国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于凸輪設(shè)計(jì)理論的多關(guān)節(jié)機(jī)械手軌跡規(guī)劃

2019-04-08 05:36:14朱建強(qiáng)
關(guān)鍵詞:角加速度凸輪角速度

朱建強(qiáng),田 方

(沈陽(yáng)工業(yè)大學(xué) 機(jī)械工程學(xué)院,沈陽(yáng) 110870)

0 引言

在對(duì)機(jī)械手進(jìn)行運(yùn)動(dòng)控制時(shí),在一般低速運(yùn)動(dòng)情況下,只要保證關(guān)節(jié)角度不超限即可,這對(duì)運(yùn)動(dòng)軌跡規(guī)劃影響很小。但是,當(dāng)機(jī)械手運(yùn)動(dòng)速度較快時(shí),關(guān)節(jié)角加速度和角速度極易超出約束范圍,影響控制精度和損壞硬件。因此,在機(jī)械手軌跡規(guī)劃時(shí)需要考慮約束條件,SARAVANAN 等[1]使用NURBS曲線規(guī)劃?rùn)C(jī)器人運(yùn)動(dòng)軌跡,通過(guò)優(yōu)化運(yùn)動(dòng)時(shí)間使得軌跡能夠滿(mǎn)足多種約束條件。同樣,用3次多項(xiàng)式規(guī)劃策略插關(guān)節(jié)軌跡[2-3]和基于3次樣條曲線的時(shí)間最優(yōu)軌跡規(guī)劃方法[4-5]只能保證速度、加速度連續(xù),而不能保證脈動(dòng)連續(xù),也無(wú)法處理脈動(dòng)約束問(wèn)題。WANG等[6]提出一種基于一種簡(jiǎn)化運(yùn)動(dòng)規(guī)劃的新方法滿(mǎn)足運(yùn)動(dòng)約束。還有XU等[7-8]通過(guò)優(yōu)化B樣條曲線的參數(shù),獲得滿(mǎn)足關(guān)節(jié)約束的運(yùn)動(dòng)軌跡。在運(yùn)動(dòng)時(shí)間是確定的情況下,無(wú)法通過(guò)優(yōu)化時(shí)間來(lái)解決約束問(wèn)題時(shí)。本文對(duì)關(guān)節(jié)運(yùn)動(dòng)加速度進(jìn)行優(yōu)化,結(jié)合對(duì)凸輪從動(dòng)件運(yùn)動(dòng)軌跡設(shè)計(jì)的研究,提出一種改進(jìn)梯形加速度曲線函數(shù)。該方法適用于工作任務(wù)為點(diǎn)到點(diǎn),且起始點(diǎn)和終止點(diǎn)速度、加速度都為零的工業(yè)機(jī)械手進(jìn)行軌跡規(guī)劃。以3R機(jī)械手為載體仿真,該方法成功的改善了關(guān)節(jié)最大加速度過(guò)大問(wèn)題,使機(jī)械手運(yùn)行軌跡平穩(wěn),產(chǎn)生協(xié)調(diào)的機(jī)械手運(yùn)動(dòng)。

1 凸輪設(shè)計(jì)理論分析

在凸輪設(shè)計(jì)的基本規(guī)律中要求凸輪函數(shù)必須在整個(gè)間隔(360°)內(nèi)通過(guò)位移的一階、二階導(dǎo)數(shù)連續(xù)。這和多關(guān)節(jié)機(jī)械手軌跡規(guī)劃有著相同的要求,在關(guān)節(jié)空間中進(jìn)行軌跡規(guī)劃是將關(guān)節(jié)變量q利用不同的函數(shù)曲線表示時(shí)間的函數(shù),同時(shí)規(guī)劃各關(guān)節(jié)的一階、二階導(dǎo)數(shù),有必要時(shí)還需要規(guī)劃它的三階導(dǎo)數(shù)(即沖擊)。在凸輪設(shè)計(jì)中,為保證函數(shù)二階導(dǎo)數(shù)曲線平滑且連續(xù),從加速度函數(shù)著手,諧波系列函數(shù)的優(yōu)勢(shì)使之能應(yīng)用到凸輪設(shè)計(jì)中。圖1顯示了一個(gè)加速度函數(shù)的全周期正弦曲線。它滿(mǎn)足了末端幅值為零的約束。正弦波的方程為:

(1)

