徐慧雯 陳波斌
摘 要 布魯頓酪氨酸激酶(Brutons tyrosine kinase, BTK)是B細胞受體信號傳導通路的重要組分,與多種B細胞腫瘤的生存和增殖密切相關。臨床試驗已經(jīng)證實,小分子BTK抑制劑伊布替尼具有良好的抗B細胞腫瘤活性。本文概要介紹BTK在B細胞受體等信號傳導通路中的作用、對B細胞腫瘤發(fā)生和發(fā)展的影響以及BTK抑制劑用于B細胞腫瘤治療的效果等研究進展。
關鍵詞 布魯頓酪氨酸激酶抑制劑 B細胞腫瘤 伊布替尼
中圖分類號:R979.19; R730.59 文獻標志碼:A 文章編號:1006-1533(2019)11-0003-05
Research progress in Brutons tyrosine kinase inhibitor in treatment of B cell malignancies*
XU Huiwen, CHEN Bobin**
(Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Brutons tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signaling and is closely related to the survival and proliferation of various B cell malignancies. Small molecule inhibitors of BTK have shown antitumor activity in several clinical trials. The effects of BTK on BCR signaling and some other signaling pathways and the occurrence and development of B cell malignancies are summarized. In addition, the effects of BTK inhibitors for the treatment of B cell malignancies are also discussed.
KEY WORDS Brutons tyrosine kinase inhibitor; B cell malignancies; ibrutinib
布魯頓酪氨酸激酶(Brutons tyrosine kinase, BTK)是胞漿內(nèi)非受體型酪氨酸激酶TEC家族中的一員,在B細胞生長發(fā)育、增殖分化過程中起著重要作用。BTK最早是于X-連鎖無丙種球蛋白血癥(X-linked agammaglobulinemia, XLA)患者中被發(fā)現(xiàn)的[1]。XLA患者因極度缺乏外周血B細胞和血漿免疫球蛋白,故會反復、持續(xù)發(fā)生嚴重感染。此后的研究證實,BTK是B細胞受體信號傳導通路的重要組分,而B細胞受體信號傳導通路在B細胞生長發(fā)育以及B細胞介導的適應性體液免疫應答過程中均發(fā)揮著至關重要的作用[2]。BTK在多種B細胞腫瘤中表達異常,如慢性淋巴細胞白血?。╟hronic lymphocytic leukemia, CLL)、套細胞淋巴瘤(mantle cell lymphoma, MCL)等,提示BTK是抗B細胞腫瘤的一種潛在作用靶點。
BTK抑制劑是一類可與BTK共價結(jié)合的小分子化合物,依布替尼(ibrutinib)就屬第一代BTK抑制劑。伊布替尼經(jīng)選擇性地與BTK的半胱氨酸殘基(C481)共價結(jié)合,由此不可逆地抑制BTK的活性。臨床試驗顯示,伊布替尼治療B細胞腫瘤有極好的效果,故美國FDA于2013年批準了依布替尼上市,用于多種B細胞腫瘤的二線治療[3]。2013—2017年,美國FDA又相繼批準伊布替尼用于復發(fā)或難治的CLL、MCL和瓦爾登斯特倫巨球蛋白血癥(Waldenstr?ms macroglobulinemia, WM)的一線治療。本文概要介紹BTK在B細胞受體等信號傳導通路中的作用、對B細胞腫瘤發(fā)生和發(fā)展的影響以及BTK抑制劑用于B細胞腫瘤治療的效果和不良反應等的研究進展。
1 BTK在B細胞受體信號傳導通路中的重要作用
