国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

能量代謝在癲癇疾病中的研究進(jìn)展

2019-07-06 10:45周佳秀田紹文曠昕
新醫(yī)學(xué) 2019年12期
關(guān)鍵詞:癲癇

周佳秀?田紹文?曠昕

【摘要】大腦是高耗能器官,需要消耗大量能量才能發(fā)揮其功能,能量代謝對維持正常的神經(jīng)功能起重要作用。近年來多項(xiàng)研究顯示,在癲癇發(fā)作過程中大腦存在異常能量代謝,星形膠質(zhì)細(xì)胞在能量平衡控制中起重要作用。生酮飲食療法是目前療效較好的代謝相關(guān)治療方法,用于治療難治性癲癇的效果較好。該文就能量代謝在癲癇疾病中的研究進(jìn)展作一綜述。

【關(guān)鍵詞】癲癇;能量代謝;星形膠質(zhì)細(xì)胞;生酮飲食

Research progress on energy metabolism in epilepsy Zhou Jiaxiu, Tian Shaowen, Kuang Xin. Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang 421001, China

Corresponding author, Kuang Xin, E-mail: kx6924@ 126. com

【Abstract】The brain is a high energy-consuming organ. It requires a large quantity of energy to perform its function. Energy metabolism plays a pivotal role in maintaining normal nerve function. In recent years, multiple studies have demonstrated that abnormal energy metabolism of the brain occurs during the onset of epilepsy. Astrocytes play an important role in controlling energy balance. Ketogenic diet (KD) is a relatively efficacious metabolic treatment of refractory epilepsy. In this article, the research progress on energy metabolism in epilepsy was reviewed.

【Key words】Epilepsy;Energy metabolism;Astrocytes;Ketogenic diet

癲癇是一種常見的神經(jīng)系統(tǒng)疾病,以腦神經(jīng)元異常放電為特征。據(jù)統(tǒng)計(jì),全球癲癇患者超過了5000萬[1]。癲癇發(fā)作常伴隨著運(yùn)動、營養(yǎng)、認(rèn)知和心理功能的損害,嚴(yán)重影響患者的生活[2]。大部分癲癇患者可以通過抗癲癇藥物(AED)控制癲癇發(fā)作,但是仍有20% ~ 30%癲癇患者對于常規(guī)AED治療無效,這種情況被稱為難治性或耐藥性癲癇。長期以來,大量專家和學(xué)者就癲癇的發(fā)病機(jī)制作了深入研究,希望從中尋找新的分子靶點(diǎn)和藥物治療癲癇。近些年的研究顯示異常腦能量代謝與癲癇發(fā)病關(guān)系密切,因此深入了解能量代謝對癲癇疾病的影響有望為難治性癲癇新治療方法的開發(fā)提供基礎(chǔ)。

一、能量代謝與正常腦功能

大腦作為高耗能器官,需要消耗大量的能量才能發(fā)揮其功能。大腦僅占人體總體質(zhì)量的2%,但卻消耗了全身20%的氧氣和25%的葡萄糖,其中大部分能量來源于三羧酸循環(huán)(TCA)及氧化磷酸化,少部分來源于糖酵解[3]。信號傳導(dǎo)過程、神經(jīng)遞質(zhì)的攝取和再循環(huán)以及離子梯度的維持和恢復(fù),是導(dǎo)致大腦高耗能的主要原因。為了確保這些神經(jīng)元通路正常運(yùn)行,需要精確調(diào)節(jié)神經(jīng)元興奮性,并且需要三磷酸腺苷(ATP)形式的高能量供應(yīng)來支持神經(jīng)元的離子泵和通道活動[4]。中樞神經(jīng)系統(tǒng)興奮與抑制的失衡可導(dǎo)致癲癇發(fā)作,須嚴(yán)格調(diào)節(jié)腦能量代謝[5]。為了維持正常的神經(jīng)功能,大腦需要大量能量來供應(yīng)離子通道和神經(jīng)遞質(zhì)的正常活動,從而精細(xì)調(diào)節(jié)神經(jīng)元的興奮性[4]。星形膠質(zhì)細(xì)胞是一種神經(jīng)膠質(zhì)細(xì)胞,在大腦能量傳遞、生產(chǎn)、利用和儲存等方面發(fā)揮著積極作用[3]。目前許多研究顯示腦能量代謝與癲癇發(fā)病密切相關(guān),星形膠質(zhì)細(xì)胞在調(diào)節(jié)神經(jīng)元能量代謝方面起至關(guān)重要的作用,其功能異??赡軐?dǎo)致中樞神經(jīng)系統(tǒng)興奮與抑制功能失調(diào)而誘發(fā)癲癇[3]。

