鄭曉淵,王調(diào)蘭,張靜榮,姜紅,王斌,畢陽(yáng)
?
二氧化氯處理促進(jìn)厚皮甜瓜果實(shí)的采后愈傷
鄭曉淵,王調(diào)蘭,張靜榮,姜紅,王斌,畢陽(yáng)
(甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,蘭州 730070)
【目的】研究二氧化氯(ClO2)處理對(duì)厚皮甜瓜果實(shí)采后愈傷的影響,為厚皮甜瓜的采后愈傷提供方法和理論依據(jù)。【方法】以‘瑪瑙’厚皮甜瓜為試材,人工模擬損傷后,用25 mg·L-1的ClO2浸泡損傷果實(shí)10 min,于常溫黑暗條件下進(jìn)行愈傷。測(cè)定愈傷期間損傷果實(shí)的失重率以及損傷接種粉紅單端孢果實(shí)的病情指數(shù),通過(guò)甲苯胺藍(lán)和間苯三酚—鹽酸染色法觀察聚酚軟木脂、聚酯軟木脂和木質(zhì)素在傷口部位的積累,并用IS Capture圖像軟件對(duì)聚酚軟木脂、聚酯軟木脂和木質(zhì)素積累量進(jìn)行分析。測(cè)定傷口表面的色度值,分析傷口處組織愈傷期間苯丙烷代謝活性以及過(guò)氧化物酶和多酚氧化酶的活性變化。【結(jié)果】ClO2處理顯著降低了損傷果實(shí)的失重率和損傷接種果實(shí)的病情指數(shù),愈傷第7天時(shí),處理比對(duì)照低10.3%。果實(shí)在損傷后不同時(shí)間段接種粉紅單端孢,經(jīng)1周培養(yǎng)觀察,處理果實(shí)的病情指數(shù)顯著低于對(duì)照,第7天時(shí)處理果實(shí)的病情指數(shù)比對(duì)照低56.9%。處理顯著促進(jìn)了果實(shí)傷口處聚酚軟木脂、聚酯軟木脂和木質(zhì)素的積累,處理果實(shí)的積累量在愈傷的中后期顯著高于對(duì)照,三者比對(duì)照分別高25.3%、77.7%和35.5%。愈傷期間,處理果實(shí)傷口處的值顯著低于對(duì)照,值顯著高于對(duì)照,在愈傷第5天時(shí),處理果實(shí)的值比對(duì)照低6.1%,第3天時(shí)的值比對(duì)照高17.8%。處理明顯提高了果實(shí)傷口處的苯丙氨酸解氨酶、過(guò)氧化物酶和多酚氧化酶活性,在愈傷第7天時(shí),處理果實(shí)傷口處的苯丙氨酸解氨酶、過(guò)氧化物酶和多酚氧化酶活性分別高于對(duì)照34.3%、80.5%和15.7%。此外,處理果實(shí)傷口處的總酚、類(lèi)黃酮和木質(zhì)素含量也顯著高于對(duì)照,第7天時(shí),分別高于對(duì)照14.7%、16.8%和15.6%。【結(jié)論】ClO2處理可有效促進(jìn)厚皮甜瓜果實(shí)的采后愈傷,ClO2對(duì)愈傷的促進(jìn)作用與激活傷口處的苯丙烷代謝,提高POD和PPO活性,促進(jìn)軟木脂和木質(zhì)素的積累密切相關(guān)。
ClO2;厚皮甜瓜;采后;愈傷
【研究意義】厚皮甜瓜(L.)是我國(guó)西北地區(qū)特色水果,由于果實(shí)個(gè)體較大,在采收和采后過(guò)程中易受機(jī)械損傷[1],而機(jī)械損傷造成的表面?zhèn)跒椴≡锏那秩咎峁┝送ǖ?,加劇了采后腐爛的發(fā)生[2]。因此,有效降低傷口性病原菌的侵染率是采后厚皮甜瓜亟待解決的問(wèn)題?!厩叭搜芯窟M(jìn)展】不同果實(shí)表面形成的傷口具有不同程度的愈合能力,通過(guò)在傷口部位積累軟木脂和木質(zhì)素等具有保護(hù)作用的天然聚合物[3],從而抑制傷口部位水分的大量蒸騰,阻止病原物經(jīng)由傷口的侵入[4]。近期研究發(fā)現(xiàn),某些化學(xué)藥物還具有促進(jìn)傷口愈合的作用。例如,苯丙噻重氮可以促進(jìn)采后梨果實(shí)的愈傷[5],脫落酸能提高采后番茄[4]和獼猴桃[6]果實(shí)的愈傷能力。ClO2是國(guó)際公認(rèn)的A1級(jí)安全高效消毒劑,可殺滅病原物,對(duì)果蔬風(fēng)味和品質(zhì)無(wú)明顯影響[7-8]。有報(bào)道表明,ClO2處理可減輕龍眼[9-10]和番茄果實(shí)[11]的采后病害,延緩蘋(píng)果成熟衰老,減輕采后腐爛[12],還可一定程度上抑制鮮切哈密瓜的后熟[13]。而ClO2在減輕采后病害中的作用與增強(qiáng)果實(shí)苯丙烷代謝和提高氧化酶活性密切相關(guān)[14]?!