国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

14-3-3蛋白相關(guān)研究進(jìn)展

2019-07-19 06:43曹雅倩岳試超
安徽農(nóng)業(yè)科學(xué) 2019年12期
關(guān)鍵詞:配體細(xì)胞周期亞型

曹雅倩 岳試超

摘要 14-3-3蛋白家族是一組高度保守的蛋白質(zhì)家族,在各種真核生物中廣泛存在,主要是以同源/異源二聚體的形式存在,在哺乳動物中共有7種亞型。目前,對于14-3-3蛋白的研究表明其在神經(jīng)發(fā)育、細(xì)胞周期、疾病發(fā)生等生命過程中都發(fā)揮著重要作用。通過對近年來14-3-3蛋白的研究成果進(jìn)行歸納總結(jié),綜述了14-3-3蛋白在蛋白質(zhì)翻譯后修飾、細(xì)胞周期及疾病形成等方面的最新研究進(jìn)展,討論了深入研究14-3-3蛋白的重要性。

關(guān)鍵詞 14-3-3蛋白;保守性;結(jié)構(gòu)特征;細(xì)胞周期;疾病

中圖分類號 Q 51 ?文獻(xiàn)標(biāo)識碼 A

文章編號 0517-6611(2019)12-0019-05

doi:10.3969/j.issn.0517-6611.2019.12.005

開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):

Abstract The 14-3-3 proteins are a family of highly conserved proteins,and the proteins widely express in different eukaryotic cells.The 14-3-3 proteins are mainly in the form of homodimers or heterodimers,which include 7 isoforms in mammals.So far,the research on 14-3-3 proteins showed that it played an important role on neural development,cell cycle,disease occurrence and other life processes.By summarizing the research results of 14-3-3 proteins in recent years,this review summarized the latest research progress of 14-3-3 proteins in the posttranslational modification,cell cycle and disease formation,etc,and discussed the importance of further study on 14-3-3 proteins.

Key words 14-3-3 proteins;Conservation;Structure characteristics;Cell cycle;Disease

14-3-3蛋白最早是由Moore 和 Perez在1967年發(fā)現(xiàn)的,他們在牛腦組織中發(fā)現(xiàn)了一組蛋白,根據(jù)此蛋白經(jīng)過DEAE cellulose(二乙氨乙基纖維素柱)后得到的片段數(shù)目以及其在凝膠電泳中的遷移距離,他們將其命名為14-3-3蛋白[1]。之后,Morrison和Muslin在1994年發(fā)現(xiàn)14-3-3蛋白是一個(gè)特殊的磷酸化結(jié)合蛋白,其能夠特異性結(jié)合到含有磷酸化蘇氨酸和磷酸化絲氨酸的蛋白質(zhì)肽段上[2]。14-3-3蛋白在哺乳動物中可由不同基因編碼產(chǎn)生,共有7個(gè)亞型(β,ε,η,γ,θ,σ 和 ζ),并且在不同類型的組織中這些亞型的表達(dá)量是有所區(qū)別的[3]。而且,無論是在體內(nèi)還是在體外,14-3-3蛋白都是以同源二聚體或異源二聚體的形式存在的[4]。關(guān)于蛋白質(zhì)與蛋白質(zhì)的相互作用這一方面,14-3-3是通過改變其結(jié)合對象的構(gòu)象、穩(wěn)定性、亞細(xì)胞定位或活性來發(fā)揮作用的,迄今為止,14-3-3蛋白已被證實(shí)是高度保守的蛋白質(zhì),并可與數(shù)百種蛋白質(zhì)相互作用,能夠參與調(diào)控多種細(xì)胞進(jìn)程,如神經(jīng)發(fā)育、信號轉(zhuǎn)導(dǎo)、免疫反應(yīng)、蛋白轉(zhuǎn)運(yùn)、細(xì)胞周期和凋亡等[5-7]。雖然這7種亞型都能與一般的蛋白相互作用,但是由于這些亞型在N端都具有特定的序列,因此每個(gè)亞型都有獨(dú)特的相互作用蛋白[8]。14-3-3蛋白家族同樣也與疾病密切相關(guān),并且參與了許多神經(jīng)系統(tǒng)疾病,例如家族中的一些成員14-3-3ζ、14-3-3γ、14-3-3β和14-3-3σ都與人類癌癥有關(guān)[9-11]。14-3-3蛋白在大腦中表達(dá)量較高,大約占可溶性蛋白的1%,其參與了各種各樣的神經(jīng)過程,如神經(jīng)突的生長、神經(jīng)分化、遷移和生存、神經(jīng)遞質(zhì)釋放等[12-14]。筆者著重介紹14-3-3蛋白與蛋白質(zhì)翻譯后修飾、細(xì)胞周期和疾病發(fā)生等之間的聯(lián)系。

