李全,劉祖銘,彭凱,趙凡,呂學(xué)謙
?
機(jī)械球磨Y2O3粉末的組織結(jié)構(gòu)演變
李全,劉祖銘,彭凱,趙凡,呂學(xué)謙
(中南大學(xué) 粉末冶金國家重點(diǎn)實驗室,長沙 410083)
采用行星式球磨機(jī)對Y2O3粉末進(jìn)行球磨,利用X射線衍射、掃描電鏡和透射電鏡對粉末進(jìn)行組織及結(jié)構(gòu)表征,研究Y2O3在機(jī)械球磨過程中粒度、形貌、顯微組織及結(jié)構(gòu)的演變。結(jié)果表明,原始Y2O3粉末為單一立方結(jié)構(gòu),粒度呈雙峰分布,在高能磨球的作用下,粉末發(fā)生破碎、層片化和結(jié)構(gòu)轉(zhuǎn)變。球磨60 h后的Y2O3粉末尺寸細(xì)小均勻,完全分散,呈單峰、對數(shù)正態(tài)分布。球磨過程中,首先立方結(jié)構(gòu)的Y2O3發(fā)生結(jié)構(gòu)破壞,出現(xiàn)小尺寸的晶格缺陷并非晶化;晶格缺陷區(qū)域擴(kuò)大,形成非晶態(tài)和納米尺寸晶體的復(fù)合結(jié)構(gòu),最終完全轉(zhuǎn)變?yōu)榉蔷B(tài)結(jié)構(gòu)。球磨后60 h的Y2O3粉末呈不規(guī)則塊狀組織和短棒狀組織,不規(guī)則塊狀組織為非晶態(tài)基體和少量納米晶的復(fù)合結(jié)構(gòu),短棒狀組織為完全非晶結(jié)構(gòu)。
Y2O3粉末;機(jī)械球磨;非晶化;結(jié)構(gòu)演變;顯微組織
Y2O3具有極高的熱穩(wěn)定性,可在高溫環(huán)境中長期服役不發(fā)生分解和長大,是氧化物彌散強(qiáng)化(oxide dispersion strengthened,ODS)合金的主要強(qiáng)化相。彌散分布于合金基體的尺寸細(xì)小的Y2O3等氧化物相,能有效阻礙位錯和晶界的運(yùn)動,從而提高合金的力學(xué)性能,特別是高溫力學(xué)性能[1?3]。ODS合金中的氧化物相主要通過內(nèi)氧化法[4?5]或外加方式引入[6?7]。1970年BENJAMIN[8]首次采用機(jī)械合金化(mechanical alloying,MA)技術(shù)制備ODS鎳基高溫合金粉末,大幅提高了鎳基合金的高溫力學(xué)性能,使ODS合金得到快速發(fā)展。ODS鐵基合金因具有高強(qiáng)度、高抗氧化性能,優(yōu)異的高溫抗蠕變性能和抗輻射損傷性能,成為核反應(yīng)堆包殼材料和第一壁結(jié)構(gòu)材料等核能系統(tǒng)的優(yōu)選結(jié)構(gòu)材料[9?13]。美國橡樹嶺國家實驗室報道了采用機(jī)械合金化粉末制備的ODS鐵基合金內(nèi)3~5 nm的Y-Ti-O納米團(tuán)簇及其對提高合金高溫力學(xué)性能的作用,這種Y-Ti-O納米團(tuán)簇的形成與Y2O3的存在狀態(tài)有著密切聯(lián)系[14]。因此,研究Y2O3在機(jī)械合金化過程中的結(jié)構(gòu)轉(zhuǎn)變,對研究Y-Ti-O納米團(tuán)簇的形成機(jī)理,制備結(jié)構(gòu)穩(wěn)定、尺寸細(xì)小、分布均勻的氧化物,獲得高性能ODS鐵基合金具有重要意義。本文作者采用行星式球磨機(jī)對Y2O3粉末進(jìn)行球磨,利用X射線衍射儀、掃描電鏡和透射電鏡對球磨不同時間的粉末進(jìn)行組織及結(jié)構(gòu)表征,研究Y2O3在球磨過程中的組織結(jié)構(gòu)演變,分析和討論Y2O3的結(jié)構(gòu)演變機(jī)理。
選用從湖南省稀土研究院購買的Y2O3粉末,純度≥99.98%,粒度<200 μm,用行星式球磨機(jī)(MITR- YXQM-2L)進(jìn)行球磨。球磨罐和磨球的材質(zhì)均為不銹鋼,采用直徑分別為8,5和3 mm的磨球,按照質(zhì)量比1:1:1進(jìn)行配伍,球料質(zhì)量比為10:1,球磨機(jī)轉(zhuǎn)速為300 r/min,球磨氣氛為高純氬氣,球磨時間分別為10,20,40和60 h。
