姜思,佟少明
?
雨生紅球藻蝦青素合成研究進(jìn)展
姜思,佟少明
遼寧師范大學(xué) 生命科學(xué)學(xué)院 植物生物工程重點實驗室,遼寧 大連 116081
蝦青素是一種重要的次級類胡蘿卜素,具有高活性的抗氧化功能,廣泛應(yīng)用于食品保健、醫(yī)藥、水產(chǎn)養(yǎng)殖等領(lǐng)域。雨生紅球藻是一種在脅迫條件下能夠大量積累蝦青素的微藻。文中回顧了雨生紅球藻蝦青素的生物合成研究的進(jìn)展,包括蝦青素生物合成的誘導(dǎo)與調(diào)控、蝦青素合成與光合作用及脂類代謝的關(guān)系等研究現(xiàn)狀。
蝦青素,生物合成,雨生紅球藻
蝦青素 (Astaxanthin) 是一種次級類胡蘿卜素,由2個紫羅酮環(huán)通過多烯鏈相連構(gòu)成,紫羅酮環(huán)的3和3′位置分別具有1個手性碳原子,因此存在3種可能形成的對映異構(gòu)體:3S、3′S,3R、3′S和3R、3′R,人工合成的蝦青素是這3種異構(gòu)體的混合物[1]。蝦青素具有強(qiáng)大的抗氧化能力,但不具備其他類胡蘿素所具有的典型的助氧化作用[2-3]。另外,蝦青素不是維生素的前體,過量攝入也不會使生物體遭受維生素過多癥的威脅[4]。因此,基于蝦青素的安全性及其對人類和動物健康的有益效果,已經(jīng)成為最重要的類胡蘿卜素生產(chǎn)對象之一,并被廣泛應(yīng)用于食品保健、醫(yī)藥、安全著色和水產(chǎn)養(yǎng)殖等領(lǐng)域[5-6]。
在自然界中,某些微藻、細(xì)菌和真菌以及一些食用類海產(chǎn)品都可以合成蝦青素,但微藻合成蝦青素的能力是最強(qiáng)的,雨生紅球藻更是其中的佼佼者[1]。雨生紅球藻隸屬于綠藻綱Chlorophyceae、團(tuán)藻目Volvocales,是一種廣泛分布于自然界中的單細(xì)胞淡水綠藻[7],在高光、氮缺失等脅迫條件下可以大量積累蝦青素[8-10]。雨生紅球藻累積的蝦青素可占其干重的2.7%–3.8%,且雨生紅球藻生成的蝦青素是比人工合成蝦青素生物活性更高的純3S、3′S構(gòu)象的蝦青素[1]?;谟晟t球藻能夠大量積累高活性蝦青素這一特點,加之天然蝦青素的生產(chǎn)需求及成本的實際要求,越來越多的研究集中到雨生紅球藻的蝦青素生物合成上[7]。
目前,對于雨生紅球藻的蝦青素合成和積累的研究主要集中在以下幾個方面:1) 影響雨生紅球藻蝦青素合成和積累的培養(yǎng)條件和培養(yǎng)方式的研究;2) 蝦青素在雨生紅球藻中的代謝合成途徑及相關(guān)分子調(diào)控機(jī)制的研究;3) 雨生紅球藻中蝦青素合成與其他代謝合成之間的聯(lián)系的研究;4) 蝦青素在雨生紅球藻脅迫耐受中所扮演的角色的研究等。這些研究結(jié)果為了解雨生紅球藻蝦青素積累過程提供了大量的實驗數(shù)據(jù),同時也為在雨生紅球藻中商業(yè)化生產(chǎn)蝦青素提供了理論依據(jù)和技術(shù)支持。
自1884年首次報道雨生紅球藻能夠積累蝦青素以來,蝦青素生物合成的生物化學(xué)、酶學(xué)以及與此相關(guān)的一些基因的分離得到了較多的研究,對蝦青素合成的整個代謝過程也有了充分的了解 (圖1)。蝦青素合成需要以初級類胡蘿卜素的β-胡蘿卜素 (β-Carotene)為前體[11],β-胡蘿卜素合成的前體物質(zhì)為異戊烯焦磷酸 (Isopentenyl pyrophosphate,IPP) 和二甲基烯丙基焦磷酸 (Dimethylallyl pyrophosphate,DMAPP),其中雨生紅球藻中的IPP是通過非甲羥戊酸途徑合成的[7],DMAPP是由IPP異構(gòu)酶 (IPI) 催化IPP生成的[12-13]。首先,3個IPP分子在牻牛兒牻牛兒焦磷酸合成酶 (GGPP synthase,GGPS) 的作用下被依次添加到DMAPP中產(chǎn)生C20牻牛兒牻牛兒焦磷酸 (Geranylgeranyl pyrophosphate,GGPP)[14]。