颈狙芯壳腥朦c(diǎn)】雖然已有ClO2誘導(dǎo)采后果實(shí)抗病性的報(bào)道,但該化合物是否影響厚皮甜瓜果實(shí)采后愈傷尚未見(jiàn)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】本研究以‘瑪瑙’厚皮甜瓜果實(shí)為試材,用ClO2處理人工損傷的果實(shí)后在常溫條件下進(jìn)行愈傷,測(cè)定愈傷期間損傷果實(shí)的失重率以及接種果實(shí)的病情指數(shù),觀察愈傷組織的色度以及聚酚軟木脂、聚酯軟木脂和木質(zhì)素的積累變化。分析氧化酶和苯丙烷代謝關(guān)鍵酶活性及其代謝產(chǎn)物的含量。評(píng)價(jià)ClO2處理對(duì)厚皮甜瓜果實(shí)采后愈傷能力的影響,為ClO2處理在厚皮甜瓜的采后應(yīng)用提供方法和理論依據(jù)。
供試‘瑪瑙’甜瓜于2017年7月采自甘肅省民勤縣收成鄉(xiāng)露地大田,選取八成熟、外觀整齊、大小一致、無(wú)病蟲(chóng)傷和機(jī)械傷的果實(shí),單果套網(wǎng)套后裝入瓦楞紙包裝箱,于當(dāng)天運(yùn)抵實(shí)驗(yàn)室,在常溫下(20—25℃,RH 70%—80%)貯藏待用。
粉紅單端孢()為甘肅厚皮甜瓜產(chǎn)區(qū)最常見(jiàn)的采后病原真菌[15],由本實(shí)驗(yàn)室提供,于PDA培養(yǎng)基上保存待用。
ClO2購(gòu)自天津張大科技有限公司,有效濃度120 mg·g-1,于4℃冰箱保存。
刮皮刀(HF036型,陽(yáng)江市陽(yáng)東區(qū)焦點(diǎn)刀具有限公司,中國(guó));恒溫培養(yǎng)箱(SPX-30085H-II型,上海新苗醫(yī)療器械制造有限公司,中國(guó));超凈工作臺(tái)(SW-CJ-2FD型,蘇凈集團(tuán)蘇州安泰空氣技術(shù)有限公司,中國(guó));立式壓力蒸汽滅菌鍋(LDZX-30KBS 型,上海申安醫(yī)療器械廠,中國(guó));正置萬(wàn)能顯微鏡(CX21FS1C型,OLYMPUS公司,日本);Ci6x分光光度儀(Ci6x型,日本愛(ài)色麗有限公司,日本);臺(tái)式高速冷凍離心機(jī)(3K30型,Sigma公司,德國(guó));紫外-可見(jiàn)光分光光度計(jì)(UV-2450 型,島津,日本)。
1.2.1 果實(shí)人工損傷及愈傷 參照姜紅等[16]的方法并進(jìn)行修改。果實(shí)先用清水沖洗,然后用1%的次氯酸鈉浸泡1 min進(jìn)行表面消毒,再用無(wú)菌水沖洗,晾干后用刮皮刀在果實(shí)的赤道部位分別刮出4條長(zhǎng)30 mm、寬30 mm、深2 mm的傷口。在室溫條件下暴露0.5 h后,將損傷的果實(shí)浸入25 mg?L-1的ClO2浸泡10 min,取出晾干后分別裝入打孔的聚乙烯保鮮袋(25 cm×40 cm,厚度0.02 mm),于常溫、避光條件下進(jìn)行愈傷,以清水處理作對(duì)照。每處理用果實(shí)120個(gè),重復(fù)3次。
1.2.2 愈傷效果的評(píng)價(jià)
1.2.2.1 失重率及病情指數(shù)的測(cè)定 失重率的測(cè)定采用重量法[17]。每處理用果實(shí)9個(gè),重復(fù)3次。
病情指數(shù)的測(cè)定參照姜紅等[16]的方法并修改。在培養(yǎng)了1周的培養(yǎng)皿中加入一定量的無(wú)菌水,用涂布器刮下孢子用4層紗布過(guò)濾至錐形瓶中,在振蕩器上振蕩15 s,經(jīng)過(guò)血球計(jì)數(shù)板計(jì)數(shù)配置成濃度為1×106個(gè)/mL的孢子懸浮液。分別在果實(shí)損傷后的第0、1、3、5、7天,用涂布器將20 μL配好的孢子懸浮液均勻涂于創(chuàng)口表面,晾干后裝入打孔的聚乙烯保鮮袋中,常溫培養(yǎng)7天后統(tǒng)計(jì)病情指數(shù)。每個(gè)處理用果實(shí)8個(gè),重復(fù)3次。
式中,發(fā)病級(jí)別的標(biāo)準(zhǔn)為:4級(jí),創(chuàng)口表面全部發(fā)?。?級(jí),創(chuàng)口表面3/4的面積發(fā)??;2級(jí),創(chuàng)口表面1/2面積發(fā)??;1級(jí),創(chuàng)口表面1/4面積發(fā)??;0級(jí),創(chuàng)口表面不發(fā)病。