通過(guò)將自變量θ除以間隔β的時(shí)段并且使用弧度測(cè)量θ和β。θ/β的值在0~1范圍內(nèi)。乘以2π得到一個(gè)完整周期的正弦波,無(wú)論β的值如何,正弦函數(shù)的參數(shù)都將在0和2π之間變化。常數(shù)C定義正弦波的幅。對(duì)加速度積分獲得速度。

(2)

圖1 正弦加速度函數(shù)

這里k1是常數(shù)。為了約束在停駐點(diǎn)時(shí)速度為0,代入邊界條件v=0 在θ=0 。得出k1為:

(3)

在時(shí)間間隔β的另一端替換邊界值,v=0,θ=β,k1得到同樣的結(jié)果。再對(duì)速度積分得出位移:

(4)

為了約束在停駐點(diǎn)時(shí)位移為零,代入邊界條件s=0 在θ=0 ,得到k2。凸輪從動(dòng)件在間隔β內(nèi)所需上升最大值為h并且對(duì)于任何一個(gè)凸輪規(guī)格而言都是常數(shù),代入邊界條件s=h,θ=β,得出C,k2=0。

(5)

代入C,得到加速度函數(shù)為:

(6)

代入C和k1,得到速度函數(shù)為:

(7)

代入C、k1和k2,得到位移函數(shù)為:

(8)

諧波系列函數(shù)很好的滿(mǎn)足了凸輪設(shè)計(jì)的要求,但具有較大的加速度以及速度。在具有運(yùn)動(dòng)約束的情況下,較小的運(yùn)動(dòng)加速度容易超出約束范圍,而較大的加速度不利于機(jī)器人運(yùn)動(dòng)的平穩(wěn)性和軌跡跟蹤精度。理想的軌跡規(guī)劃方法應(yīng)當(dāng)是在滿(mǎn)足約束的前提下,盡量采用較小的加速度。通過(guò)依次對(duì)角加速度約束、角速度約束和角度約束進(jìn)行分析和處理,結(jié)合凸輪設(shè)計(jì)理念提出新的軌跡函數(shù)來(lái)實(shí)現(xiàn)軌跡規(guī)劃,下面給出具體步驟。

2 改進(jìn)梯形加速度函數(shù)

選擇合適的角加速度曲線類(lèi)型對(duì)處理約束問(wèn)題至關(guān)重要,最能夠發(fā)揮機(jī)器人關(guān)節(jié)運(yùn)動(dòng)性能的角加速度曲線。為了減少因?yàn)榧铀俣冗^(guò)大而引起的軌跡誤差,關(guān)節(jié)最大加速度應(yīng)該減小并保持連續(xù)。如果使給定問(wèn)題的加速函數(shù)幅值的峰值最小化,那么最能滿(mǎn)足這個(gè)約束條件的函數(shù)就是如圖2所示的方波,稱(chēng)為恒定加速度函數(shù)。方波具有給定區(qū)間內(nèi)給定區(qū)域內(nèi)最小峰值的特性。由于它有很強(qiáng)的不連續(xù)性,因此,用來(lái)作為軌跡加速函數(shù)是不可行的。

圖2 常數(shù)加速度函數(shù)圖

方波的不連續(xù)性可以通過(guò)簡(jiǎn)單地將方波函數(shù)“直角”去除,使函數(shù)變得連續(xù),并創(chuàng)建如圖3所示的梯形加速函數(shù)。必須通過(guò)增加高于原始方波的峰值來(lái)替代去除的區(qū)域,以保持恒定時(shí)間所需滿(mǎn)足位移的要求。該函數(shù)峰值幅度的增加很小,并且理論上最大加速度顯著小于正弦加速度(擺線位移)函數(shù)理論上的峰值。但該梯形函數(shù)的一個(gè)缺點(diǎn)是它有非常不連續(xù)的沖擊函數(shù),如圖3所示。這樣不連續(xù)的沖擊函數(shù)會(huì)導(dǎo)致機(jī)械手劇烈的震動(dòng),影響精度和損害硬件。

圖3 梯形加速度函數(shù)圖

圖4 改進(jìn)梯形加速度函數(shù)圖

正弦加速度具有相對(duì)較平滑的余弦沖擊函數(shù)曲線,在間隔內(nèi)只有兩個(gè)不連續(xù)點(diǎn),并且優(yōu)于梯形加速度方波。如圖4所示,對(duì)梯形加速度函數(shù)進(jìn)行改進(jìn),稱(chēng)為改進(jìn)梯形加速度曲線。該函數(shù)是正弦加速度和恒定加速度曲線的結(jié)合。把全周期正弦波切割成4份,并且組合到方波中,使得從端點(diǎn)處的零到最大和最小峰值的平滑過(guò)渡,并且使得曲線連續(xù)。用于函數(shù)的正弦部分的總段周期(β)的部分可以變化。本文是在β/8,3β/8,5β/87,β/8處切割方波以插入正弦波,如圖4所示。