用MICRO-PLVS激光粒度分析儀測定Y2O3粉末的粒度分布。用Advance D8轉(zhuǎn)靶X射線衍射儀(X-ray diffraction, XRD)對粉末進(jìn)行物相分析,用Quanta FEG 250型場發(fā)射掃描電鏡(SEM)觀察粉末的形貌。采用JEOL-2100F場發(fā)射透射電鏡(TEM)對粉末結(jié)構(gòu)進(jìn)行觀察,并利用Gatan Digital Micrograph軟件對高分辯率透射電鏡(high resolution transmission electron microscope, HRTEM)圖像進(jìn)行晶體結(jié)構(gòu)分析。TEM檢測樣品的制備方法為:在球磨Y2O3粉末中加入20%HCl溶液,以溶解粉末中的鐵磁性雜質(zhì),然后進(jìn)行多道次清洗,超聲分散,再滴至超薄碳支持膜上,烘干,得到TEM檢測樣品。
圖1所示為Y2O3粉末的粒度分布。其中,原始Y2O3粉末的粒度呈雙峰分布,粒度主要集中在1.13~16.4 μm和31.1~186 μm兩個區(qū)域,體積分?jǐn)?shù)分別為75.97%和20.05%。球磨10 h后,粒徑在31.1~186 μm的粉末發(fā)生破碎,粒度呈單峰、對數(shù)正態(tài)分布,中位徑v(50)=6.72 μm,v(90)= 18.7 μm。球磨20 h后,粉末整體尺寸進(jìn)一步減小,粒度分布區(qū)間縮小,v(50)=4.58 μm,v(90)= 8.68 μm。球磨40 h后,粉末粒徑進(jìn)一步減小,v(50)與v(90)的差值減小,粒度分布更集中。球磨60 h后的粉末粒徑小于12.7 μm,v(50)=2.13 μm,v(90)=4.58 μm。
對比圖1中球磨不同時間的Y2O3粉末粒度分布,發(fā)現(xiàn)大尺寸粉末首先破碎,v(90)急劇減小,而v(50)緩慢減小。本研究的球磨體系為單一Y2O3,硬脆性Y2O3顆粒構(gòu)成“脆性–脆性”球磨體系,沒有塑性顆粒,Y2O3粉末粒度應(yīng)持續(xù)減小[15-17],但本研究中粉末細(xì)化至一定程度不再細(xì)化,出現(xiàn)粒度極值。因此,在球磨初期粉末細(xì)化明顯,特別是大尺寸顆粒;隨球磨時間增加,粉末細(xì)化過程變緩,最終粉末的粒度分布保持穩(wěn)定、集中,并服從對數(shù)正態(tài)分布。
圖1 Y2O3粉末的粒度分布
圖2 Y2O3粉末的XRD譜
圖3所示為Y2O3粉末的SEM形貌。其中,原始Y2O3粉末為不規(guī)則形狀,表面光滑,無團(tuán)聚(圖3(a))。球磨10 h后,粉末發(fā)生破碎,部分細(xì)小顆粒與大尺寸顆粒發(fā)生團(tuán)聚,形成表面粗糙的二次顆粒(圖3(b))。球磨20 h和40 h后,大尺寸顆粒完全破碎,團(tuán)聚現(xiàn)象消失(圖3(c)和(d))。球磨60 h后,Y2O3全部破碎為細(xì)小均勻、完全分散的粉末(圖3(e)),從放大圖看到細(xì)小Y2O3粉末呈不規(guī)則塊狀(圖3(f))。
圖4所示為Y2O3原始粉末的TEM顯微組織。其中,圖4(a)所示為原始Y2O3粉末的TEM明場相,可觀察到粉末由等軸晶組成,具有典型的納米晶衍射環(huán)特征,晶粒尺寸約100 nm。經(jīng)HRTEM分析(圖4(b)),Y2O3的晶面間距(211)=0.43 nm,(321)=0.28 nm,與XRD分析結(jié)果一致,表明原始Y2O3粉末具有完整的晶體結(jié)構(gòu)。從圖4(c)可見,經(jīng)60 h球磨后,Y2O3粉末呈不規(guī)則塊狀(Ⅰ)和短棒狀(Ⅱ)2種形貌,其SAED圖像的納米晶衍射環(huán)消失,出現(xiàn)非晶衍射特征(圖4(d))。對圖4(c)中的不規(guī)則塊狀組織進(jìn)行HRTEM觀察,如圖4(e)所示,發(fā)現(xiàn)該組織中殘留少量尺寸約2 nm的晶格條紋區(qū)(A區(qū)),其晶面間距= 0.36~0.38 nm,其它區(qū)域晶格條紋消失,表現(xiàn)出非晶態(tài)結(jié)構(gòu)特征(B區(qū)),即不規(guī)則塊狀組織為非晶結(jié)構(gòu)基體+少量納米晶。