1.2.2.2 聚酚軟木脂、聚酯軟木脂和木質(zhì)素沉積的觀察 聚酚軟木脂(suberin poly phenolic,SPP)和聚酯軟木脂(suberin poly aliphatic,SPA)的沉積觀察參照Lulai[18-19]的方法并修改。用不銹鋼刀片垂直傷口表面切成厚0.2—0.3 mm,長(zhǎng)和寬各為1 cm左右的薄片。采用如下步驟進(jìn)行染色:用0.1%小檗堿(0.05%甲苯胺藍(lán))染色45 min后,先吸去染料,再用蒸餾水和75%酒精洗2—3遍,最后用95%酒精洗1—2遍,即脫去染料,緊接著在0.25%甲苯胺藍(lán)(1%中性紅)中放置1—2 min進(jìn)行復(fù)染,最后用蒸餾水和75%酒精洗去染料,SPP(SPA)即染為紫藍(lán)色。將染好色的薄片置于載玻片上,在顯微鏡下熒光觀察拍照。每個(gè)果實(shí)切片4處,重復(fù)3次。
木質(zhì)素的沉積觀察參照Alba等[20]的方法并修改。用不銹鋼刀片垂直傷口表面切成厚0.2—0.3 mm,長(zhǎng)和寬各為1 cm左右的薄片,滴加1%間苯三酚染色1.5 min后再加1—2滴濃鹽酸,木質(zhì)素即染為紅色,置于顯微鏡下觀察拍照。每個(gè)果實(shí)切片4處,重復(fù)3次。
愈傷組織的SPP、SPA和木質(zhì)化細(xì)胞層的厚度根據(jù)文獻(xiàn)[21]的方法通過(guò)IS Capture圖像軟件進(jìn)行測(cè)量計(jì)算。
1.2.3 愈傷組織色度的測(cè)定 在愈傷的0、1、3、5和7 d用Ci6x分光光度儀垂直于愈傷組織表面進(jìn)行色度的測(cè)定,依次測(cè)定、和值,每個(gè)處理測(cè)12處愈傷組織。
1.2.4 生化測(cè)定取樣 參照Bi等[22]的方法。在愈傷的0、1、3、5和7 d,用不銹鋼刀片垂直傷口表面下取2—3 mm深的傷口組織3 g,用錫箔紙包好后用液氮冷凍,在-80℃超低溫冰箱中保存?zhèn)溆谩?/p>
1.2.5 苯丙氨酸解氨酶、過(guò)氧化物酶和多酚氧化酶的活性測(cè)定 苯丙氨酸解氨酶(phenylalnine ammonia- lyase,PAL)的測(cè)定參照Liu等[23]的方法并修改。取冷凍樣品3 g,于5 mL硼酸-硼砂緩沖液(pH 8.8,含40 g?L-1聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP),2 mmol?L-1乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)和5 mmol?L-1β-巰基乙醇)中冰浴研磨成漿,在4℃、12 000×條件下離心30 min,上層酶液即為粗酶液。反應(yīng)體系包括:0.1 mL粗酶液,3 mL硼酸-硼砂緩沖溶液(50 mmol?L-1、pH 8.8)液,0.5 mL食物L(fēng)-苯丙氨酸(20 mmol?L-1),以蒸餾水為參比,測(cè)定反應(yīng)體系混合10 s后在290 nm波長(zhǎng)處的吸光值作為初始值(OD0),將混合液在37℃水浴鍋中保溫1 h后在290 nm波長(zhǎng)處的吸光值作為終止值(OD1)。以每小時(shí)吸光值變化值增加0.01為一個(gè)酶活性單位(U),以U·g-1FW表示。
過(guò)氧化物酶(peroxidase,POD)和多酚氧化酶(polyphenol oxidase,PPO)的測(cè)定參照LI[24]的方法。取冷凍樣品3 g,于5 mL乙酸-乙酸鈉緩沖液(pH 5.5,含1 mmol?L-1聚乙二醇(polyethylene glycol,PEG),4%交聯(lián)聚乙烯吡咯烷酮(crosslinking polyvingypyrrolidone,PVPP)和1%聚乙二醇辛基苯基醚(Triton X-100))中研磨成漿,在4℃、12 000×條件下離心30 min,收集上層液用即為粗酶液。POD反應(yīng)體系:3 mL 25 mmol?L-1愈創(chuàng)木酚,0.1 mL酶提取液,0.2 mL H2O2(5 mmol?L-1)。以蒸餾水為參比,在反應(yīng)進(jìn)行到15 s時(shí)測(cè)定混合液在470 nm波長(zhǎng)處的吸光值2 min。以每分鐘吸光值變化值增加1為一個(gè)酶活性單位(U),以U·g-1FW表示,重復(fù)3次。PPO反應(yīng)體系:4 mL的乙酸-乙酸鈉緩沖液(50 mmol?L-1、pH 5.5),1 mL鄰苯二酚溶液(50 mmol?L-1),0.1 mL酶提取液。以蒸餾水為參比,在反應(yīng)進(jìn)行到15 s時(shí)測(cè)定混合液在420 nm波長(zhǎng)處的吸光值2 min。以每分鐘吸光值變化值增加1為一個(gè)酶活性單位(U),以U·mg-1FW表示。