二、能量代謝與癲癇

1.異常糖代謝與癲癇

1.1葡萄糖氧化代謝

健康人和大多數(shù)標(biāo)準(zhǔn)飲食動物的大腦能量主要來自葡萄糖代謝。神經(jīng)元胞質(zhì)中葡萄糖經(jīng)糖酵解生成少量ATP,而線粒體氧化磷酸化則生成大量ATP。因此在進(jìn)食標(biāo)準(zhǔn)飲食時(shí),正常的氧化葡萄糖代謝功能和電子傳遞鏈?zhǔn)蔷S持正常大腦活動所必需的。在生理狀態(tài)下,神經(jīng)元主要通過TCA供能。而癲癇發(fā)作時(shí),由于大量神經(jīng)元異常同步放電導(dǎo)致大腦能量大量消耗,使葡萄糖轉(zhuǎn)運(yùn)和氧化代謝過程受阻,從而導(dǎo)致ATP生成減少,引起神經(jīng)元離子轉(zhuǎn)運(yùn)障礙、神經(jīng)遞質(zhì)攝取和釋放障礙、信號傳導(dǎo)過程受阻等,最終促使癲癇發(fā)生[6]。

葡萄糖是大腦主要能量來源,神經(jīng)元通過2種方式獲取葡萄糖,從血液中直接獲取和從星形膠質(zhì)細(xì)胞獲取[7]。類似于其他組織中的代謝,葡萄糖通過葡萄糖轉(zhuǎn)運(yùn)體(GLUT)進(jìn)入腦組織細(xì)胞,毛細(xì)血管內(nèi)皮細(xì)胞與星形膠質(zhì)細(xì)胞終足上的GLUT-1 以及星形膠質(zhì)細(xì)胞其他部位的GLUT-2能夠?qū)⒀褐械钠咸烟寝D(zhuǎn)運(yùn)至星形膠質(zhì)細(xì)胞中[8-9]。為了滿足腦組織對其能量需求,神經(jīng)元需保持較高的氧化代謝水平[10]。癲癇發(fā)作間期,由于局部神經(jīng)元細(xì)胞缺失、皮層萎縮、突觸活性減低等,可引起能量代謝減低,導(dǎo)致癲癇灶呈現(xiàn)葡萄糖代謝減低區(qū)[11]。癲癇患者的葡萄糖代謝紊亂與復(fù)發(fā)性癲癇誘發(fā)缺氧、局部缺血和線粒體功能障礙有關(guān)[12-16]。

1.2糖酵解

糖酵解過程作為生物體內(nèi)重要的旁路供能途徑參與癲癇發(fā)作過程,為癲癇發(fā)作提供能量。糖酵解分為有氧糖酵解和無氧糖酵解。在正常氧分壓下,神經(jīng)元主要攝取葡萄糖轉(zhuǎn)化為丙酮酸,經(jīng)過TCA和氧化磷酸化過程產(chǎn)生大量ATP,從而維持神經(jīng)系統(tǒng)的正常功能。當(dāng)大腦氧供不足時(shí),神經(jīng)元則經(jīng)無氧糖酵解過程產(chǎn)生乳酸。研究表明,大腦中還存在一種有氧糖酵解途徑,即在正常氧分壓下,星形膠質(zhì)細(xì)胞攝取外源性葡萄糖或利用細(xì)胞內(nèi)源性糖原產(chǎn)生乳酸并釋放到星形膠質(zhì)細(xì)胞外,經(jīng)神經(jīng)元攝取轉(zhuǎn)化為丙酮酸,然后經(jīng)TCA和氧化磷酸化產(chǎn)生ATP,構(gòu)成星形膠質(zhì)細(xì)胞-神經(jīng)元乳酸穿梭途徑[15-16]。

