier was Nucleofector?2b.

electroporation; large plasmid; porcine fetal fibroblasts; ECM?830; NEPA 21; Nucleofector?2b

10.3864/j.issn.0578-1752.2019.03.013

2018-09-18;

2018-12-29

國(guó)家科技重大專項(xiàng)(2016ZX08006002)、國(guó)家自然科學(xué)基金(31802036)、廣東省自然科學(xué)基金(2017A030310001)

鐘翠麗,E-mail:1014942996@qq.com。通信作者蔡更元,E-mail:cgy0415@163.com。通信作者顧婷,E-mail:tinggu@scau.edu.cn

(責(zé)任編輯 林鑒非)

猜你喜歡
超螺旋質(zhì)粒脈沖
他們使阿秒光脈沖成為可能
基于MATLAB/Simulink仿真的永磁同步電機(jī)新型超螺旋二階滑模轉(zhuǎn)速控制
嚴(yán)重急性呼吸綜合征冠狀病毒2 S蛋白DNA疫苗超螺旋構(gòu)型純化工藝的建立
脈沖離散Ginzburg-Landau方程組的統(tǒng)計(jì)解及其極限行為
基于超螺旋算法的TORA鎮(zhèn)定控制設(shè)計(jì)
短乳桿菌天然質(zhì)粒分類
黃芩苷脈沖片的制備
中成藥(2017年12期)2018-01-19 02:06:54
重組質(zhì)粒rAd-EGF構(gòu)建并轉(zhuǎn)染hDPSCs對(duì)其增殖的影響
大腸桿菌topA-細(xì)胞中tetA-cfaABCE的高效轉(zhuǎn)錄促進(jìn)DNA凝集*
Survivin-siRNA重組質(zhì)粒對(duì)人神經(jīng)母細(xì)胞瘤細(xì)胞SH-SY5Y的作用
依兰县| 东乌珠穆沁旗| 绥阳县| 镇远县| 阳春市| 郧西县| 凤阳县| 揭西县| 佛教| 方城县| 康乐县| 扎鲁特旗| 新野县| 忻城县| 金堂县| 喜德县| 高雄县| 清徐县| 化德县| 灵台县| 贡嘎县| 惠东县| 瑞金市| 虎林市| 瓦房店市| 琼中| 博兴县| 拉孜县| 丹东市| 昭通市| 大港区| 滨海县| 保定市| 连云港市| 卫辉市| 赤峰市| 靖安县| 安宁市| 开江县| 泌阳县| 庆云县|