B細胞膜上的B細胞受體能通過其胞外段可變區(qū)特異性地識別并結(jié)合抗原分子,但其胞內(nèi)段結(jié)構(gòu)域很短,CD79a-CD79b異源二聚體輔助B細胞受體向胞內(nèi)傳遞活化信號。磷酸化后的CD79a-CD79b與B細胞連接蛋白(B-cell linker protein, BLNK)相互作用,使BLNK活化。BTK、脾酪氨酸激酶以及Src家族激酶如Lyn等多種激酶被招募、聚集至活化的BLNK周邊,形成信號小體并發(fā)生磷酸化[4]。磷酸化的BTK激活磷脂酶C-γ2(phospholipase C-γ2, PLCγ2)。PLCγ2是一類極為重要的脂酶,可水解第二信使磷脂酰肌醇-3, 4, 5-三磷酸產(chǎn)生肌醇三磷酸和甘油二酯。肌醇三磷酸調(diào)節(jié)胞內(nèi)鈣離子濃度,激活活化T細胞核因子(nuclear factor of activated T cells, NFAT)。甘油二酯激活蛋白激酶C,誘導絲裂原活化的蛋白激酶(mitogen-activated protein kinase, MAPK)家族如胞外信號調(diào)節(jié)蛋白激酶(extracellular signalregulated protein kinases, ERK)1、ERK2等多種激酶活化,活化的ERK1、ERK2會促使底物c-Jun氨基末端激酶、p38蛋白的MAPK的繼續(xù)活化以及核因子κB(nuclear factor-κB, NF-κB)的轉(zhuǎn)錄激活[5]??傊?,BTK被上游激酶磷酸化激活后能激活PLCγ2,從而引發(fā)下游級聯(lián)反應,由此將上游B細胞受體活化信號傳導至下游并最終激活NF-κB等。
除BTK能傳導B細胞受體信號外,磷脂酰肌醇-3激酶(phosphatidylinositol 3 kinase, PI3K)可與絲氨酸/蘇氨酸激酶Akt相互作用,招募Akt至胞膜區(qū)磷酸化而激活Akt。激活后的Akt會促使NFAT、FoxOs和NF-κB等核因子的轉(zhuǎn)錄,從而激活一條不同于B細胞受體受抗原刺激后通過BTK介導的信號傳導通路,這條PI3K-Akt信號傳導通路也被稱為B細胞的“生存信號傳導通路”[6]。BTK可促進Akt的磷酸化,由此正向調(diào)節(jié)PI3K-Akt信號傳導通路的激活[7]。BTK在非經(jīng)典的B細胞受體信號傳導通路中亦起著一定的作用。
2 BTK對B細胞腫瘤生存和生長的影響
BTK信號傳導通路的激活會發(fā)出啟動CLL細胞生長的信號。通過檢測CLL患者的腫瘤樣本發(fā)現(xiàn),CLL細胞的BTK呈過表達狀態(tài),且其磷酸化的程度組成性增高[8]。對CLL小鼠模型的研究也發(fā)現(xiàn),BTK基因缺陷型小鼠不會發(fā)生CLL,而通過基因工程手段誘導BTK過表達的小鼠的CLL發(fā)生率和死亡率均升高[9]。體外研究顯示,使用伊布替尼處理CLL細胞可降低腫瘤細胞生存和增殖的能力[10]。這些研究表明,BTK信號傳導通路與CLL細胞的生存和增殖密切相關。
BTK在CLL細胞的遷移過程中亦發(fā)揮著重要作用。伊布替尼可有效阻斷趨化因子CXCL12、CXCL13介導的CLL細胞向淋巴結(jié)生發(fā)中心的遷移[11]。此外,實驗發(fā)現(xiàn),在CLL細胞與B細胞激活因子、α-腫瘤壞死因子(tumor necrosis factor, TNF)、白細胞介素-4、白細胞介素-6和CD40配基共培養(yǎng)時,加入伊布替尼可降低CLL細胞的發(fā)育能力[12],提示BTK抑制劑具有中和CLL微環(huán)境中的促生存因子的作用。在CLL細胞與CLL相關巨噬細胞共培養(yǎng)時,使用BTK抑制劑處理亦見能明顯減少CLL細胞增生和趨化因子CCL3、CCL4的生成[10],表明BTK抑制劑可通過阻斷巨噬細胞的共刺激作用而產(chǎn)生抗腫瘤微環(huán)境的作用。