星形膠質(zhì)細(xì)胞-神經(jīng)元乳酸穿梭途徑在能量不足情況下對神經(jīng)元能量供應(yīng)起主要作用,以緩解有氧糖代謝供能系統(tǒng)能量供應(yīng)的短缺。乳酸穿梭機(jī)制為神經(jīng)元提供大量能量,以維持癲癇神經(jīng)元網(wǎng)絡(luò)的高能量需求。根據(jù)這種代謝機(jī)制,癲癇發(fā)作時(shí)糖酵解增加,其代謝產(chǎn)物乳酸為神經(jīng)元電活動主要能量來源[15]。星形膠質(zhì)細(xì)胞-神經(jīng)元乳酸穿梭途徑中乳酸脫氫酶(LDH)是乳酸穿梭必需的代謝酶[15]。在紅藻氨酸誘導(dǎo)的慢性癲癇模型和毛果蕓香堿誘導(dǎo)的急性癲癇模型中,使用LDH抑制劑草酸能抑制癲癇的發(fā)生,然而這種現(xiàn)象可被其下游代謝產(chǎn)物丙酮酸逆轉(zhuǎn)[15]。Shao等[17]使用2-脫氧-D-葡萄糖抑制糖酵解有效抑制了海馬切片自發(fā)性神經(jīng)元放電和癲癇樣放電,代謝狀態(tài)的改變可明顯影響細(xì)胞和神經(jīng)網(wǎng)絡(luò)的興奮性,糖酵解抑制劑2-脫氧-D-葡萄有望作為難治性癲癇的新療法。

1.3糖原代謝

大腦含有相當(dāng)少的糖原,大部分位于星形膠質(zhì)細(xì)胞中,星形膠質(zhì)細(xì)胞的糖原代謝對大腦的一些基本生理活動過程至關(guān)重要[18]。糖原分解能力下降會影響學(xué)習(xí),癲癇、阿爾茨海默病和2型糖尿病等均伴有異常星形膠質(zhì)細(xì)胞糖原代謝[18]。糖原是神經(jīng)傳遞過程中的能量底物,星形膠質(zhì)細(xì)胞糖原產(chǎn)生的乳酸在無其他能量底物的情況下能維持神經(jīng)元活性[17]。在缺乏外源性能量底物的情況下,阻礙星形膠質(zhì)細(xì)胞和受刺激神經(jīng)元之間的乳酸穿梭會加速神經(jīng)元衰竭[19]。

異常糖原代謝與癲癇發(fā)作的易感性增加有關(guān)[20]。糖原除了是能量底物外,還是谷氨酸和谷氨酰胺合成的前體,抑制糖原降解可能導(dǎo)致神經(jīng)元谷氨酸鹽合成下降[21]。此外,谷氨酸在神經(jīng)傳遞后,從突觸清除谷氨酸是與星形膠質(zhì)細(xì)胞相關(guān)的需要能量的過程之一,星形膠質(zhì)細(xì)胞能量不足可能導(dǎo)致轉(zhuǎn)運(yùn)蛋白逆轉(zhuǎn),引起突觸中谷氨酸的興奮性毒性[22]。星形膠質(zhì)細(xì)胞谷氨酸代謝失調(diào)可直接導(dǎo)致神經(jīng)元過度興奮,甚至引發(fā)癲癇發(fā)作。

2. GLUT-1缺乏綜合征(GLUT1-DS)與癲癇

GLUT1-DS由De Vivo等[23] 于1991年最先報(bào)道,該病呈常染色體顯性遺傳,以散發(fā)病例多見。其致病基因SLC2A1定位于1p34.2,編碼GLUT-1蛋白,GLUT-1在腦毛細(xì)血管、膠質(zhì)細(xì)胞和紅細(xì)胞膜上表達(dá),具有轉(zhuǎn)運(yùn)葡萄糖通過血腦屏障及紅細(xì)胞膜的作用。SLC2A1基因突變致使GLUT-1表達(dá)量減少或功能部分喪失,葡萄糖不能有效地通過血腦屏障,導(dǎo)致腦組織缺乏能量供應(yīng),產(chǎn)生一系列神經(jīng)系統(tǒng)癥狀。