兩個GGPP分子的頭對尾縮合在八氫番茄紅素合成酶 (Phytoene synthase,PSY) 催化下得到第一個在紫外光譜區(qū)有吸收的C40的前體物質(zhì)八氫番茄紅素 (Phytoene)[15-17]。接下來的4步反應(yīng)是由八氫番茄紅素去飽和酶 (Phytoene desaturaseⅠ,PDS) 和ζ-胡蘿卜素去飽和酶 (ζ-Carotene desaturase Ⅱ,ZDS) 催化的八氫番茄紅素的連續(xù)去飽和反應(yīng),依次生成六氫番茄紅素 (Phytofluene)、ζ-胡蘿卜素 (ζ-Carotene)、鏈孢紅素 (Neurosporene)、番茄紅素 (Lycopene),其中由PDS催化的反應(yīng)是該途徑的限速步驟,通過這些反應(yīng)增加了共軛碳-碳雙鍵的數(shù)量[15,18]。最后由定位在葉綠體膜上的番茄紅素β-環(huán)化酶(Lycopene β-cyclase,LCYB/CRTL-b)催化番茄紅素環(huán)化成含有2個β-紫羅蘭酮環(huán)的β-胡蘿卜素[19]。從IPP起始的β-胡蘿卜素的合成過程被認(rèn)為發(fā)生在葉綠體中,并運輸?shù)接椭?(Lipid droplets,LD) 中儲存下來,但β-胡蘿卜素運輸?shù)接椭沃械臋C(jī)制仍然不清楚[11, 20]。
以β-胡蘿卜素為底物的蝦青素的形成需要通過3,3′-羥化酶 (3,3′-hydroxylase,CRTR-b/CHY/ CRTZ) 及4,4′-酮化酶 (4,4′-ketolase,CRTO/BKT) 催化在紫羅酮環(huán)的C3和C3′處及C4和C4′處分別引入兩個羥基和兩個酮基[21-23]。蝦青素的合成是以β-胡蘿卜素酮基化起始的,由于BKT和CRTR-b作用順序的不同,共有3條潛在蝦青素合成路徑,目前被研究者廣泛接受的路徑有2條:其中一條代謝中間體依次為海膽酮 (Echinenone)、角黃素 (Canthaxanthin) 和金盞花紅素 (Adonirubin),并涉及了兩次連續(xù)的酮化和兩次連續(xù)的羥基化;另一條通路的代謝中間體依次為海膽酮、3-羥基海膽酮 (3-hydroxyechinenone) 和金盞花紅素 (Adonirubin),涉及兩次交替的酮化和羥基化[24]。雨生紅球藻產(chǎn)生的蝦青素主要以酯化的形式存在,酯化的過程被證實發(fā)生在內(nèi)質(zhì)網(wǎng)中,此外,由于CRTO蛋白在葉綠體中酶活性受到抑制,所以蝦青素合成的過程極有可能也發(fā)生在內(nèi)質(zhì)網(wǎng)中[20, 25-26]。
圖1 雨生紅球藻中蝦青素合成代謝途徑[24]
當(dāng)處于正常培養(yǎng)條件下的雨生紅球藻細(xì)胞暴露于脅迫環(huán)境中時,藻細(xì)胞會由綠色的具鞭毛游動細(xì)胞逐漸向紅色無鞭毛不動的包囊細(xì)胞轉(zhuǎn)變[7]。雨生紅球藻的這種響應(yīng)脅迫條件的變化過程是極其復(fù)雜的,可能伴隨著其他代謝事件的發(fā)生[27]。目前,大量的研究結(jié)果表明,諸多脅迫條件均可以誘導(dǎo)雨生紅球藻的蝦青素積累,例如高光、營養(yǎng)缺乏、極端溫度、高鹽度等[28-31]。
轉(zhuǎn)和兩種酶基因的酵母可以生成蝦青素以及在雨生紅球藻的野生型和蝦青素超積累突變體MT 2877中轉(zhuǎn)錄水平與蝦青素的積累呈線性相關(guān)的事實都證實了和基因表達(dá)對于生物體的蝦青素合成至關(guān)重要[32-33]。另外,將一定濃度的環(huán)己酰亞胺添加到處于脅迫處理早期階段 (約6 h) 的雨生紅球藻中,會使其細(xì)胞中蝦青素的積累受到抑制,而在脅迫處理早期之后添加環(huán)己酰亞胺則不會抑制蝦青素的產(chǎn)生,這說明蝦青素的合成可能受到諸如和等基因的轉(zhuǎn)錄水平的調(diào)控[24]。