1.2.6 總酚、類(lèi)黃酮和木質(zhì)素的含量測(cè)定 總酚和類(lèi)黃酮的測(cè)定參照Pirie等[25]的方法并作修改。取冷凍樣品3 g,于預(yù)冷的4 mL HCL-甲醇溶液中冰浴研磨成漿,在4℃避光條件提取20 min,期間搖動(dòng)數(shù)次,過(guò)濾收集上層清液待用。以1% HCL-甲醇溶液做為參比,分別測(cè)定濾液在280 nm和325 nm波長(zhǎng)處的吸光度值作為總酚和類(lèi)黃酮的含量,分別以O(shè)D280·g-1FW和OD325·g-1FW表示。
木質(zhì)素的含量測(cè)定參照YIn等[26]的方法進(jìn)行測(cè)定。取冷凍樣品3 g,于預(yù)冷5 mL 95%乙醇中研磨成漿,在4℃,14 000×條件下離心30 min,棄去上清液,將沉淀物依次用95%乙醇,乙醇(V)﹕正己烷(V)=1﹕2沖洗3次,將清洗后的沉淀物在60℃烘箱中干燥24 h后轉(zhuǎn)移至離心管中,溶于1 mL 25%溴化乙酰冰醋酸溶液,70℃恒溫水浴30 min后加入1 mL NaOH(2 mol?L-1)終止反應(yīng)。最后加入2 mL冰醋酸和0.1mL鹽酸羥胺(7.5 mol?L-1),在4℃、12 000×條件下離心30 min,取上清液0.5 mL并用冰醋酸定容至5 mL,在280 nm波長(zhǎng)處測(cè)定吸光值,木質(zhì)素含量以O(shè)D280·g-1FW表示。
上述測(cè)定均重復(fù)3次。全部數(shù)據(jù)用Excel 2010計(jì)算平均值和標(biāo)準(zhǔn)誤(±SE),用SPSS 19.0進(jìn)行Duncan’s多重差異顯著性分析及相關(guān)性分析(<0.05)。
愈傷期間,處理和對(duì)照果實(shí)的失重率均逐漸升高,但處理果實(shí)的失重率顯著低于對(duì)照,第7天時(shí),比對(duì)照低10.3%(<0.05)(圖1-A)。處理和對(duì)照果實(shí)的病情指數(shù)均隨愈傷時(shí)間的延長(zhǎng)逐漸下降,處理果實(shí)顯著低于對(duì)照,第7天時(shí),僅如對(duì)照的43.1%(<0.05)(圖1-B)。失重率和病情指數(shù)的結(jié)果表明,ClO2處理有效促進(jìn)了厚皮甜瓜果實(shí)的采后愈傷。
愈傷期間,處理和對(duì)照果實(shí)傷口處的SPP和SPA積累量均逐漸增加,處理果實(shí)的積累量在愈傷的中后期均顯著高于對(duì)照(圖2-A、B)。SPP和SPA的積累差異分別始于第1天和第3天,第7天時(shí)SPP和SPA的積累厚度分別比對(duì)照高25.3%和77.7%(<0.05)(圖3-A、B)。處理和對(duì)照果實(shí)傷口處的木質(zhì)素積累始于愈傷中期,處理顯著高于對(duì)照。在第7天時(shí),處理果實(shí)木質(zhì)素的積累厚度比對(duì)照高35.5%(<0.05)(圖3-C)。SPP、SPA和木質(zhì)素的積累結(jié)果表明,ClO2有效促進(jìn)了厚皮甜瓜果實(shí)傷口處的木栓化。
*代表顯著性差異(P<0.05)。下同 * indicate significant differences (P<0.05). The same as below
P:聚酚軟木脂Suberin poly phenolic;A:聚酯軟木脂 Suberin poly aliphatic;L:木質(zhì)素 Lignin
圖3 ClO2處理對(duì)傷口處SPP(A)、SPA(B)和木質(zhì)化(C)細(xì)胞層厚度的影響
愈傷期間,處理和對(duì)照果實(shí)傷口處的值均先上升后下降,在愈傷的后期顯著低于對(duì)照,第5天和第7天時(shí),分別比同期對(duì)照低6.1%和5.8%(<0.05)(圖4-A)。處理和對(duì)照果實(shí)的值差異不顯著(結(jié)果未顯示)。兩者值總體先降后升,在愈傷的前期和中期顯著高于對(duì)照。第3天時(shí),比對(duì)照高17.8%(<0.05)(圖4-B)。
圖4 ClO2處理對(duì)傷口處的L*值(A)和b*值(B)的影響