1 14-3-3蛋白的種類與結(jié)構(gòu)

1.1 14-3-3蛋白的種類

14-3-3蛋白各亞型是由不同的基因編碼的,而這些基因又位于不同的染色體上。14-3-3蛋白家族在氨基酸序列上具有高度保守性,比如人類的14-3-3蛋白與非洲爪蟾的14-3-3蛋白在氨基酸序列上同源性達(dá)84%[15],就哺乳動物而言,β、γ、ε、η、σ、θ和 ζ 亞型大部分是相同的,當(dāng)然,部分亞型之間也存在著差異性。在許多真核生物中,都陸續(xù)發(fā)現(xiàn)了14-3-3蛋白的存在,即14-3-3蛋白的保守性及廣泛分布反映了其在真核生物中發(fā)揮著很重要的功能。

1.2 14-3-3蛋白的結(jié)構(gòu)

14-3-3蛋白以同源二聚體或異源二聚體的形式存在,其能夠同時(shí)結(jié)合2個(gè)配體,至今已有多種14-3-3蛋白及其配體復(fù)合物的結(jié)晶結(jié)構(gòu)被研究報(bào)道,而所有14-3-3蛋白的三級結(jié)構(gòu)都極為相似。14-3-3蛋白的X射線結(jié)構(gòu)顯示其為杯子形狀的二聚體(圖1),每個(gè)單體由9個(gè)α螺旋(αA ~ αI)組成,并且這些螺旋是反向平行的,其中αA、αC、αD組成二聚體界面,一個(gè)單體的αA與另外一個(gè)單體的αC、 αD形成一個(gè)兼性凹槽[16],這個(gè)兼性凹槽是 14-3-3與配體相互作用的結(jié)構(gòu)域,也調(diào)節(jié)著14-3-3與靶蛋白的結(jié)合,溝槽的兩側(cè)是不對稱的,并且高度保守,帶有大量負(fù)電荷,一側(cè)是由αG和αI上的疏水性氨基酸殘基構(gòu)成的非極性面,另一側(cè)是由αC和αE上的極性氨基酸殘基構(gòu)成的極性面[17]。14-3-3蛋白分子的3個(gè)保守的堿性氨基酸Lys49、Arg56、 Arg127與Tyr128形成一個(gè)單獨(dú)的口袋,而這個(gè)口袋與磷酸化磷酸基團(tuán)又形成了離子鍵和氫鍵,這就解釋了磷酸化是調(diào)控許多配體與14-3-3結(jié)合的關(guān)鍵[16]。

2 14-3-3與蛋白質(zhì)翻譯后修飾

蛋白質(zhì)的翻譯后修飾(posttranslational modification,PTM)通過直接和動態(tài)地控制蛋白質(zhì)的功能,使細(xì)胞能夠?qū)?nèi)部和外部的信號做出迅速反應(yīng),在調(diào)節(jié)多種細(xì)胞過程中發(fā)揮著重要作用,在過去幾十年里,磷酸化、乙?;头核鼗确g后修飾都獲得了極大的關(guān)注[18]。