SLC2A1的有害突變降低了星形膠質(zhì)細(xì)胞和神經(jīng)元的葡萄糖利用率[24-25]。最常見的臨床表現(xiàn)是嬰兒期發(fā)作的癲癇,與運(yùn)動障礙、小腦共濟(jì)失調(diào)和頭部生長減速相關(guān)[26]。本病癲癇樣表型的基礎(chǔ)可能與2種潛在的電生理機(jī)制相關(guān),可能是由于丘腦向皮質(zhì)的抑制性輸入障礙而導(dǎo)致皮質(zhì)興奮,也可能是由于內(nèi)源性皮層過度興奮所致[27]。在有效的抗癲癇治療中,GLUT1-DS患者對生酮飲食療法的反應(yīng)最好。

3.線粒體缺陷與癲癇

線粒體是極具活力的細(xì)胞器,具有多種功能,其中最著名的是氧化磷酸化產(chǎn)生ATP。其次線粒體在維持細(xì)胞內(nèi)鈣穩(wěn)態(tài)、活性氧生成、凋亡調(diào)控和神經(jīng)元神經(jīng)遞質(zhì)合成中也發(fā)揮重要作用。由于大腦依賴于葡萄糖的有氧氧化來滿足其高能需求,故易受線粒體代謝缺陷影響。線粒體疾病在神經(jīng)系統(tǒng)方面常表現(xiàn)為癲癇發(fā)作,并且有較高比例的患者難以治療,特別是呼吸鏈疾病患者,其中90%可能對抗癲癇藥物無反應(yīng)[28-29]。這些疾病通常影響具有高能量需求的組織,大腦受累常發(fā)生于兒童時(shí)期,通常表現(xiàn)為癲癇發(fā)作[29]。

線粒體癲癇的確切病理生理機(jī)制目前尚未清楚,目前已提出幾種可能機(jī)制解釋線粒體功能障礙下的神經(jīng)元過度興奮性:①Na+-K+-ATP酶缺陷,具有功能障礙線粒體的神經(jīng)元中,ATP產(chǎn)生異常破壞了跨細(xì)胞膜的電化學(xué)梯度,導(dǎo)致細(xì)胞內(nèi)鈉離子積累和靜息膜電位降低,從而增加了神經(jīng)元放電的可能性[30]。②氧化應(yīng)激,線粒體是活性氧的主要來源,活性氧誘導(dǎo)線粒體DNA、脂質(zhì)、TCA循環(huán)和呼吸鏈酶的氧化,可進(jìn)一步損害線粒體能量代謝,限制離子通道和能量依賴性轉(zhuǎn)運(yùn)體的活性,增加神經(jīng)元的興奮性,并誘導(dǎo)細(xì)胞凋亡[31]。③鈣穩(wěn)態(tài)失調(diào),線粒體在緩沖過多的細(xì)胞內(nèi)鈣中起主要作用,線粒體中鈣攝取的驅(qū)動力是呼吸鏈產(chǎn)生的質(zhì)子電化學(xué)梯度[32]。④抑制作用減弱,中間神經(jīng)元比谷氨酸能神經(jīng)元更易受到能量缺陷的影響,有缺陷的線粒體代謝將優(yōu)先影響抑制性神經(jīng)遞質(zhì)傳遞,增加癲癇發(fā)作風(fēng)險(xiǎn)[33-34]。