基于以上凸輪設(shè)計(jì)理論的研究并且滿(mǎn)足運(yùn)動(dòng)約束條件的情況下,該方法可應(yīng)用于工業(yè)區(qū)自動(dòng)化生產(chǎn)線上的機(jī)器人,如搬運(yùn)機(jī)器人、檢測(cè)機(jī)器人、裝配機(jī)器人、點(diǎn)焊機(jī)器人等。這些工作任務(wù)是點(diǎn)在關(guān)節(jié)空間的機(jī)械手軌跡規(guī)劃中,起點(diǎn)和終點(diǎn)的關(guān)節(jié)角速度和角加速度為零,工作任務(wù)要求與凸輪設(shè)計(jì)的凸輪從動(dòng)件運(yùn)動(dòng)軌跡要求相同,在多關(guān)節(jié)機(jī)械手軌跡規(guī)劃中,結(jié)合正弦加速度函數(shù)以及機(jī)械手工作任務(wù)要求得出改進(jìn)加速度函數(shù)。在機(jī)械手關(guān)節(jié)空間內(nèi),凸輪軌跡函數(shù)中上升的最大高度變化h即是最大關(guān)節(jié)角度變化θmax、角度間隔β即是時(shí)間間隔T、時(shí)間變量即為(t-t0)。

2.1 角加速度函數(shù)分析

(9)

2.2 角速度函數(shù)分析

當(dāng)角加速度滿(mǎn)足要求之后,考慮角速度的約束。較小的關(guān)節(jié)角速度,減小了機(jī)械系統(tǒng)的動(dòng)能,特別是對(duì)大質(zhì)量的物體。根據(jù)邊界約束條件,在初始t0時(shí)刻和終止時(shí)刻tf,角速度約束為0,根據(jù)式(7)、式(9)可得:

(10)

2.3 角度函數(shù)分析

當(dāng)角加速度和角速度都滿(mǎn)足要求之后,考慮角度的約束。根據(jù)邊界約束條件求得的方程,所以與傳統(tǒng)5次多項(xiàng)式插值方法一樣,滿(mǎn)足關(guān)節(jié)角度的約束。在初始t0時(shí)刻關(guān)節(jié)角度為θ0,終止時(shí)刻tf關(guān)節(jié)角度為θf(wàn),根據(jù)式(8)、式(10)可得:

(11)

由以上步驟最終得到的加速度是同時(shí)滿(mǎn)足角加速度約束、角速度約束和角度約束的最小加速度。

3 工作任務(wù)

以3R多關(guān)節(jié)機(jī)械手為載體,合理的設(shè)置機(jī)械手工作任務(wù)點(diǎn)A(550,0,-550)和B(800,0,0)并在MATLAB Robotics Toolbox中仿真出A點(diǎn)和B點(diǎn)的末端執(zhí)行器位置[9],如圖5所示,通過(guò)逆運(yùn)動(dòng)學(xué)方程解出對(duì)應(yīng)點(diǎn)關(guān)節(jié)的角度變量,如表1所示。

圖5 機(jī)械手工作任務(wù)點(diǎn)

表1 關(guān)節(jié)空間任務(wù)點(diǎn)