此外,研究發(fā)現(xiàn)脅迫條件下BKT蛋白的表達(dá)量僅在脅迫后的一段時間內(nèi)隨轉(zhuǎn)錄本的積累平行地增加,隨后酶的積累將不伴隨mRNA量的成比例增加,這表明蝦青素的合成調(diào)控可能受到翻譯水平的調(diào)控[34]。一定量的硫酸亞鐵和乙酸鈉的加入可以在高光脅迫的基礎(chǔ)上進(jìn)一步促進(jìn)蝦青素的積累,而不會使類胡蘿卜素合成相關(guān)基因表達(dá)進(jìn)一步上調(diào),此結(jié)果則暗示著翻譯后水平調(diào)控的存在[35-38]。此外,本實驗室的研究發(fā)現(xiàn)在高光缺氮脅迫下,一些與脅迫有關(guān)的轉(zhuǎn)錄因子包括Myb轉(zhuǎn)錄因子、WRKY family等的轉(zhuǎn)錄表達(dá)上調(diào),也暗示蝦青素合成的轉(zhuǎn)錄水平調(diào)控是重要的調(diào)控方式之一??傊?,通過蝦青素關(guān)鍵酶基因的轉(zhuǎn)錄和翻譯水平的調(diào)控及酶蛋白的翻譯后活性調(diào)控是實現(xiàn)雨生紅球藻蝦青素的誘導(dǎo)合成的主要機(jī)制。
高光是誘導(dǎo)雨生紅球藻蝦青素合成的脅迫條件之一,越來越多的研究表明光合作用與蝦青素合成兩者之間關(guān)系緊密。一方面,高光脅迫能夠使光合系統(tǒng)產(chǎn)生活性氧簇 (Reactive oxygen species,ROS),ROS成員之一H2O2的處理可以使正常培養(yǎng)條件下的雨生紅球藻積累蝦青素,而ROS清除劑處理會抑制脅迫條件下蝦青素的大量積累,甚至有研究者認(rèn)為ROS作為第二受體參與誘導(dǎo)蝦青素的積累[4,39-40]。另一方面,Steinbrenner和Linden用光合抑制劑的實驗發(fā)現(xiàn)蝦青素合成關(guān)鍵酶基因的光誘導(dǎo)可能受光合作用控制,其中涉及作為氧化還原傳感器的質(zhì)醌庫 (Plastoquinone,PQ) 可用于在轉(zhuǎn)錄水平上調(diào)節(jié)葉綠體和核編碼的光合相關(guān)基因的表達(dá),以及通過LHC Ⅱ調(diào)節(jié)兩個光系統(tǒng)之間的激發(fā)能量分布,從而控制紅球藻中蝦青素上游類胡蘿卜素的生物合成[41]。此外,先前已報道質(zhì)體末端氧化酶 (Plastid terminal oxidase of chlororespiration,PTOX) 的活性的增加可防止電子傳遞鏈飽和,同時其活性高低對于胡蘿卜素生成也至關(guān)重要,涉及八氫番茄紅素去飽和酶和ζ-胡蘿卜素去飽和酶的氧化還原反應(yīng),這也表明光合作用可能通過PTOX對蝦青素合成過程進(jìn)行調(diào)控[31]。
蝦青素被發(fā)現(xiàn)可以結(jié)合到光系統(tǒng)Ⅰ (Photosystem Ⅰ complex,PSⅠ) 和光系統(tǒng)Ⅱ (Photosystem Ⅱ complex,PSⅡ) 上,替代部分β-胡蘿卜素,但蝦青素與光系統(tǒng)的結(jié)合并沒有提高光保護(hù)能力,反而降低了激發(fā)能向反應(yīng)中心轉(zhuǎn)移的效率,因此,研究者認(rèn)為蝦青素結(jié)合會部分破壞PSⅠ和PSⅡ的穩(wěn)定性,相關(guān)的研究也證實在強(qiáng)光下生長的雨生紅球藻細(xì)胞具有較高的PSⅡ不穩(wěn)定性的特征,這表明蝦青素可能通過這種方式反過來調(diào)控光合作用,并減少線性光合電子傳遞而增加環(huán)式電子傳遞來增強(qiáng)微藻應(yīng)對強(qiáng)光的抵抗力[42-44]。在本實驗室的研究中也發(fā)現(xiàn)在高光及缺氮的脅迫下,編碼捕光天線蛋白復(fù)合體LHC的基因所有成員都出現(xiàn)了上調(diào)或下調(diào)表達(dá)的變化,但光系統(tǒng)中的LCH基因表達(dá)的變化與蝦青素結(jié)合到光系統(tǒng)之間的關(guān)系有待進(jìn)一步確認(rèn)。