對圖4(c)中短棒狀組織(Ⅱ)進(jìn)行HRTEM觀察,如圖4(f)所示,該組織中無晶格條紋,原子排列具有完全非晶態(tài)結(jié)構(gòu)特征,表明短棒狀組織具有與不規(guī)則塊狀組織的B區(qū)完全一致的非晶態(tài)結(jié)構(gòu)。OKUDA等[20?22]報道了球磨ODS鐵基合金粉末中Y2O3衍射峰消失的現(xiàn)象,認(rèn)為Y2O3在球磨過程中分解為Y原子和O原子并固溶于Fe合金基體,這為形成Y-Ti-O納米團(tuán)簇提供了物質(zhì)條件,在后續(xù)熱成形過程中,Y,O與Ti反應(yīng)形成Y-Ti-O納米團(tuán)簇。本研究的結(jié)果表明,球磨Y2O3發(fā)生了結(jié)構(gòu)轉(zhuǎn)變,晶體Y2O3轉(zhuǎn)變?yōu)榉蔷B(tài)結(jié)構(gòu),導(dǎo)致其XRD譜中明銳的衍射峰寬化、消失。由此推測,球磨態(tài)ODS鐵基合金粉末中Y2O3衍射峰消失是Y2O3非晶化所致。這一結(jié)果表明,Y-Ti-O的形成機(jī)理可能與OKUDA等[20?22]的報道完全不同,這對研究和制備高性能ODS鐵基合金具有重要意義。
圖3 Y2O3粉末的SEM形貌
(a) Raw powders; (b), (c), (d), (e) Milled for 10, 20, 40 and 60 h, respectively; (f) Magnification of (e)
圖4 Y2O3粉末的TEM顯微組織
(a) TEM bright field and SAED pattern of raw Y2O3powders; (b) HRTEM lattice characteristics of raw Y2O3powders; (c), (d) TEM bright field and SAED pattern of powders milled for 60 h, respectively; (e), (f) HRTEM lattice characteristics of arrow I and II in (c), respectively
比較原始Y2O3粉末球磨不同時間后的XRD譜(圖2)和微觀結(jié)構(gòu)(圖3和圖4),Y2O3在球磨過程中發(fā)生了破碎和結(jié)構(gòu)轉(zhuǎn)變,這一過程可用圖5進(jìn)行描述。具有完整立方晶體結(jié)構(gòu)的Y2O3原始粉末(圖5(a))在球磨初期發(fā)生破碎(圖5(b)),Y2O3晶粒的結(jié)構(gòu)在高能磨球的沖擊作用下發(fā)生破壞,出現(xiàn)小尺寸的晶格缺陷。在球磨中期,Y2O3粉末進(jìn)一步破碎,小尺寸晶格缺陷區(qū)域擴(kuò)大,形成非晶態(tài)結(jié)構(gòu)和晶體結(jié)構(gòu)區(qū)(圖5(c))。進(jìn)一步球磨,非晶態(tài)結(jié)構(gòu)區(qū)域擴(kuò)大,直至完全轉(zhuǎn)變?yōu)榉蔷B(tài)結(jié)構(gòu)(圖5(d)),粉末破碎、納米化,而納米尺寸的非晶表現(xiàn)出延性特征[23],不利于進(jìn)一步細(xì)化,粉末粒度保持穩(wěn)定。
圖5 球磨過程中Y2O3粉末的結(jié)構(gòu)演變示意圖
(a) Raw Y2O3; (b) Initial stage of milling;(c) Medium stage of milling; (d) Final stage of milling
1) 原始Y2O3粉末呈不規(guī)則形狀,粒度呈雙峰分布并主要集中在1.13~16.4 μm和31.1~186 μm兩個區(qū)域。經(jīng)球磨后,粉末發(fā)生破碎、細(xì)化,尺寸細(xì)小均勻、完全分散,粒度呈單峰、對數(shù)正態(tài)分布。球磨60 h后,粉末粒度小于12.7 μm,v(50)=2.13 μm,v(90)= 4.58 μm。
2) 立方結(jié)構(gòu)的Y2O3粉末在高能磨球的作用下發(fā)生結(jié)構(gòu)破壞,形成晶格缺陷區(qū),并擴(kuò)展為非晶態(tài)結(jié)構(gòu)。