三、能量代謝與星形膠質(zhì)細(xì)胞

所有形式的癲癇均存在反應(yīng)性星形膠質(zhì)細(xì)胞增生癥,最常見的是海馬硬化癥,這與內(nèi)側(cè)顳葉癲癇和其他癲癇綜合征有關(guān)[35]。星形膠質(zhì)細(xì)胞參與神經(jīng)元營養(yǎng)供應(yīng),控制細(xì)胞外離子穩(wěn)態(tài),調(diào)節(jié)血腦屏障通透性、神經(jīng)元活動與局部血液供應(yīng)的耦合及糖原的儲存與釋放[36-37]。成年大腦中的星形膠質(zhì)細(xì)胞通過連接蛋白43和連接蛋白30組成的間隙連接通道,允許離子、第二信使、營養(yǎng)代謝物、核苷酸、氨基酸等進(jìn)行細(xì)胞間交換[38]。星形膠質(zhì)細(xì)胞-神經(jīng)元代謝偶聯(lián)網(wǎng)絡(luò)的形成是細(xì)胞發(fā)揮功能的先決條件。例如,從細(xì)胞間隙清除過量的鉀離子,通過星形膠質(zhì)細(xì)胞特異性膜蛋白谷氨酸轉(zhuǎn)運(yùn)蛋白-1調(diào)節(jié)細(xì)胞外谷氨酸,通過水通道蛋白-4調(diào)節(jié)水穩(wěn)態(tài),以及將能量代謝產(chǎn)物遞送給神經(jīng)元[3, 39]。星形膠質(zhì)細(xì)胞形成電和代謝偶聯(lián)巨大網(wǎng)絡(luò)的過程,依賴于局部代謝與能量利用。星形膠質(zhì)細(xì)胞也具有顯著的氧化代謝能力,星形膠質(zhì)細(xì)胞中線粒體的動力學(xué)被高度調(diào)控[40]。目前越來越多的研究者認(rèn)識到,受損的星形膠質(zhì)細(xì)胞功能和能量穩(wěn)態(tài)在癲癇發(fā)病機(jī)制中起著重要作用。

四、能量代謝相關(guān)治療

基于能量代謝的治療方法已被證明有助于癲癇的治療,目前療效較好的能量代謝相關(guān)治療方法為生酮飲食療法。生酮飲食療法出現(xiàn)于20世紀(jì)20年代,是一種高脂肪、低碳水化合物飲食,模仿饑餓狀態(tài),激發(fā)脂肪代謝產(chǎn)能和酮體生成,用于難治性癲癇的治療效果較好。生酮飲食使肝臟產(chǎn)生酮體,然后酮體被運(yùn)送至大腦,作為葡萄糖的替代能源。生酮飲食療法的作用機(jī)制目前尚未清楚,現(xiàn)有的研究表明,生酮飲食療法以新陳代謝為基礎(chǔ),通過增加腦能量儲備,提高神經(jīng)元穩(wěn)定性,從而控制癲癇發(fā)作[41]。生酮飲食療法能顯著提高大腦的能量生成,上調(diào)幾種能量代謝基因,增強(qiáng)線粒體的生物發(fā)生和密度,并增加能量儲備。生酮飲食療法的能量生成增強(qiáng)神經(jīng)元管理大腦代謝的能力,可改善神經(jīng)元功能和在壓力條件下的存活率。因此,經(jīng)生酮飲食療法治療后,腦組織對代謝應(yīng)激有更強(qiáng)的抵抗力,癲癇發(fā)作閾值也會提高[42-43]。

生酮飲食具有繞過糖酵解進(jìn)程、以酮體形式進(jìn)入TCA的獨(dú)特能力,進(jìn)而改變神經(jīng)元的電活動并最終抑制癲癇患者癲癇發(fā)作[21]。在丙酮酸脫氫酶復(fù)合物缺乏癥患者中,糖酵解終產(chǎn)物丙酮酸不能通過TCA進(jìn)行最佳代謝,導(dǎo)致乳酸的生成增加,生酮飲食療法能夠改善丙酮酸脫氫酶復(fù)合物缺乏患者的狀況[44]。在代謝性癲癇的遺傳模型及通過表觀遺傳機(jī)制的顳葉癲癇的嚙齒動物模型中,生酮飲食療法延緩了疾病的進(jìn)展,并延長了Kcna1缺失小鼠(一種進(jìn)行性癲癇的模型)的壽命[45]。需注意的是,生酮飲食療法適用于難治性兒童癲癇、GULT-1缺陷癥、丙酮酸脫氫酶缺乏癥等,而對于患有脂肪酸轉(zhuǎn)運(yùn)和氧化障礙疾病的患者則為禁忌。

五、結(jié)語與展望

綜上所述,能量代謝對維持正常的腦生理功能必不可少,異常的能量代謝會引起中樞神經(jīng)系統(tǒng)功能紊亂。深入了解癲癇發(fā)生的潛在生化機(jī)制及能量代謝對癲癇的影響,有望為尋找新的飲食干預(yù)或更有針對性的生物化學(xué)研究提供理論依據(jù),為更多的癲癇患者帶來希望。

參 考 文 獻(xiàn)

[1] 洪震. 癲癇流行病學(xué)研究. 中國現(xiàn)代神經(jīng)疾病雜志,2014, 14(11):919-923 .