以上機制可部分解釋伊布替尼治療CLL時患者出現(xiàn)再分布性淋巴細胞增多癥(redistribution lymphocytosis, RL)的原因[13]。RL表現(xiàn)為受累淋巴組織體積迅速縮小,而血液中的腫瘤細胞數(shù)量卻一過性地顯著增多。與傳統(tǒng)化療不同,伊布替尼通過“忽略性死亡”(death by neglect)機制使已脫離腫瘤微環(huán)境的腫瘤細胞死亡,故能避免因腫瘤細胞溶解死亡引發(fā)的腫瘤溶解綜合征[13]。RL在治療MCL、WM等患者時亦常見,可自行消退[14]。
總之,伊布替尼主要通過兩種機制產(chǎn)生抗腫瘤活性:一是抑制腫瘤B細胞內(nèi)部與其生存、增殖相關的信號傳導通路,二是阻斷腫瘤B細胞與腫瘤微環(huán)境的相互作用。
3 BTK抑制劑伊布替尼治療B細胞腫瘤的臨床研究
3.1 治療CLL
對CLL小鼠模型的研究發(fā)現(xiàn),伊布替尼治療可顯著延緩CLL進展[10]。Burger等[15]采用重水標記CLL患者的腫瘤細胞,以實時反映伊布替尼治療時CLL細胞的代謝情況。結(jié)果發(fā)現(xiàn),伊布替尼可阻斷CLL細胞增生,促使CLL細胞死亡。Ⅰ期臨床試驗顯示,伊布替尼治療CLL的總應答率為69%[16]。Ⅰb /Ⅱ期臨床試驗顯示,85例復發(fā)或難治的CLL患者接受伊布替尼治療,隨訪20.9個月時的總應答率為71%,其中完全緩解率為3%;隨訪3年時的總應答率提高至90%[17]。伊布替尼單藥治療復發(fā)或難治的CLL療效顯著,且長期持續(xù)用藥可進一步提高療效。
部分影響CLL化療預后的高危因素對伊布替尼治療結(jié)果的影響較小[18]。鑒于伊布替尼單藥治療大多無法達到CLL完全緩解,患者仍存在微小殘余病灶,須長期持續(xù)用藥,故目前臨床上正在開展多項伊布替尼聯(lián)合其他抗腫瘤藥物治療CLL的臨床試驗,以期進一步提高療效。
3.2 治療MCL
Ⅰ期臨床試驗顯示,9例MCL患者接受伊布替尼治療,7例患者對治療有良好應答[16]。Ⅱ期臨床試驗顯示,111例復發(fā)或難治的MCL患者接受伊布替尼治療,總應答率為68%,其中完全緩解率為21%,中位疾病無進展生存時間(progression-free survival, PFS)為13.9個月[19]。Ⅲ期臨床試驗證實,伊布替尼單藥治療復發(fā)或難治的MCL的療效優(yōu)于替西羅莫司(temsirolimus)[20]。伊布替尼治療進展期MCL的療效不佳且復發(fā)率高[21]。對伊布替尼治療高度敏感的MCL患者多為經(jīng)典的B細胞受體信號傳導通路過度活化者,耐藥患者則主要為非經(jīng)典的B細胞受體信號傳導通路過度活化者以及TNF受體相關因子-2基因突變者[22]。
3.3 治療WM
WM患者中約90%存在髓樣分化原發(fā)性反應基因88(myeloid differentiation primary response gene 88, MYD88)突變,約30%存在趨化因子受體CXCR4基因突變[23]。一項伊布替尼治療WM的臨床試驗顯示,總應答率為89.5%,其中應答性最好的是MYD88突變、而CXCR4基因為野生型的患者,他們對伊布替尼治療的總應答率為100%,且應答持續(xù)時間更長[24]。突變后的MYD88可通過BTK信號傳導通路激活NF-κB,此通路可被伊布替尼阻斷;而CXCR4基因突變會誘導Akt和ERK表達,表現(xiàn)出拮抗伊布替尼誘導WM細胞凋亡的作用。因此,應依據(jù)WM患者的基因突變類型決定是否選用伊布替尼治療。
4 B細胞腫瘤對伊布替尼的耐藥性
對伊布替尼耐藥的CLL患者常會發(fā)生Richter轉(zhuǎn)化,即由CLL轉(zhuǎn)化為侵襲性淋巴瘤如彌漫性大B細胞淋巴瘤等。這類患者多存在高風險基因型,如CLL細胞存在未突變型免疫球蛋白重鏈可變區(qū)基因、CLL細胞染色體17p缺失等,他們常因疾病進展或發(fā)生Richter轉(zhuǎn)化而不得不中止治療,中位總生存期僅3.1個月,預后極差[25]。伊布替尼作為三線用藥治療B細胞腫瘤的療效顯著差于一、二線用藥,且導致腫瘤出現(xiàn)耐藥性的幾率也更大[26]。