在雨生紅球藻中合成的蝦青素并不全部以游離的形式存在,尤其是紅色包囊時期的雨生紅球藻中積累的大部分蝦青素是以與棕櫚酸、油酸或亞油酸這些脂肪酸(Fatty acid,F(xiàn)A) 脫水后形成的單酯和二酯的形式存在,其中有70%單酯、25%二酯而僅有5%游離的蝦青素,用于蝦青素酯化的二酰基甘油?;D(zhuǎn)移酶已經(jīng)被分離得到,同時酯化后的蝦青素也被證明比游離的蝦青素具有更高的穩(wěn)定性[26,45-47],酯化后的蝦青素被儲存在LD中,三?;视?(Triacylglycerol,TAG) 這種中性脂質(zhì)是細(xì)胞質(zhì)中LD的主要成分[48-49]。通過抑制脂質(zhì)生物合成可以消除蝦青素的積累,而阻斷蝦青素生物合成不能阻止中性脂質(zhì)的積累和LD的形成,這表現(xiàn)出蝦青素的積累對酯化過程和在LD中儲藏的依賴,Chen等獲得的結(jié)果也證實這種相互作用是在代謝物水平上與反饋相關(guān)[26, 50]??傊?,蝦青素的酯化及其在LD中的積累的過程進(jìn)一步協(xié)助雨生紅球藻在脅迫條件下大量積累蝦青素。
蝦青素的酯化及油脂滴中主要的中性油脂的形成均需要脂肪酸 (Fatty acids,F(xiàn)A) 的參與,大量的蝦青素的酯化和其在LD的儲藏就意味著需要大量的脂肪酸,在蝦青素積累的包囊細(xì)胞中也確實存在著大量的FA[51-52]。在蝦青素積累過程中還涉及FA合成的關(guān)鍵前體乙酰輔酶A池的增加,與FA合成相關(guān)的其他基因如烷烴1-單加氧酶、醇脫氫酶和三?;视椭久傅纳险{(diào)表達(dá)[53-54]。由此,蝦青素的積累與FA的積累表現(xiàn)出了積累上的同步性,即趨向于FA合成和蝦青素合成的碳分配,本實驗室的轉(zhuǎn)錄組數(shù)據(jù)也證實了這一點,但這種同步性的表現(xiàn)是否存在共同的調(diào)控方式,有待進(jìn)一步探究。
一些外源物質(zhì)的添加會對雨生紅球藻蝦青素的產(chǎn)量有顯著影響。如Lu等發(fā)現(xiàn)了外源甲基茉莉酮酸酯和赤霉素增加了雨生紅球藻藻株WB-1中蝦青素的產(chǎn)量,并在基因的5′側(cè)翼區(qū)域發(fā)現(xiàn)了典型的赤霉素A3響應(yīng)順式元件,這暗示著蝦青素的合成調(diào)控非常有可能受到內(nèi)源激素的調(diào)節(jié)[55]。Ding等則利用褪黑素證實了cAMP信號傳導(dǎo)途徑與微藻蝦青素生物合成正相關(guān),另外,一氧化氮 (NO) 依賴性MAPK信號傳導(dǎo)級聯(lián)被激活,證實MAPK是生理過程中NO作用的靶標(biāo)[56]。在高光和缺氮條件下添加二丁基羥基甲苯 (Butylated hydroxytoluene,BHT) 的實驗證實,作為非生物脅迫物質(zhì)BHT的外源添加不僅增加了蝦青素和脂質(zhì)的積累,同時使內(nèi)源NO的產(chǎn)生量增加,由此,結(jié)合Ding等[56]的實驗可以推測,NO可能參與了蝦青素合成的誘導(dǎo)調(diào)控[57]。
就目前的研究結(jié)果來看,蝦青素的合成受到脅迫條件的誘導(dǎo),其中最主要的是高光和氮饑餓脅迫;蝦青素合成的代謝途徑基本明確,存在著以β-胡蘿卜素為前體起始于酮化作用的兩條合成路線;參與蝦青素合成的酮化酶和羥化酶,受到多水平的調(diào)控;光合作用、ROS的積累、蝦青素的酯化以及其在油脂滴中的積累,均與蝦青素的合成積累過程有著密切的關(guān)系。此外,近年來在雨生紅球藻的研究中廣泛應(yīng)用的轉(zhuǎn)錄組技術(shù)所得的數(shù)據(jù)突出了蝦青素合成關(guān)鍵酶基因表達(dá)對于蝦青素合成的重要性,也證實了脅迫條件下碳分配趨向于蝦青素合成和脂肪酸合成[58]。代謝組學(xué)的研究在雨生紅球藻蝦青素積累中也得到了應(yīng)用,在代謝水平上證實了脅迫條件下碳分配趨向于蝦青素合成和脂肪酸合成的事實[54,59]??傊?,在脅迫條件下,雨生紅球藻代謝活動總體趨向于蝦青素的合成和積累有利的方向進(jìn)行 (圖2)。