14-3-3蛋白的磷酸化是公認(rèn)的調(diào)控14-3-3蛋白功能的機(jī)制。14-3-3蛋白有3個(gè)保守的磷酸化位點(diǎn),分別是位點(diǎn)S58、S185、S/T232,但并不是所有的亞型都有這3個(gè)磷酸化位點(diǎn),除了14-3-3σ和θ外,其他亞型都有S58磷酸化,S185磷酸化存在于14-3-3β、ε、σ和ζ中,而S/T232磷酸化僅僅存在于14-3-3θ和ζ中[19]。就其磷酸化位點(diǎn)的功能方面來講,S58位磷酸化調(diào)控14-3-3蛋白的二聚化[20],而S185磷酸化調(diào)控其與配體的結(jié)合[21-22],S232磷酸化可能也會影響配體結(jié)合,這是由于C末端尾部能夠向后折疊堵塞結(jié)合口袋導(dǎo)致的[23]。

最近研究發(fā)現(xiàn),在人類細(xì)胞中,14-3-3蛋白能夠結(jié)合O-GlcNAc基團(tuán),而且14-3-3β/α和γ的結(jié)構(gòu)能夠結(jié)合糖肽段,這能夠?yàn)镺-GlcNAc介導(dǎo)的蛋白質(zhì)-蛋白質(zhì)相互作用提供生物物理基礎(chǔ),并且由于14-3-3蛋白也能夠結(jié)合磷酸化-絲氨酸和磷酸化-蘇氨酸,這就表明14-3-3蛋白可能是通過O-GlcNAc和O-磷酸化信號通路共同調(diào)控多種生理功能的[24]。

甲硫氨酸亞砜還原酶Msr(methionine sulfoxide reductase)系統(tǒng)以其將蛋白-甲硫氨酸亞砜還原為甲硫氨酸的功能而聞名,哺乳動物的MsrA被證明可以介導(dǎo)14-3-3蛋白的泛素化,尤其是14-3-3ζ蛋白的泛素化,并促進(jìn)大腦中14-3-3蛋白與α-synuclein的結(jié)合,MsrA介導(dǎo)的14-3-3ζ泛素化會影響大腦中α-synuclein降解和多巴胺合成途徑的調(diào)節(jié)[25]。

3 14-3-3蛋白與細(xì)胞周期

生物的生存、繁殖、發(fā)育和遺傳等生命活動都要受到細(xì)胞周期的調(diào)控,且細(xì)胞周期的準(zhǔn)確調(diào)控至關(guān)重要。Cdc25C是一種雙特異性蛋白磷酸酶,對細(xì)胞周期蛋白依賴性激酶(cdk1)的去磷酸化和活化非常重要,并且通過去磷酸化蛋白激酶Cdc2來控制有絲分裂的進(jìn)入。14-3-3蛋白與Cdc25C ser-216位磷酸化位點(diǎn)結(jié)合,抑制Cdc25C的活性,使細(xì)胞滯留于細(xì)胞間期[26],而在有絲分裂期間ser-214位的磷酸化,會抑制ser-216位的磷酸化,從而影響Cdc25c與14-3-3的結(jié)合,進(jìn)而影響周期進(jìn)程[27]。

E2Fs轉(zhuǎn)錄因子家族在協(xié)調(diào)細(xì)胞周期進(jìn)程中發(fā)揮著至關(guān)重要的作用,E2F7和E2F8表達(dá)水平在S期達(dá)到峰值,介導(dǎo)許多參與DNA復(fù)制、代謝和修復(fù)的靶基因的下調(diào)。E2Fs作為DNA復(fù)制基因的轉(zhuǎn)錄抑制劑,能夠誘導(dǎo)永久性的S期阻滯和抑制腫瘤的發(fā)生,而在人類肝癌細(xì)胞中,CHK1(checkpoint kinase 1)和14-3-3蛋白共同發(fā)揮作用使E2Fs轉(zhuǎn)錄抑制功能失活而調(diào)控細(xì)胞周期[28] 。14-3-3σ是一個(gè)細(xì)胞周期調(diào)節(jié)蛋白,其抑制Cdk2/cyclinE的活性導(dǎo)致G1期細(xì)胞周期阻滯,并且隔絕Cdc2/cyclinB到細(xì)胞質(zhì),能夠誘導(dǎo)G2期細(xì)胞周期阻滯[29-32]。當(dāng)發(fā)生DNA損傷和DNA復(fù)制壓力時(shí),需要14-3-3蛋白重新啟動細(xì)胞周期,抑制基因組不穩(wěn)定性[33]。14-3-3蛋白能夠調(diào)控EXO1(Exonuclease 1)的磷酸化位點(diǎn)和其他的未知靶點(diǎn),來促進(jìn)復(fù)制叉進(jìn)程、穩(wěn)定性以及重新啟動以響應(yīng)DNA復(fù)制壓力[34]。