3) 球磨60 h的Y2O3呈不規(guī)則塊狀和短棒狀,不規(guī)則塊狀組織為非晶態(tài)基體和少量納米晶組成的復(fù)合結(jié)構(gòu),短棒狀組織為完全非晶態(tài)結(jié)構(gòu)。
[1] 李明, 周張健, 廖璐, 等. ODS鐵素體鋼中彌散氧化物的研究進(jìn)展[J]. 材料導(dǎo)報, 2010, 24(8): 94?98. LI Ming, ZHOU Zhangjian, LIAO Lu, et al. Research progress of dispersed oxides in ODS ferritic steels[J]. Materials Review, 2010, 24(8): 94?98.
[2] 章林, 曲選輝, 何新波, 等. ODS鐵素體鋼的研究進(jìn)展[J]. 材料科學(xué)與工程學(xué)報, 2009, 27(4): 639?643. ZHANG Lin, QU Xuanhui, HE Xinbo, et al. Research progress of ODS ferrite steels[J]. Journal of Materials Science and Engineering, 2009, 27(4): 639?643.
[3] 陳文婷, 熊惟浩, 張修海. Y2O3含量和燒結(jié)溫度對ODS鎳基合金性能的影響[J]. 稀有金屬材料與工程, 2010, 39(1): 112? 116. CHEN Wenting, XIONG Weihao, ZHANG Xiuhai. Effect of Y2O3content and sintering temperature on mechanical properties of ODS nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2010, 39(1): 112?116.
[4] 張劉杰. 氣霧化粉末制備鐵基高溫合金的組織和性能研究[D]. 長沙: 中南大學(xué), 2011. ZHANG Liujie. Microstructure and mechanical properties of an iron-based superalloy by gas atomization[D]. Changsha: Central South University, 2011.
[5] 徐延龍, 羅驥, 郭志猛, 等. 內(nèi)氧化法制備MgO彌散強(qiáng)化鐵基材料[J]. 粉末冶金材料科學(xué)與工程, 2015, 20(3): 431?437. XU Yanlong, LUO Ji, GUO Zhimeng, et al. Preparation of MgO dispersion strengthening ferrous materials by internal oxidation [J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(3): 431?437.
[6] RIEKEN J R, ANDERSON I E, KRAMER M J, et al. Reactive gas atomization processing for Fe-based ODS alloys[J]. Journal of Nuclear Materials, 2012, 428(1/3): 65?75.
[7] 郭旸, 劉祖銘, 蘇鵬飛, 等. 氮化物彌散強(qiáng)化鐵基合金的顯微組織和力學(xué)性能研究[J]. 粉末冶金技術(shù), 2016, 34(5): 361?367. GUO Yang, LIU Zuming, SU Pengfei, et al. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361?367.
[8] BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions, 1970, 1(10): 2943?2951.