盡管我們已經(jīng)掌握了許多雨生紅球藻蝦青素合成的知識,但事實上許多方面的研究仍處于探索階段,比如,蝦青素合成過程中所涉及的推測的中間代謝體仍然沒能測定完全,蝦青素生物合成途徑中相關(guān)酶的表達(dá)調(diào)控還不清晰,以及脅迫誘導(dǎo)引起的信號傳導(dǎo)通路還未知;ROS和PTOX被認(rèn)為可能參與到了蝦青素的合成誘導(dǎo)調(diào)控中,但仍缺乏直接的證據(jù);蝦青素積累極其依賴于酯化過程和其在油脂滴中的積累,但這三者之間的更為深入的關(guān)系仍然是未知的。此外,我們對于雨生紅球藻在耐受脅迫過程中蝦青素所扮演的角色了解仍然是不完全的,尤其是那些發(fā)生在蝦青素大量積累和其他類胡蘿卜素合成之前的早期事件更是了解甚少,這些早期事件可能涉及保護(hù)細(xì)胞免受活性氧積累的損傷、呼吸的順勢變化、光合固定以及不同代謝物池和細(xì)胞區(qū)室之間碳的分配等不同的生理過程。雖然,近年來的轉(zhuǎn)錄組和代謝組的研究為我們提供了更為全面的轉(zhuǎn)錄和代謝水平上的認(rèn)識,幫助找尋與蝦青素合成有關(guān)的線索,但值得注意的是,利用脅迫處理所得的線索只能表明其與脅迫處理具有直接的相關(guān)性,而不能證明其與蝦青素積累的相關(guān)性,所以仍然需要其他的研究證實這些線索與蝦青素積累的相關(guān)性??偟膩砜矗?dāng)前的研究受限于藻細(xì)胞應(yīng)對脅迫的復(fù)雜響應(yīng)以及蝦青素合成的復(fù)雜調(diào)控,因此亟需有效的手段和方法找出藻細(xì)胞應(yīng)對脅迫的復(fù)雜響應(yīng)中與蝦青素積累相關(guān)的部分,并分水平地逐步明確蝦青素合成的復(fù)雜調(diào)控。
圖2 脅迫條件下雨生紅球藻中蝦青素的積累
[1] Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs, 2014, 12(1): 128–152.
[2] Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr, 2006, 46(2): 185–196.
[3] Otani H. Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. Oxid Med Cell Longev, 2013, 2013: 796891.
[4] Solovchenko AE. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res, 2015, 125(3): 437–449.
[5] Yuan JP, Peng J, Yin K, et al. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res, 2011, 55(1): 150–165.
[6] Davinelli S, Nielsen ME, Scapagnini G. Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutrients, 2018, 10(4): 522.
[7] Shah MM, Liang YM, Cheng JJ, et al. Astaxanthin-producing green microalga: from single cell to high value commercial products. Front Plant Sci, 2016, 7: 531.
[8] Harker M, Tsavalos AJ, Young AJ. Factors responsible for astaxanthin formation in the Chlorophyte. Bioresour Technol, 1996, 55(3): 207–214.