4 14-3-3蛋白與疾病的關(guān)系

4.1 14-3-3蛋白與代謝性疾病

代謝性疾病如今在全球范圍內(nèi)日益增多,也越來越受到人們的關(guān)注,而且代謝性疾病也影響著不同年齡、性別和社會經(jīng)濟(jì)背景的個(gè)人。

生物管是包括肺、肝、腸和腎在內(nèi)的多種器官的基本結(jié)構(gòu)單位,在生物材料交換和結(jié)構(gòu)支持方面發(fā)揮著重要作用,管腺增生則涉及細(xì)胞形狀和囊泡運(yùn)輸?shù)鹊淖兓?4-3-3ε 與ERM(ezrin/radixin/moesin)在基底皮質(zhì)的結(jié)合,能夠通過直接轉(zhuǎn)運(yùn)基質(zhì)因素到腔頂端表面從而導(dǎo)致管腔的形成,而14-3-3ε又可與UTKO1(小分子管腺增生抑制劑)直接結(jié)合,UTKO1的存在阻止其與ERM的結(jié)合,并且14-3-3ε蛋白敲低之后也能夠降低管腺增生的形成[35]。雖然14-3-3σ在路易體癡呆病(Lewy body disease)發(fā)展中的作用尚不明確,但其與路易體癡呆病的病理關(guān)系可以擴(kuò)大人們對路易體癡呆病的認(rèn)識[36]。在慢性腎病中,14-3-3蛋白尤其是14-3-3σ會高表達(dá),這有可能是鈣網(wǎng)蛋白的高表達(dá)導(dǎo)致低氧誘導(dǎo)因子-1 (hypoxia inducible factor-1,HIF1α)上調(diào)從而誘導(dǎo)14-3-3σ的表達(dá),進(jìn)而導(dǎo)致慢性腎病的形成[37]。

4.2 14-3-3蛋白與神經(jīng)性疾病

14-3-3蛋白是在大腦中首次被發(fā)現(xiàn)的,并且在大腦中的表達(dá)量很高,這也就意味著14-3-3蛋白有可能在大腦中發(fā)揮著很重要的作用,同時(shí),許多試驗(yàn)也說明了14-3-3蛋白與很多神經(jīng)性疾病有關(guān)。1986年在散發(fā)性克雅氏病人的腦脊液(CSF,cerebrospinal fluid)中發(fā)現(xiàn)了2種蛋白,后來被證實(shí)其屬于14-3-3蛋白家族,之后大量研究也表明腦脊液中14-3-3蛋白與spCJD(sporadic Creutzfeldt-Jakob disease)密切相關(guān),并且世界衛(wèi)生組織在1998年將14-3-3蛋白陽性作為spCJD的一個(gè)輔助性診斷指標(biāo)[38],之后腦脊液蛋白14-3-3檢測仍是診斷克雅氏病的重要手段[39],而后研究也表明腦脊液中14-3-3γ蛋白水平超過100 000 AU/m,則有很大風(fēng)險(xiǎn)會患克雅二氏癥CJD[40]。

參考文獻(xiàn)

[1]MOORE B W,PEREZ V J,GEHRING M.Assay and regional distribution of a soluble protein characteristic of the nervous system[J].Journal of neurochemistry,1968,15(4):265-272.