CLL細胞BTK中的C481S結(jié)構(gòu)的改變以及BTK信號傳導通路中的重要組分PLCγ2基因位點R665W和L845F的突變會導致CLL細胞對伊布替尼耐藥:C481S結(jié)構(gòu)的改變會降低BTK對伊布替尼的親和性,PLCγ2基因的突變則會導致BTK信號傳導通路下游自行激活[27]。研究發(fā)現(xiàn),使用B細胞淋巴瘤因子-2抑制劑唯奈托克(venetoclax)可克服CLL患者因PLCγ2基因突變引起的對伊布替尼的耐藥性[28],使用細胞周期蛋白依賴性激酶-4抑制劑可提高MCL細胞對伊布替尼的敏感性[29]。
5 伊布替尼治療的不良反應及第二代BTK抑制劑的研發(fā)
伊布替尼治療的不良反應程度多為輕到中度,但其某些嚴重不良反應亦可導致治療中斷[30]。接受伊布替尼治療,約50%患者會出現(xiàn)感染癥狀,其中20%為機會性致病菌感染性肺炎[31];約3%患者發(fā)生較嚴重的出血事件[32];超過16%患者發(fā)生心房纖顫[33]。發(fā)生心房纖顫的患者需使用抗凝藥物預防腦卒中,但此又會提高出血風險,故對伊布替尼治療患者應予以密切監(jiān)測。伊布替尼抑制心肌細胞PI3K-Akt信號傳導通路可能是其引發(fā)心房纖顫的原因,但具體機制還未明確[34]。
伊布替尼不是BTK的特異性抑制劑,它存在脫靶效應,與TEC家族的激酶(如Itk、Tec、Bmx等)、表皮生長因子受體、T細胞X染色體激酶和Janus激酶-3等均可發(fā)生相互作用,由此產(chǎn)生毒性及不良反應[35]。目前,國外正在研發(fā)第二代BTK抑制劑,包括acalabrutinib(ACP-196)、ONO/GS-4059和BGB-3111,它們對BTK的選擇性更高,有望減少不良反應發(fā)生率[36-37]。
6 結(jié)語
BTK是B細胞相關的多種信號傳導通路、尤其是B細胞受體信號傳導通路的重要組分,以BTK為作用靶點的小分子BTK抑制劑伊布替尼已在多項臨床試驗中顯示對B細胞腫瘤治療有顯著效果。未來除繼續(xù)研發(fā)第二代BTK抑制劑外,研究并確定BTK抑制劑與其他抗腫瘤藥物聯(lián)合治療B細胞腫瘤的方案也是非常重要的。
參考文獻
[1] Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia [J]. Cell, 1993, 72(2): 279-290.
[2] Hendriks RW, Yuvaraj S, Kil LP. Targeting Brutons tyrosine kinase in B cell malignancies [J]. Nat Rev Cancer, 2014, 14(4): 219-232.
[3] Burger JA, Buggy JJ. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) [J]. Leuk Lymphoma, 2013, 54(11): 2385-2391.
[4] Chiu CW, Dalton M, Ishiai M, et al. BLNK: molecular scaffolding through ‘cis-mediated organization of signaling proteins [J]. EMBO J, 2002, 21(23): 6461-6472.
[5] Bajpai UD, Zhang K, Teutsch M, et al. Brutons tyrosine kinase links the B cell receptor to nuclear factor κB activation[J]. J Exp Med, 2000, 191(10): 1735-1744.
[6] Kraus M, Alimzhanov MB, Rajewsky N, et al. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer [J]. Cell, 2004, 117(6): 787-800.
[7] Craxton A, Jiang A, Kurosaki T, et al. Syk and Brutons tyrosine kinase are required for B cell antigen receptormediated activation of the kinase Akt [J]. J Biol Chem, 1999, 274(43): 30644-30650.