[9] Orosa M, Valero JF, Herrero C, et al. Comparison of the accumulation of astaxanthin inand other green microalgae under N-starvation and high light conditions. Biotechnol Lett, 2001, 23(13): 1079–1085.
[10] Domínguez-Bocanegra AR, Legarreta IG, Jeronimo FM, et al. Influence of environmental and nutritional factors in the production of astaxanthin from. Bioresour Technol, 2004, 92(2): 209–214.
[11] Grünewald K, Hagen C. β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoids in. J Appl Phycol, 2001, 13(1): 89–93.
[12] Sun ZR, Cunningham FX Jr, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci USA, 1998, 95(19): 11482–11488.
[13] Gwak Y, Hwang YS, Wang BB, et al. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in. J Exp Bot, 2014, 65(15): 4317–4334.
[14] Britton G. Biosynthesis of carotenoids//Young AJ, Britton G, Eds. Dordrecht: Springer, 1993: 133–182.
[15] Cunningham FX, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49(1): 557–583.
[16] Steinbrenner J, Linden H. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced Astaxanthin formation in the green alga. Plant Physiol, 2001, 125(2): 810–817.
[17] Vidhyavathi R, Venkatachalam L, Sarada R, et al. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green algaunder nutrient stress conditions. J Exp Bot, 2008, 59(6): 1409–1418.
[18] Li YT, Sommerfeld M, Chen F, et al. Effect of photon flux densities on regulation of carotenogenesis and cell viability of(Chlorophyceae). J Appl Phycol, 2010, 22(3): 253–263.
[19] Chamovitz D, Sandmann G, Hirschberg J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem, 1993, 268(23): 17348–17353.
[20] Collins AM, Jones HD, Han DX, et al. Carotenoid distribution in living cells of(Chlorophyceae). PLoS ONE, 2011, 6(9): e24302.