[2] MUSLIN A J,TANNER J W,ALLEN P M,et al.Interaction of 1433 with signaling proteins is mediated by the recognition of phosphoserine[J].Cell,1996,84(6):889-897.

[3] KILANI R T,MEDINA A,AITKEN A,et al.Identification of different isoforms of 1433 protein family in human dermal and epidermal layers[J].Molecular and cellular biochemistry,2008,314(1/2):161-169.

[4] JONES D H,LEY S,AITKEN A.Isoforms of 1433 protein can form homoand heterodimers in vivo and in vitro:Implications for function as adapter proteins[J].FEBS Lett,1995,368(1):55-58.

[5] FU H,SUBRAMANIAN R R,MASTERS S C.1433 proteins:Structure,function,and regulation[J].Annual review of pharmacology and toxicology,2000,40(1):617-647.

[6] WEI Y X,LIU W,HU W,et al.Genomewide analysis of autophagyrelated genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt[J].Plant cell reports,2017,36(8):1237-1250.

[7] MORRISON D K.The 1433 proteins:Integrators of diverse signaling cues that impact cell fate and cancer development[J].Trends in cell biology,2009,19(1):16-23.

[8] JIN J,SMITH F D,STARK C,et al.Proteomic,functional,and domain-based analysis of in vivo 1433 binding proteins involved in cytoskeletal regulation and cellular organization[J].Curr Biol,2004,14(16):1436-1450.

[9] FOOTE M,ZHOU Y.1433 proteins in neurological disorders[J].International journal of biochemistry and molecular biology,2012,3(2):152-164.

[10] AGHAZADEH Y,PAPADOPOULOS V.The role of the 1433 protein family in health,disease,and drug development[J].Drug discovery today,2016,21(2):278-287.

[11] LIN H,JIAO X L,YU B X,et al.Clinical significance of serum 1433 beta in patients with hepatocellular carcinoma[J].Cancer biomark,2017,20(2):143-150.

[12] MARZINKE M A,MAVENCAMP T,DURATINSKY J,et al.1433ε and NAV2 interact to regulate neurite outgrowth and axon elongation[J].Archives of biochemistry and biophysics,2013,540(1/2):94-100.

[13] TOYOOKA K,WACHI T,HUNT R F,et al.1433 ?and ? regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain[J].Journal of neuroscience,2014,34(36):12168-12181.

[14] BERG D,HOLZMANN C,RIESS O.1433 proteins in the nervous system[J].Nature reviews neuroscience,2003,4(9):752-762.

[15] KOUSTENI S,TURA F,SWEENEY G E,et al.Sequence and expression analysis of a Xenopus laevis cDNA which encodes a homologue of mammalian 1433 zeta protein[J].Gene,1997,190(2):279-285.

[16] YAFFE M B.How do 1433 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis[J].FEBS Lett,2002,513(1):53-57.

[17] PETOSA C,MASTERS S C,BANKSTON L A,et al.1433zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove[J].J Biol Chem,1998,273(26):16305-16310.

[18] YANG X Y,QIAN K.Protein OGlcNAcylation:Emerging mechanisms and functions[J].Nat Rev Mol Cell Biol,2017,18(7):452-465.

[19] MCFERRIN M B,CHI X,CUTTER G,et al.Dysregulation of 1433 proteins in neurodegenerative diseases with Lewy body or ?Alzheimer pathology[J].Ann Clin Transl Neurol,2017,4(7):466-477.

[20] WOODCOCK J M,MURPHY J,STOMSKI F C,et al.The dimeric versus monomeric status of 1433zeta is controlled by phosphorylation of Ser58 at the dimer interface[J].J Biol Chem,2003,278(38):36323-36327.

[21] SUNAYAMA J,TSURUTA F,MASUYAMA N,et al.JNK antagonizes Akt-mediated survival signals by phosphorylating 1433[J].J Cell Biol,2005,170(2):295-304.