愈傷期間,處理和對(duì)照果實(shí)傷口處的PAL活性均逐漸升高,但處理果實(shí)的PAL活性顯著高于對(duì)照,第7天時(shí),比對(duì)照高34.3%(<0.05)(圖5-A)。對(duì)照果實(shí)的POD和PPO活性隨愈傷時(shí)間的延長(zhǎng)逐漸升高,而處理果實(shí)的活性則先略有降低后顯著升高,在愈傷的后期顯著高于對(duì)照,第7天時(shí),POD和PPO活性分別比對(duì)照高80.5%和15.7%(<0.05)(圖5-B、C)。處理果實(shí)傷口處的總酚、類(lèi)黃酮和木質(zhì)素含量在愈傷期間均呈先降后升的趨勢(shì),在愈傷的后期顯著高于對(duì)照。第7天時(shí),分別比對(duì)照高14.7%、16.8%和15.6%(<0.05)(圖5-D、E、F)。PAL、POD和PPO活性以及總酚、類(lèi)黃酮和木質(zhì)素含量的增加結(jié)果表明,ClO2激活了厚皮甜瓜果實(shí)傷口處的苯丙烷代謝以及氧化酶活性。
ClO2可通過(guò)增強(qiáng)苯丙烷代謝和提高氧化酶活性來(lái)誘導(dǎo)果實(shí)的采后抗病性[12]。本研究發(fā)現(xiàn),ClO2處理可通過(guò)激活采后厚皮甜瓜果實(shí)傷口處的苯丙烷代謝及氧化酶活性,加速軟木脂和木質(zhì)素在傷口處的沉積,從而促進(jìn)厚皮甜瓜果實(shí)的采后愈傷。
苯丙烷代謝可合成愈傷組織形成所需的多種次生代謝產(chǎn)物,在果實(shí)愈傷中具有積極的作用[27]。PAL是苯丙烷代謝的限速酶[4],可催化苯丙烷代謝的第一步反應(yīng),使L-苯丙氨酸脫氨生成反式肉桂酸[27],反式肉桂酸又會(huì)進(jìn)一步轉(zhuǎn)化生成多酚和類(lèi)黃酮以及木質(zhì)素等愈傷組織的基本成分[28-29]。PAL的活性高低與果實(shí)的愈傷能力顯著相關(guān)[6],果實(shí)的愈傷能力越強(qiáng),其PAL活性就越高。本研究發(fā)現(xiàn),ClO2處理顯著提高了厚皮甜瓜傷口處PAL活性,該結(jié)果與趙明惠等[12]采用ClO2處理蘋(píng)果后觀察到的結(jié)果類(lèi)似。苯丙烷代謝產(chǎn)生的肉桂酸、富馬酸和咖啡酸等酚類(lèi)物質(zhì)[29],在細(xì)胞質(zhì)內(nèi)合成后被運(yùn)送至細(xì)胞壁,與肉桂酸羥化酶催化形成的羥基肉桂酸和羥基肉桂酰醇在POD和H2O2的作用下氧化交聯(lián)并開(kāi)始沉積,形成SPP[30]。此外,傷口處的脂肪代謝也發(fā)生了顯著的變化[31]。細(xì)胞內(nèi)一些新的脂肪酸單體開(kāi)始合成,主要包括超長(zhǎng)鏈脂肪酸、-鏈烷醇、-羥基脂肪酸和,-二酸等,這些脂肪酸單體經(jīng)質(zhì)膜上的ATP結(jié)合通道轉(zhuǎn)運(yùn)蛋白被運(yùn)送至膜外,在質(zhì)膜和細(xì)胞壁間聚合形成SPA[30-31]。但這些脂肪酸單體或低聚物如何和甘油組裝形成SPA尚有待揭示。在番茄果實(shí)上的研究結(jié)果表明,SPP和SPA都對(duì)病原物具有抵抗作用,但兩者之間存在著差異。其中,SPP對(duì)細(xì)菌性病害有防御作用,SPA對(duì)真菌性病害有抵抗作用[32]。至于SPP和SPA在甜瓜果實(shí)愈傷中的功能是否與番茄一致尚有待證實(shí)。本研究觀察到,ClO2處理促進(jìn)了SPP、SPA以及木質(zhì)素的積累,對(duì)于SPP的促進(jìn)作用要先于SPA和木質(zhì)素。苯丙烷代謝形成的4-香豆酸、阿魏酸和芥子酸等是木質(zhì)素的合成前體,這些酚酸首先在CAD的作用下還原,形成相應(yīng)的醇后再通過(guò)POD的作用聚合為木質(zhì)素[33]。木質(zhì)素是苯丙烷代謝的終產(chǎn)物,是細(xì)胞壁次生壁的組成物質(zhì),木質(zhì)素在保持水分和維持細(xì)胞結(jié)構(gòu)穩(wěn)定中發(fā)揮著重要作用[28]。木質(zhì)素也是傷口周皮的主要成分,可使細(xì)胞壁更加堅(jiān)固[34],從而在傷口表面形成一個(gè)有效的物理屏障,限制病原物從傷口處獲取營(yíng)養(yǎng),提高果實(shí)對(duì)病原物侵染的抵抗能力[35]。黃酮類(lèi)物質(zhì)在傷口處的含量隨PAL活性的提高而增加[6]。黃酮類(lèi)物質(zhì)作為抗氧化劑,具有較強(qiáng)的抗氧化和自由基清除能力,可直接抑制真菌的孢子萌發(fā)和菌絲生長(zhǎng)[33]。本研究發(fā)現(xiàn),ClO2處理在愈傷后期顯著提高了POD活性,促進(jìn)了總酚、類(lèi)黃酮和木質(zhì)素的積累。但在愈傷前期,ClO2處理的POD活性以及總酚、類(lèi)黃酮和木質(zhì)素含量均顯著低于對(duì)照,這可能與ClO2抑制POD活性和苯丙烷代謝相關(guān)。