[2] Trinka E, Kwan P, Lee B, Dash A. Epilepsy in Asia: disease burden, management barriers, and challenges. Epilepsia,2019, 60(Suppl 1):7-21.

[3] Belanger M, Allaman I, Magistretti PJ. Brain energy meta-bolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab,2011, 14(6):724-738.

[4] Alle H, Roth A, Geiger JR. Energy-efficient action potentials in hippocampal mossy fibers. Science,2009, 325(5946):1405-1408.

[5] Katsu-Jimenez Y, Alves RMP, Gimenez-Cassina A. Food for thought: impact of metabolism on neuronal excitability. Exp Cell Res,2017, 360(1):41-46.

[6] Popova I, Malkov A, Ivanov AI, Samokhina E, Buldakova S, Gubkina O, Osypov A, Muhammadiev RS, Zilberter T, Molchanov M, Paskevich S, Zilberter M, Zilberter Y. Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models. Neurobiol Dis,2017, 106:244-254.

[7] Newman LA, Korol DL, Gold PE. Lactate produced by glyco-genolysis in astrocytes regulates memory processing. PLoS One,2011, 6(12):e28427.

[8] Sarkis RA, Goksen Y, Mu Y, Rosner B, Lee JW. Cognitive and fatigue side effects of anti-epileptic drugs: an analysis of phase III add-on trials. J Neurol,2018,265(9):2137-2142.

[9] 楊華俊, 郭安臣, 王群. 癲癇的發(fā)病機(jī)制研究. 癲癇雜志,2017, 3(2):132-136.

[10] Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci,2010, 30(42):13983-13991.

[11] Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy, Part 1: sporadic temporal and extratemporal lobe epilepsy. J Nucl Med,2013, 54(10):1775-1781.

[12] Choy M, Wells JA, Thomas DL, Gadian DG, Scott RC, Lythgoe MF. Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus. Exp Neurol,2010, 225(1):196-201.

[13] van Eijsden P, Notenboom RG, Wu O, de Graan PN, van Nieuwenhuizen O, Nicolay K, Braun KP. In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res,2004, 1030(1):11-18.

[14] Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol,2015, 14(9):956-966.

[15] Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epi-lepsy. Science,2015, 347(6228):1362-1367.

[16] 翟瓊香,桂娟,喬惠憲,劉紀(jì)清. 小兒癲癇治療前后腦細(xì)胞葡萄糖代謝改變及臨床價(jià)值. 中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版),2008,29(2):198-201.

[17] Shao LR, Stafstrom CE. Glycolytic inhibition by 2-deoxy-d-glu-cose abolishes both neuronal and network bursts in an in vitro seizure model. J Neurophysiol,2017, 118(1):103-113.

[18] Oz G, DiNuzzo M, Kumar A, Moheet A, Seaquist ER. Revisiting glycogen content in the human brain. Neurochem Res,2015, 40(12):2473-2481.

[19] Walls AB, Sickmann HM, Brown A, Bouman SD, Ransom B, Schousboe A, Waagepetersen HS. Characterization of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) as an inhibitor of brain glycogen shunt activity. J Neurochem,2008, 105(4):1462-1470.

[20] DiNuzzo M, Mangia S, Maraviglia B, Giove F. Does abnormal glycogen structure contribute to increased susceptibility to seiz-ures in epilepsy? Metab Brain Dis,2015, 30(1):307-316.

[21] Gibbs ME, Lloyd HG, Santa T, Hertz L. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res,2007, 85(15):3326-3333.

[22] Johnson J Jr, Pajarillo E, Karki P, Kim J, Son DS, Aschner M, Lee E. Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology,2018, 67:112-120.

[23] De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med,1991, 325(10):703-709.

[24] Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol,2002, 52(4):458-464.