[22] YOSHIDA K,YAMAGUCHI T,NATSUME T,et al.JNK phosphorylation of 1433 proteins regulates nuclear targeting of cAbl in the apoptotic response to DNA damage[J].Nat Cell Biol,2005,7(3):278-285.

[23] OBSILOVA V,HERMAN P,VECER J,et al.1433zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232[J].J Biol Chem,2004,279(6):4531-4540.

[24] TOLEMAN C A,SCHUMACHER M A,YU S,et al.Structural basis of OGlcNAc recognition by mammalian 1433 proteins[J].Proceedings of the national academy of sciences,2018,115(23):5956-5961.

[25] DENG Y,JIANG B C,RANKIN C L,et al.Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 1433 protein isotypes in brain[J].Free radical biology and medicine,2018,129:600-607.

[26] PeNG C Y,GRAVES P R,THOMA R S,et al.Mitotic and G2 checkpoint control:Regulation of 1433 protein binding by phosphorylation of Cdc25C on serine216[J].Science,1997,277(5331):1501-1505.

[27] BULAVIN D V,HIGASHIMOTO Y,DEMIDENKO Z N,et al.Dual phosphorylation controls Cdc25 phosphatases and mitotic entry[J].Nat Cell Bio,2003,5(6):545-551.

[28] YUAN R,VOS H R,VAN ES R M,et al.Chk1 and 1433 proteins inhibit atypical E2Fs to prevent a permanent cell cycle ?arrest[J].EMBO J,2018,37(5):e97877.

[29] LEE M H,LOZANO G.Regulation of the p53MDM2 pathway by 1433 sigma and other proteins[J].Semin Cancer Biol,2006,16(3):225-234.

[30] YANG H Y,WEN Y Y,CHEN C H,et al.1433 sigma positively regulates p53 and suppresses tumor growth[J].Mol Cell Biol,2003,23(20):7096-7107.

[31] LARONGA C,YANG H Y,NEAL C,et al.Association of the cyclindependent kinases and 1433 sigma negatively regulates cell cycle progression[J].J Biol Chem,2000,275(30):23106-23112.

[32] HERMEKING H,LENGAUER C,POLYAK K,et al.1433sigma is a p53-regulated inhibitor of G2/M progression[J].Mol Cell,1997,1(1):3-11.

[33] LOTTERSBERGER F,RUBERT F,BALDO V,et al.Functions of Saccharomyces cerevisiae 1433 proteins in response to DNA damage and to DNA replication stress[J].Genetics,2003,165(4):1717-1732.

[34] ENGELS K,MUZIFALCONI M,GIANNATTASIO M,et al.1433 proteins regulate exonuclease 1dependent processing of stalled replication forks[J].PLoS Genetics,2011,7(4):1-9.

[35] MIZOTANI Y,SUZUKI M,HOTTA K,et al.1433epsilona directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis[J].Proc Natl Acad Sci USA,2018,115(38):8873-8881.

[36] WAKABAYASHI K,UMAHARA T,HIROKAWA K,et al.1433 protein sigma isoform colocalizes with phosphorylated αsynuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease[J].Neuroscience letters,2018,674:171-175.

[37] RIZOU M,F(xiàn)RANGOU E A,MARINELI F,et al.The family of 1433 proteins and specifically 1433sigma are upregulated during the development of renal pathologies[J].J Cell Mol Med,2018,22(9):4139-4149.

[38] GREEN A J.Use of 1433 in the diagnosis of CreutzfeldtJakob disease[J].Biochem Soc Trans,2002,30(4):382-386.

[39] STOECK K,SANCHEZJUAN P,GAWINECKA J,et al.Cerebrospinal fluid biomarker supported diagnosis of CreutzfeldtJakob disease and rapid dementias:A longitudinal multicentre study over 10 years[J].Brain,2012,135(Pt 10):3051-3061.

[40] HUMPEL C,BENKE T.Cerebrospinal fluid levels of 1433 Gamma:What doesit tell us about sporadic Creutzfeldt-Jakob disease?[J].Pharmacology,2017,100(5/6):243-245.