[8] Lamason RL, McCully RR, Lew SM, et al. Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain [J]. Biochemistry, 2010, 49(38): 8240-8250.
[9] Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma [J]. Nature, 2011, 470(7332): 115-119.
[10] Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo[J]. Blood, 2012, 119(5): 1182-1189.
[11] de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia [J]. Blood, 2012, 119(11): 2590-2594.
[12] Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765 [J]. Blood, 2011, 117(23): 6287-6296.
[13] Burger JA, Montserrat E. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling [J]. Blood, 2013, 121(9): 1501-1509.
[14] Chang BY, Francesco M, De Rooij MF, et al. Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients [J]. Blood, 2013, 122(14): 2412-2424.
[15] Burger JA, Li KW, Keating MJ, et al. Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib [J/OL]. JCI Insight, 2017, 2(2): e89904 [2019-01-23]. doi: 10.1172/ jci.insight.89904.
[16] Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies [J]. J Clin Oncol, 2013, 31(1): 88-94.
[17] Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-na?ve and previously treated patients with CLL and SLL receiving single-agent ibrutinib [J]. Blood, 2015, 125(16): 2497-2506.
[18] Coutré SE, Furman RR, Flinn IW, et al. Extended treatment with single-agent ibrutinib at the 420 mg dose leads to durable responses in chronic lymphocytic leukemia/small lymphocytic lymphoma [J]. Clin Cancer Res, 2017, 23(5): 1149-1155.
[19] Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma [J]. N Engl J Med, 2013, 369(6): 507-516.
[20] Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantlecell lymphoma: an international, randomised, open-label, phase 3 study [J]. Lancet, 2016, 387(10020): 770-778.
[21] Martin P, Maddocks K, Leonard JP, et al. Postibrutinib outcomes in patients with mantle cell lymphoma [J]. Blood, 2016, 127(12): 1559-1563.
[22] Rahal R, Frick M, Romero R, et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma [J]. Nat Med, 2014, 20(1): 87-92.
[23] Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstr?ms macroglobulinemia [J]. N Engl J Med, 2012, 367(9): 826-833.
[24] Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Wadenstr?ms macroglobulinemia [J]. N Engl J Med, 2015, 373(6): 584-586.
[25] Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib[J]. Blood, 2015, 125(13): 2062-2067.
[26] Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia [J]. N Engl J Med, 2015, 373(25): 2425-2437.
[27] Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Brutons tyrosine kinase inhibitor ibrutinib [J]. N Engl J Med, 2014, 370(24): 2286-2294.
[28] Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukemia with 17p deletion: a multicentre, open-label, phase 2 study [J]. Lancet Oncol, 2016, 17(6): 768-778.
[29] Chiron D, Di Liberto M, Martin P, et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapsespecific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma [J]. Cancer Discov, 2014, 4(9): 1022-1035.
[30] Mulligan SP, Ward CM, Whalley D, et al. Atrial fibrillation, anticoagulant stroke prophylaxis and bleeding risk with ibrutinib therapy for chronic lymphocytic leukaemia and lymphoproliferative disorders [J]. Br J Haematol, 2016, 175(3): 359-364.
[31] Tillman BF, Pauff JM, Satyanarayana G, et al. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies [J]. Eur J Haematol, 2018, 100(4): 325-334.
[32] Jones JA, Hillmen P, Coutre S, et al. Use of anticoagulants and antiplatelet in patients with chronic lymphocytic leukaemia treated with single-agent ibrutinib [J]. Br J Haematol, 2017, 178(2): 286-291.
[33] Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib [J/OL]. Blood Adv, 2017, 1(20): 1739-1748 [2019-01-23]. doi: 10.1182/ bloodadvances.2017009720.
[34] McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling [J]. Blood, 2014, 124(25): 3829-3830.
[35] Herman SEM, Montraveta A, Niemann CU, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia [J]. Clin Cancer Res, 2017, 23(11): 2831-2841.
[36] Walter HS, Rule SA, Dyer MJ, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies [J]. Blood, 2016, 127(4): 411-419.
[37] Byrd JC, Harrington B, OBrien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia [J]. N Engl J Med, 2016, 374(4): 323-332.