[25] Pascual JM, Wang D, Yang R, Shi L, Yang H, De Vivo DC. Structural signatures and membrane helix 4 in GLUT1: inferences from human blood-brain glucose transport mutants. J Biol Chem,2008, 283(24):16732-16742.

[26] Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep,2013, 13(4):342.

[27] Oyarzabal A, Marin-Valencia I. Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis,2019, 42(2):220-236.

[28] Saneto RP. Genetics of mitochondrial disease. Adv Genet,2017, 98:63-116.

[29] Rahman S. Mitochondrial disease and epilepsy. Dev Med Child Neurol,2012, 54(5):397-406.

[30] Caietta E, Cano A, Halbert C, Hugonenq C, Mancini J, Milh M, Lepine A, Villeneuve N, Chaussenot A, Paquis-Flucklinger V, Chabrol B. Epilepsy and mitochondrial diseases: retrospective study on 53 epileptic children. Arch Pediatr,2012, 19(8):794-802.

[31] Frantseva MV, Velazquez JL, Hwang PA, Carlen PL. Free radical production correlates with cell death in an in vitro model of epilepsy. Eur J Neurosci,2000,12(4):1431-1439.

[32] Brini M, Pinton P, King MP, Davidson M, Schon EA, Rizzuto R. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med,1999, 5(8):951-954.

[33] Kudin AP, Zsurka G, Elger CE, Kunz WS. Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol,2009, 218(2):326-332.

[34] Kann O, Huchzermeyer C, Kovacs R, Wirtz S, Schuelke M. Gamma oscillations in the hippocampus require high com-plex I gene expression and strong functional performance of mitochondria. Brain,2011, 134(Pt 2):345-358.

[35] Thom M. Review: hippocampal sclerosis in epilepsy: a neur-opathology review. Neuropathol Appl Neurobiol,2014, 40(5):520-543.

[36] Rosenegger DG, Tran CH, Wamsteeker Cusulin JI, Gordon GR. Tonic local brain blood flow control by astrocytes independent of phasic neurovascular coupling. J Neurosci,2015, 35(39):13463-13474.

[37] Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience,2004, 129(4):1045-1056.

[38] Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol,2007, 94(1-2):120-143.

[39] Hubbard JA, Szu JI, Yonan JM, Binder DK. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol,2016, 283(Pt A):85-96.

[40] Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: mechanisms, consequences, and unknowns. Glia,2018, 66(6):1213-1234.

[41] Boison D, Steinhauser C. Epilepsy and astrocyte energy meta-bolism. Glia,2018, 66(6):1235-1243.

[42] Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol,2006, 60(2):223-235.

[43] Bough K. Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia, 2008, 49 (Suppl 8):91-93.

[44] Sofou K, Dahlin M, Hallbook T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex defi-ciency: short- and long-term outcomes. J Inherit Metab Dis,2017, 40(2):237-245.

[45] Simeone KA, Matthews SA, Rho JM, Simeone TA. Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia, 2016, 57 (8):e178-e182.

(收稿日期:2019-10-08)

(本文編輯:洪悅民)

猜你喜歡
癲癇
缺血性腦卒中后癲癇怎么辦
癲癇6大誤區(qū)
癲癇多數(shù)可控可治
小兒癲癇病的確診和治療
關(guān)注易被忽視的癲癇“小發(fā)作”
玩電腦游戲易引發(fā)癲癇嗎?
癲癇,也可有良好預(yù)后
癲癇:消除誤解規(guī)范治療
腦卒中后癲癇39例臨床分析
敲打孩子頭部會引起癲癇嗎?
大庆市| 尼玛县| 泰州市| 庆元县| 扎赉特旗| 法库县| 阳朔县| 平罗县| 英山县| 新龙县| 西乌| 嫩江县| 商城县| 壤塘县| 富源县| 南投市| 客服| 微博| 二连浩特市| 永寿县| 习水县| 邵阳县| 苏州市| 麻阳| 石棉县| 汨罗市| 长丰县| 贵州省| 吐鲁番市| 宜良县| 克东县| 慈利县| 云浮市| 惠水县| 宝坻区| 磴口县| 赣州市| 永安市| 福安市| 吉安县| 吴桥县|