[21] Kajiwara S, Kakizono T, Saito T, et al. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from, and astaxanthin synthesis in. Plant Mol Biol, 1995, 29(2): 343–352.
[22] Lotan T, Hirschberg J. Cloning and expression inof the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in. FEBS Lett, 1995, 364(2): 125–128.
[23] Misawa N, Satomi Y, Kondo K, et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol, 1995, 177(22): 6575–6584.
[24] Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res, 2010, 106(1/2): 155–177.
[25] Grünewald K, Hirschberg J, Hagen C. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga. J Biol Chem, 2001, 276(8): 6023–6029.
[26] Chen GQ, Wang BB, Han DX, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in(Chlorophyceae). Plant J, 2015, 81(1): 95–107.
[27] Leu S, Boussiba S. Advances in the production of high-value products by microalgae. Ind Biotechnol, 2014, 10(3): 169–183.
[28] Sarada R, Tripathi U, Ravishankar GA. Influence of stress on astaxanthin production ingrown under different culture conditions. Proc Biochem, 2002, 37(6): 623–627.
[29] Pelah D, Marton I, Wang W, et al. Accumulation and protection activity of protease-resistant heat-stable proteins induring high light and nitrogen starvation. J Appl Phycol, 2004, 16(2): 153–156.
[30] Giannelli L, Yamada H, Katsuda T, et al. Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga. J Biosci Bioeng, 2015, 119(3): 345–350.
[31] Li YT, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in(Chlorophyceae). J Plant Physiol, 2008, 165(17): 1783–1797.
[32] Lin YJ, Chang JJ, Lin HY, et al. Metabolic engineering a yeast to produce astaxanthin. Bioresour Technol, 2017, 245: 899–905.
[33] Hu ZY, Li YT, Sommerfeld M, et al. Enhanced protection against oxidative stress in an astaxanthin-overproductionmutant (Chlorophyceae). Eur J Phycol, 2008, 43(4): 365–376.
[34] Meng CX, Teng CY, Jiang P, et al. Cloning and characterization of beta-carotene ketolase gene promoter in. Acta Biochim Biophys Sin, 2005, 37(4): 270–275.
[35] Kobayashi M, Kakizono T, Nagai S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga,. Appl Environ Microbiol, 1993, 59(3): 867–873.
[36] Jeon YC, Cho CW, Yun YS. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga. Enzyme Microb Technol, 2006, 39(3): 490–495.
[37] Hong ME, Choi YY, Sim SJ. Effect of red cyst cell inoculation and iron (II) supplementation on autotrophic astaxanthin production byunder outdoor summer conditions. J Biotechnol, 2016, 218: 25–33.
[38] He BX, Hou LL, Dong MM, et al. Transcriptome analysis in: astaxanthin induction by high light with acetate and Fe2+. Int J Mol Sci, 2018, 19(1): E175.
[39] Yong YYR, Lee YK. Do carotenoids play a photoprotective role in the cytoplasm of(Chlorophyta)? Phycologia, 1991, 30(3): 257–261.
[40] Kobayashi M, Kakizono T, Nishio N, et al. Antioxidant role of astaxanthin in the green alga. Appl Microbiol Biotechnol, 1997, 48(3): 351–356.
[41] Steinbrenner J, Linden H. Light induction of carotenoid biosynthesis genes in the green alga: regulation by photosynthetic redox control. Plant Mol Biol, 2003, 52(2): 343–356.
[42] Wang BB, Zhang Z, Hu Q, et al. Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga. PLoS ONE, 2014, 9(9): e106679.
[43] Mascia F, Girolomoni L,Alcocer MJP, et al. Functional analysis of photosynthetic pigment binding complexes in the green algareveals distribution of astaxanthin in photosystems. Sci Rep, 2017, 7: 16319.
[44] Scibilia L, Girolomoni L, Berteotti S, et al. Photosynthetic response to nitrogen starvation and high light in. Algal Res, 2015, 12: 170–181.