圖5 ClO2處理對(duì)厚皮甜瓜果實(shí)傷口處PAL(A)、POD(B)和PPO(C)活性以及總酚(D)、類(lèi)黃酮(E)和木質(zhì)素(F)含量的影響
本研究發(fā)現(xiàn),ClO2處理可顯著提高厚皮甜瓜果實(shí)傷口處的PPO活性。處理果實(shí)傷口處值高于對(duì)照,值低于對(duì)照的結(jié)果表明,PPO參與了愈傷組織的形成,處理果實(shí)傷口處的值在0 d顯著高于對(duì)照可能源于ClO2的漂白作用。在愈傷中由于細(xì)胞內(nèi)膜被破壞,液泡中的酚類(lèi)底物會(huì)和PPO發(fā)生反應(yīng),氧化為醌,醌再進(jìn)一步聚合為黑色或褐色的物質(zhì)[36]。這些聚合物不僅引起果實(shí)組織褐變,而且可直接抑制病原菌生長(zhǎng),鈍化病原菌分泌的胞外酶[37],該結(jié)果與Wei[38]等在獼猴桃愈傷期間觀察到的結(jié)果一致。
ClO2采后處理可有效降低損傷果實(shí)的失重率和損傷接種果實(shí)的病情指數(shù),促進(jìn)厚皮甜瓜的采后愈傷。ClO2處理對(duì)采后厚皮甜瓜愈傷的促進(jìn)作用與激活果實(shí)苯丙烷代謝,提高POD和PPO活性,促進(jìn)SPP、SPA和木質(zhì)素在傷口處的積累密切相關(guān)。
[1] BI Y, GE Y H, Li X W. Melon production in China., 2007, 731: 493-500.
[2] HARDENBURG R E, WATADA A E, YANG C Y.. USDA, Agriculture Handbook, 1990, 66: 130.
[3] VISHWANATH S J, DELUD C, DOMERGUE F, ROWLAND O. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier., 2015, 34(4): 573-586.
[4] TAO X Y, MAO L C, LI J Y, CHEN J X, LU W J, HHUANG S. Abscisic acid mediates wound-healing in harvested tomato fruit., 2016, 118: 128-133.
[5] 張靜榮, 王斌, 姜紅, 王毅, 李雪, 司敏, 李永才, 畢陽(yáng).采后苯丙噻重氮處理促進(jìn)梨果實(shí)的愈傷. 食品科學(xué), 2018, 39(9): 190-195.
ZHANG J R, WANG B, JIANG H, WANG Y, LI X, SI M, LI Y C, BI Y. Effect of BTH treatments promotes wound healing of pear fruit., 2018, 39(9): 190-195. (in Chinese).
[6] HAN X Y, MAO LC, WEI X P, LU W J. Stimulatory involvement of abscisic acid in wound suberization of postharvest kiwifruit., 2017, 224: 244-250.
[7] DU J, HAN Y, LINTON R H. Efficacy of chlorine dioxide gas in reducingO157:H7 on apple surfaces., 2003, 20(5): 583-591.
[8] ELPHICK A. The growing use of chlorine dioxide., 1998, 34: 122-125.
[9] CHUMYAMA, SHANK L, FAIYUE B, UTHAIBUTRA J, SAENGNIL K. Effects of chlorine dioxide fumigation on redox balancing potential of antioxidative ascorbate-glutathione cycle in ‘Daw’ longan fruit during storage., 2017, 222: 76-83.