[41] SAIZ A,GRAUS F,DALMAU J,et al.Detection of 1433 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders[J].Ann Neurol,1999,46(5):774-777.

[42] COLUCCI M,ROCCATAGLIATA L,CAPELLO E,et al.The 1433 protein in multiple sclerosis:A marker of disease severity[J].Mult Scler,2004,10(5):477-481.

[57] SINGRANG N,KITTISENACHAI S,ROYTRAKUL S,et al.NOTCH1 regulates the viability of cholangiocarcinoma cells via 1433 theta[J].J Cell Commun Signal,2019,13(2):245-254.

[58] MAXWELL S A,CHERRY E M,BAYLESS K J.Akt,1433zeta,and vimentin mediate a drugresistant invasive phenotype in diffuse large B-cell lymphoma[J].Leuk Lymphoma,2011,52(5):849-864.

[59] LI Z G,ZHAO J,DU Y H,et al.Downregulation of 1433zeta suppresses anchorageindependent growth of lung cancer cells through anoikis activation[J].Proc Natl Acad Sci USA,2008,105(1):162-167.

[60] CHATTERJEE D,GOLDMAN M,BRAASTAD C D,et al.Reduction of 9-nitrocamptothecintriggered apoptosis in DU145 human prostate cancer cells by ectopic expression of 1433zeta[J].Int J Oncol,2004,25(2):503-509.

[61] ROOT A,BEIZAEI A,EBHARDT H A.Structurebased assessment and network analysis of targeting 1433 proteins in prostate cancer[J].Mol Cancer,2018,17(1):156.

[62] EBHARDT H A,ROOT A,LIU Y S,et al.Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer[J].NPJ Syst Biol Appl,2018,4:26.

[63] CHOI H S,JEONG E H,LEE T G,et al.Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells[J].Tuberc Respir Dis (Seoul),2013,75(1):9-17.

[64] KIDD M E,SHUMAKER D K,RIDGE K M.The role of vimentin intermediate filaments in the progression of lung cancer[J].Am J Respir Cell Mol Biol,.2014,50(1):1-6.

[65] ZHONG J T,KONG X X,ZHANG H Y,et al.Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stressinduced apoptosis in human glioma U251 cells under starvation[J].PLoS One,2012,7(6):1-10.

[66] HE C L,BIAN Y Y,XUE Y,et al.Pyruvate kinase M2 activates mTORC1 by phosphorylating AKT1S1[J].Sci Rep,2016,6:215-241.

[67] WANG R C,WEI Y,AN Z,et al.Aktmediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation[J].Science,2012,338(6109):956-959.

[68] FETTWEIS G,DI VALENTIN E,LHOMME L,et al.RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death[J].Biochim Biophys Acta Mol Cell Res,2017,1864(1):113-124.

[69] MARCHAND B,ARSENAULT D,RAYMONDFLEURY A,et al.Glycogen synthase kinase3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells[J].J Biol Chem,2015,290(9):5592-5605.

[70] BODEN G,DUAN X,HOMKO C,et al.Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese,insulin-resistant individuals[J].Diabetes,2008,57(9):2438-2444.

猜你喜歡
配體細(xì)胞周期亞型
紅霉素聯(lián)合順鉑對A549細(xì)胞的細(xì)胞周期和凋亡的影響
基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
NSCLC survivin表達(dá)特點(diǎn)及其與細(xì)胞周期的關(guān)系研究
X線照射劑量率對A549肺癌細(xì)胞周期的影響
新型三卟啉醚類配體的合成及其光學(xué)性能
Ikaros的3種亞型對人卵巢癌SKOV3細(xì)胞增殖的影響
熊果酸對肺癌細(xì)胞株A549及SPCA1細(xì)胞周期的抑制作用
ABO亞型Bel06的分子生物學(xué)鑒定
HeLa細(xì)胞中Zwint-1選擇剪接亞型v7的表達(dá)鑒定
基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性