4 仿真

傳統(tǒng)軌跡規(guī)劃采用5次多項(xiàng)式過(guò)渡連續(xù)曲線函數(shù)[10],其2階導(dǎo)數(shù)也是連續(xù)的,可以使運(yùn)動(dòng)軌跡、運(yùn)動(dòng)速度和加速度都連續(xù)平滑。這有利于高速運(yùn)動(dòng),同時(shí)減少急速運(yùn)動(dòng)所加劇機(jī)構(gòu)的磨損和減少機(jī)器人操作臂的共振。同樣滿(mǎn)足加速度軌跡的連續(xù)性且工作任務(wù)要求(起始點(diǎn)和終止點(diǎn)的角速度,角加速度為零)與本文所提出的軌跡規(guī)劃方法進(jìn)行仿真比較。采用3R多關(guān)節(jié)機(jī)械手為載體,通過(guò)仿真對(duì)本文所提出的軌跡規(guī)劃方法進(jìn)行說(shuō)明,為了更能說(shuō)明文中所提軌跡規(guī)劃方法的效果,同時(shí)采用5次多項(xiàng)式規(guī)劃進(jìn)行比較,由于篇幅有限,只展示關(guān)節(jié)2仿真結(jié)果,如圖6所示。圖6顯示了關(guān)于關(guān)節(jié)2的角度、角速度和角加速度與時(shí)間曲線的關(guān)系。表2分別列出了這兩種方法的每個(gè)關(guān)節(jié)軌跡的最大加速度比較。可以看出,本文提出的方法的兩個(gè)關(guān)節(jié)的最大加速度均小于5階多項(xiàng)式插值方法的關(guān)節(jié)軌跡最大加速度。以第2關(guān)節(jié)為例,如圖6所示,該方法產(chǎn)生的最大加速度值為52.9653°/s2,而5次多項(xiàng)式插值方法對(duì)應(yīng)的最大加速度值為62.5587°/s2,約為前者的1.18倍。該方法用改進(jìn)梯形函數(shù)特性不僅滿(mǎn)足了任務(wù)要求條件,且減小了最大加速度峰值。這兩種方法都可以實(shí)現(xiàn)相同的工作任務(wù),即初始位置和目標(biāo)位置之間的點(diǎn)對(duì)點(diǎn)軌跡規(guī)劃,但所提出的方法會(huì)產(chǎn)生更小的關(guān)節(jié)加速度軌跡。因此,本文方提出的軌跡規(guī)劃方法更加可行和有效。

圖6 關(guān)節(jié)2角度,角速度,角加速度圖

表2 各關(guān)節(jié)最大加速度比較圖

5 結(jié)論

本文采用改進(jìn)梯形加速度軌跡函數(shù)方法,得出以下結(jié)論:

(1) 本文提出的軌跡規(guī)劃方法與傳統(tǒng)的5階多項(xiàng)式插值軌跡規(guī)劃方法相比,既保證了多關(guān)節(jié)機(jī)械手軌跡運(yùn)動(dòng)時(shí)角速度和角加速度光滑連續(xù),且減少了關(guān)節(jié)最大加速度,提高了機(jī)械手關(guān)節(jié)運(yùn)動(dòng)軌跡的光滑性和精確度。

(2) 改進(jìn)梯形加速度函數(shù)曲線,保證了起始點(diǎn)和終止點(diǎn)的角速度與角加速度為零,且關(guān)節(jié)加速度曲線在起始點(diǎn)終止點(diǎn)處連續(xù)變化,消除了機(jī)械抖動(dòng)。

(3) 關(guān)節(jié)空間軌跡規(guī)劃存在一個(gè)共同的缺點(diǎn),就是不利于處理避障問(wèn)題,這是有待進(jìn)一步研究的地方。

猜你喜歡
角加速度凸輪角速度
《液壓與氣動(dòng)》常用單位的規(guī)范
凸輪零件的內(nèi)花鍵拉削工藝的自動(dòng)化生產(chǎn)線
基于UG&VERICUT的弧面凸輪多軸數(shù)控加工仿真實(shí)現(xiàn)
自行車(chē)剎車(chē)問(wèn)題研究
基于MATLAB的盤(pán)形凸輪逆向工程
圓周運(yùn)動(dòng)角速度測(cè)量方法賞析
凸輪機(jī)構(gòu)在“S”型無(wú)碳小車(chē)中應(yīng)用的可行性
半捷聯(lián)雷達(dá)導(dǎo)引頭視線角速度提取
基于構(gòu)架點(diǎn)頭角速度的軌道垂向長(zhǎng)波不平順在線檢測(cè)
永磁式角加速度傳感器及其標(biāo)定方法的研究
太仆寺旗| 威信县| 裕民县| 霍林郭勒市| 铜梁县| 马关县| 安阳县| 滦平县| 金堂县| 泗洪县| 五大连池市| 三原县| 南城县| 湟源县| 冀州市| 全州县| 长顺县| 华池县| 怀仁县| 厦门市| 慈溪市| 张北县| 鹿泉市| 吉木萨尔县| 吴堡县| 舞阳县| 深州市| 镇坪县| 蒙山县| 二连浩特市| 合水县| 吉安县| 山阴县| 合山市| 阿合奇县| 遂宁市| 永济市| 临湘市| 都昌县| 平度市| 珠海市|