[10] SAENGNIL K, CHUMYAM A, FAIYUE B, UTHAIBUTRA J. Use of chlorine dioxide fumigation to alleviate enzymatic browning of harvested ‘Daw’ longan pericarp during storage under ambient conditions., 2014, 91: 49-56.
[11] SUN X, BALDWIN E, PLOTTO A, NARCISO J, FERENCE C, RITENOUR M, HAMISON K, GANGEMI J, BAI J. Controlled- release of chlorine dioxide in a perforated packaging system to extend the storage life and improve the safety of grape tomatoes.. 2017, 122: 1-6.
[12] 趙明慧, 饒景萍, 辛付存, 夏源苑. 紅富士蘋(píng)果采后二氧化氯處理的保鮮作用. 果樹(shù)學(xué)報(bào), 2011, 28(2): 252-256.
ZHAO M H, RAOJ P, XIN F C, XIA Y Y. Effects of postharvest chlorine dioxide treatment on fresh-keeping of Red Fuji apple., 2011, 28(2): 252-256. (in Chinese).
[13] GUO Q, LV X, XU F, ZHANG Y L, WANG J D, LIN H H, WU B. Chlorine dioxide treatment decreases respiration and ethylene synthesis in fresh-cut ‘Hami’ melon fruit., 2013, 48(9): 1775-1782.
[14] 趙明慧, 饒景萍, 辛付存, 夏源苑. 二氧化氯采前處理對(duì)紅富士蘋(píng)果的保鮮. 食品科學(xué), 2011, 32(16): 352-356.
ZHAO M H, RAO J P, XIN F C, XIA Y Y. Fresh-keeping effect of pre-harvest chlorine dioxide treatment of red Fuji apple., 2011, 32(16): 352-356. (in Chinese).
[15] BI Y, GE Y H, LI Y C, WANG J J, MIAO X Y, LI X W. Postharvest acibenzolar-S-methyl treatment suppresses decay and induces resistance in Hami melons., 2006, 712: 393-399.
[16] 姜紅, 畢陽(yáng), 李昌健, 王毅, 李生娥, 劉耀娜, 王斌. 馬鈴薯品種‘青薯168’和‘隴薯3號(hào)’塊莖愈傷能力的比較. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(4): 774-782.
JIANG H, BI Y, LI CJ, WANG Y, LI S E, LIU Y N, WANG B. Comparison of healing ability on potato tuber cultivars ‘Qingshu No. 168’ and ‘Longshu No. 3’.2017, 50(4): 774-782. (in Chinese).
[17] DUAN J Y, WU R Y, BEMADINE C S, ZHAO Y Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions., 2011, 59(1): 71-79.
[18] LULAI E C, MORGAN W C. Histochemical probing of potato periderm with neutral red: a sensitive cytofluorochrome for the hydrophobic domain of suberin., 1992, 67(4): 185-195.
[19] LULAI E C, CORSINI D L. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (L.) wound-healing., 1998, 53(4): 209-222.
[20] ALBA C M, FORCHETTI S M D, TIGIER H A. Phenoloxidase of peach () endocarp: Its relationship with peroxidases and lignification., 2010, 109(4): 382-387.
[21] OIRSCHOT Q E A V, REES D, AKED J, KIHURANI A. Sweetpotato cultivars differ in efficiency of wound healing., 2006, 42(1): 65-74.
[22] BI Y, TIAN S P, ZHAO J, GE Y H. Harpin induces local and systemic resistance against, in harvested Hami melons., 2005, 38(2): 183-187.
[23] LIU H X, JIANG W B, BI Y, LUO Y B. Postharvest BTH treatment induces resistance of peach (L. cv. Jiubao) fruit to infection byand enhances activity of fruit defense mechanisms., 2005, 35: 263-269.
[24] LI Y, BI Y, GE Y H, WANG Y, LIU Y Y, LI G L. Postharvest hot water dipping reduces decay by inducing disease resistance and maintaining firmness in muskmelon (L) fruit., 2013, 161(2): 101-110.
[25] PIRIE A, MULLINS M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid., 1976, 58(4): 468-472.
[26] YIN Y, LI Y C, BI Y, CHENG S J, LI Y C, YUAN L, WANG Y, WANG D. Postharvest treatment with-aminobutyric acid induces resistance against dry rot caused byin potato tuber., 2010, 9(9): 1372-1380.
[27] HAN X Y, LU W J, WEI X P, LI L, MAOL C, ZHAO Y Y. Proteomics analysis to understand the ABA stimulation of wound suberization in kiwifruit., 2018, 173: 42-51.
[28] BERNARDS M A, SUSAG L M, BEDGAR D L, ANTEROLA A M, LEWIS N G. Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis, 2000, 157(6): 601-607.
[29] VOGT T. Phenylpropanoid biosynthesis., 2010, 3(1): 2-20.