[9] DOUSTI B, MOJAVER R, SHAHVERDI H R, et al. Microstructural evolution and chemical redistribution in Fe-Cr-W-Ti-Y2O3nanostructured powders prepared by ball milling[J]. Journal of Alloys and Compounds, 2013, 577: 409? 416.
[10] OKSIUTA Z, LEWANDOWSKA M, KURZYD?OWSKI K J. Mechanical properties and thermal stability of nanostructured ODS RAF steels[J]. Mechanics of Materials, 2013, 67(6): 15?24.
[11] ODETTE G R, ALINGER M J, B D Wirth. Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38(1): 471?503.
[12] MILLER M K, RUSSELL K F, HOELZER D T. Characterization of precipitates in MA/ODS ferritic alloys[J]. Journal of Nuclear Materials, 2006, 351(1?3): 261?268.
[13] MCCLINTOCK D A, SOKOLOV M A, HOELZER D T, et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT[J]. Journal of Nuclear Materials, 2009, 392(2): 353?359.
[14] MAZIASZ P J, LARSON D J, KIM I S. Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3ferritic alloy[J]. Scripta Materialia, 2001, 44(2): 359?364.
[15] GILMAN P S, BENJAMIN J S. Mechanical alloying[J]. Annual Review of Materials Research, 1983, 39(13): 279?300.
[16] YEW L P, LUNG Y J, MING L H. Amorphization behaviour in mechanically alloyed Ni-Ta powders[J]. Journal of Materials Science, 1998, 33(1): 235?239.
[17] SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2004, 46(1): 1?184.
[18] SKRIKANTH V, SATO A, YOSHIMOTO J, et al. Synthesis and crystal structure study of Y2O3high-pressure polymorph[J]. Crystal Research and Technology, 1994, 29(7): 981?984.
[19] HUSSON E, PROUST C, GILLET P, et al. Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy [J]. Materials Research Bulletin, 1999, 34(12): 2085?2092.
[20] OKUDA T, FUJIWARA M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel[J]. Journal of Material Science Letters, 1995, 14(22): 1600?1603.
[21] YAMASHITA S, OHTSUKA S, AKASAKA N, et al. Formation of nanoscale complex oxide particles in mechanically alloyed ferritic steel[J]. Philosophical Magazine Letters, 2004, 84(8): 525?529.
[22] SAKASEGAWA H, CHAFFRON L, LEGENDRE F, et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy[J]. Journal of Nuclear Materials, 2009, 384(2): 115?118.
[23] GUO H, YAN P F, WANG Y B, et al. Tensile ductility and necking of metallic glass[J]. Nature Materials, 2007, 6(10): 735? 739.
Microstructure evolution of Y2O3powder during mechanical milling
LI Quan, LIU Zuming, PENG Kai, ZHAO Fan, Lü Xueqian
(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Y2O3was mechanical milled by planetary ball mill and its particle size, morphology and the microstructure evolution were systematically investigated by XRD, SEM and TEM. The results show that raw Y2O3powder has cubic structure, and undergoes crushing, flaky and structure transforming during mechanical milling because of the collision effects of high energy milling balls. Raw Y2O3powder with bimodal distribution is crushed, refined and dispersed completely, and its particle size shows a single peak and lognormal distribution after mechanical milling for 60 h. The cubic structure Y2O3powder was destroyed and formed small scaled lattice defects during mechanical milling. The lattice defects region expands to a composite structure which consist of amorphous and nano-grains, and finally completely transformed into amorphous structure. The Y2O3powders transform to irregular bulk structure and short rod structure aftermechanical milling for 60 h. The irregular bulk structure is composite structure which consist of amorphous matrix and a few nano-grains, and the short rod structure is completely amorphous.
Y2O3powder; mechanical milling; amorphization; structure evolution; microstructure
TF122;TG146
A
1673-0224(2019)03-226-06
國家863計劃資助項目(2009AA03Z526);國家重點(diǎn)研發(fā)計劃資助項目(2016YFB0301300);中南大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項資金資助項目(2018ZZTS417)
2019?01?25;
2019?03?04
劉祖銘,教授,博士。電話:0731-88836355;E-mail: lzm@csu.edu.cn
(編輯 湯金芝)