[45] Hagen C, Braune W, Birckner E, et al. Functional aspects of secondary carotenoids in(Girod) Rostafinski (Volvocales). I. The accumulation period as an active metabolic process. The New Phytol, 1993, 125(3): 625–633.
[46] Kobayashi M, Kurimura Y, Kakizono T, et al. Morphological changes in the life cycle of the green alga. J Fermentat Bioeng, 1997, 84(1): 94–97.
[47] Kobayashi M, Sakamoto Y. Singlet oxygen quenching ability of astaxanthin esters from the green alga. Biotechnol Lett, 1999, 21(4): 265–269.
[48] Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res, 2001, 40(5): 325–438.
[49] Guo Y, Cordes KR, Farese RV Jr, et al. Lipid droplets at a glance. J Cell Sci, 2009, 122(6): 749–752.
[50] Zhekisheva M, Zarka A, Khozin-Goldberg I, et al. Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga(Chlorophyceae). J Phycol, 2005, 41(4): 819–826.
[51] Damiani MC, Popovich CA, Constenla D, et al. Lipid analysis into assess its potential use as a biodiesel feedstock. Bioresour Technol, 2010, 101(11): 3801–3807.
[52] Goncalves EC, Johnson JV, Rathinasabapathi B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algaeUTEX29. Planta, 2013, 238(5): 895–906.
[53] Kim DK, Hong SJ, Bae JH, et al. Transcriptomic analysis ofduring astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol Bioproc Eng, 2011, 16(4): 698–705.
[54] Su YX, Wang JX, Shi ML, et al. Metabolomic and network analysis of astaxanthin-producingunder various stress conditions. Bioresour Technol, 2014, 170: 522–529.
[55] Lu YD, Jiang P, Liu SF, et al. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes () in microalga. Bioresour Technol, 2010, 101(16): 6468–6474.
[56] Ding W, Zhao YT, Xu JW, et al. Melatonin: A multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in. J Agric Food Chem, 2018, 66(29): 7701–7711.
[57] Zhao YT, Yue CC, Ding W, et al. Butylated hydroxytoluene induces astaxanthin and lipid production inunder high-light and nitrogen-deficiency conditions. Bioresour Technol, 2018, 266: 315–321.
[58] Li QQ, Zhang LT, Liu JG. Examination of carbohydrate and lipid metabolic changes duringnon-motile cell germination using transcriptome analysis. J Appl Phycol, 2018, doi:10.1007/s10811-018-1524-0.
[59] Recht L, T?pfer N, Batushansky A, et al. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algaeJ Biol Chem, 2014, 289(44): 30387–30403.
Advances in astaxanthin biosynthesis in
Si Jiang, and Shaoming Tong
Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, Liaoning, China
Astaxanthin is widely applied as a nutraceutical, pharmaceutical, and aquaculture feed additive because of its high antioxidant activity.is a microalgal species that can largely accumulate astaxanthin under adverse environmental conditions. Here we review the research progress of astaxanthin biosynthesis in., including the induction and regulation of massive astaxanthin, the relationship between astaxanthin synthesis, photosynthesis and lipid metabolism.
astaxanthin, biosynthesis,
November 1, 2018;
December 4, 2018
Liaoning Science Public Welfare Research Fund Project (No. GY-2017-0007).
Shaoming Tong. Tel: +86-411-85827089; E-mail: tongsm@163.com
遼寧省科學(xué)事業(yè)公益研究基金 (No. GY-2017-0007) 資助。
2019-01-08
http://kns.cnki.net/kcms/detail/11.1998.Q.20190107.2114.005.html
10.13345/j.cjb.180450
姜思, 佟少明. 雨生紅球藻蝦青素合成研究進(jìn)展.生物工程學(xué)報, 2019, 35(6): 988–997.
Jiang S, Tong SM. Advances in astaxanthin biosynthesis in. Chin J Biotech, 2019, 35(6): 988–997.
(本文責(zé)編 郝麗芳)