[30] LULAI E C. Skin-set, wound healing and related defects//:, 2007: 471-500.
[31] WOOLFSON K N, HAGGITT M L, ZHANG Y,KACHURA, BJELICA A, RINCON M A R, KABERI, K M, BERNARD M A. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (L.) tubers., 2018, 93(5): 931-942.
[32] LEID J, HILDEBRANDTU, HARTUNG W, RIEDERER M, VOGG G. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits., 2012, 194(2): 402-415.
[33] HAHLBROCK K, GRISEBACH H. Enzymic controls in the biosynthesis of lignin and flavonoids., 1976, 30: 105-130.
[34] SHAO X F, TU K, TU S C, SU J, ZHAO Y. Effects of heat treatment on wound healing in Gala and red Fuji apple fruits., 2010, 58(7): 4303-4309.
[35] Ramamurthy M S, Ussuf K K, Nair P M, Thomas P. Lignin biosynthesis during wound healing of potato tubers in response to gamma irradiation., 2000, 18(3): 267-272.
[36] THIPYAPONG P, STEFFENS J C. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development., 1997, 113(3): 707-718.
[37] MAYER A M. Polyphenol oxidases in plants and fungi: going places? A review., 2007, 38(5): 2318-2331.
[38] WEI X P, MAO L C, HAN X Y, LV W J, XIE D D, REN X C, ZHAO Y Y. High oxygen facilitates wound-induced suberin polyphenolics formation in kiwifruit: High oxygen promotes wound-healing of kiwifruit., 2018, 98(6): 2223-2230.
Using Chlorine Dioxide Treatment to Promote Wound Healing of Postharvest Muskmelon Fruit
ZHENG XiaoYuan, WANG TiaoLan, ZHANG JingRong, JIANG Hong, WANG Bin, BI Yang
(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070)
【Objective】The aims of this study were to investigate effect of chlorine dioxide (ClO2) treatment on the wound healing of harvested muskmelons and its mechanism, providing methods and theoretical basis for wound healing of postharvest muskmelon fruit.【Method】The muskmelon fruit ‘cv. Manao’ was used as material. After artificially wounded, fruits were dipped with ClO2at 25 mg?L-1for 10 min, and the treated fruit and control were wound healed at ambient temperature in dark. The weight loss of fruit and the disease index ofinoculated fruit were measured during healing. The accumulation of suberin poly phenolic, suberin poly aliphatic and lignin at the wounded sites of fruit were observed by Toluidin blue O-neutral red staining and phloroglucinol-HCl staining method, and the amount of accumulation of the three compositions were measured by IS Capture image software. Moreover, the color values of wounded surface were measured. The enzyme activities of phenylpropanoid metabolism and changes of peroxidase and polyphenol oxidase enzyme activities were analyzed during the fruit wound healing stage. 【Result】The weight loss of wounded fruit and the disease index of inoculated fruit were significantly reduced by ClO2treatment. The weight loss of treated fruit was 10.3% lower than that of control after 7 days of healing. Wounded fruit were inoculated byat different wound healing periods. After one week cultivated, the disease index of the treated fruit was significantly lower than that of control, which was 56.9% lower at 7 days of healing. The ClO2treatment significantly promoted the accumulation of suberin poly phenolic, suberin poly aliphatic and lignin. The treated fruit were significantly higher than that of control at the mid and late stage of healing. After 7 days of healing, the thickness of suberin poly phenolic cell layers, suberin poly aliphatic and lignin cell layers of treated fruit was 25.3%, 77.7% and 35.5% higher than that of control, respectively. Compared with the control, thevalue of wounded surface in the treated fruit was significantly lower andvalue was significantly higher during healing. Thevalue of the treated fruit was 6.1% lower than that of control after 5 days of healing. And thevalue of the treated fruit was 17.8% higher than that of control after 3 days of healing. The ClO2treatments increased enzymes activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase at wounded sites of fruit, which were 34.3%, 80.5% and 15.7% higher than that of control after 7 days of healing, respectively. Meanwhile, the treatment also improved the accumulation of total phenols, flavonoids and lignin at wounded sites, which were 14.7%, 16.8%, and 15.6% higher than that of control after 7 days of healing, respectively.【Conclusion】ClO2treatment effectively promoted wound healing of harvested muskmelons by eliciting the phenylpropanoid metabolism. In addition, it also increased the enzymes activities of peroxidase and polyphenol oxidase, and promoted accumulation of suberin and lignin at wounded sites.
chlorine dioxide; muskmelons; postharvest; wound healing
10.3864/j.issn.0578-1752.2019.03.011
2018-07-18;
2018-09-13
國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303075)
鄭曉淵,Tel:18894310260;E-mail:1427426541@qq.com。通信作者畢陽(yáng),Tel:13119421362;E-mail:biyang@gsau.edu.cn
(責(zé)任編輯 趙伶俐)