于家興 魏海平 金麗娜 魏宇峰
摘 要:針對(duì)參數(shù)未知的異構(gòu)線性多智能體系統(tǒng),在無(wú)向或平衡有向網(wǎng)絡(luò)下提出一種固定輸出平均一致性協(xié)議,使得每個(gè)智能體的輸出達(dá)到它們初始輸出的平均值。首先,網(wǎng)絡(luò)中每個(gè)智能體都被建模成階數(shù)不同且相關(guān)度為1或2的未知線性系統(tǒng),并根據(jù)自身及其鄰居節(jié)點(diǎn)的輸出更新其狀態(tài);其次,基于模型參考控制方法,對(duì)不同相關(guān)度的智能體定義相對(duì)應(yīng)的模型;最后,提出一致性協(xié)議使每個(gè)智能體的輸出收斂至其參考模型的輸出,即達(dá)到固定輸出平均一致。仿真實(shí)驗(yàn)利用了一個(gè)說明性的例子驗(yàn)證了所提協(xié)議的有效性和收斂性。
關(guān)鍵詞:?多智能體系統(tǒng);異構(gòu);參數(shù)未知;平均一致性;模型參考
中圖分類號(hào):TP273
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1001-9081(2019)04-1240-07
Abstract: Focusing on heterogeneous linear Multi-Agent System (MAS) with unknown parameters, a fixed output average consensus protocol was proposed in undirected or balanced directed network to make the output of each agent reach the average of their initial output. Firstly, each agent in the network was modeled as an unknown linear system with different order and correlation of 1 or 2, which state was updated according to the output of its own and neighboring nodes. Then, based on the model reference control method, the corresponding models were defined for the agents with different correlations. Finally, a consesus protocol was proposed to converge the output of each agent to the output of its reference model, achieving the average consesus of fixed output. The simulation with an illustrative example demonstrates the effectiveness and convergence of the proposed protocol.
Key words: Multi-Agent System (MAS); heterogeneity; parameter unknown; average consensus; model reference
0?引言
近年來(lái),鑒于在人工智能、編隊(duì)控制與網(wǎng)絡(luò)控制等眾多領(lǐng)域的應(yīng)用中有著靈活且廉價(jià)的優(yōu)點(diǎn)[1],多智能體系統(tǒng)的控制逐漸成為一個(gè)熱門的研究領(lǐng)域[2-3],其中一個(gè)重要的問題是多智能體系統(tǒng)的一致性問題。在沒有全局控制與整體通信的情況下,每個(gè)智能體如何僅憑自身及其鄰居節(jié)點(diǎn)的信息更新其自身狀態(tài)成為了問題的關(guān)鍵。
目前為止,關(guān)于同構(gòu)多智能體的一致性研究較多:文獻(xiàn)[4]考慮了非最小相位非線性多智能體系統(tǒng)的輸出一致性問題,為使系統(tǒng)在存在不穩(wěn)定零動(dòng)態(tài)動(dòng)力學(xué)的情況下達(dá)成一致,提出了一種由兩項(xiàng)組成的一致性協(xié)議;文獻(xiàn)[5-6]從切換拓補(bǔ)、一階/二階模型、周期采樣策略等角度利用代數(shù)圖論、Lyapunov理論和矩陣?yán)碚摲治隽硕嘀悄荏w系統(tǒng)的一致性問題;文獻(xiàn)[7]進(jìn)行了高階多智能體系統(tǒng)的平均一致性研究,在有向網(wǎng)絡(luò)下,提出的協(xié)議使所有速度、加速度與其他高階狀態(tài)收斂至0。
然而,在實(shí)際情況中,系統(tǒng)的狀態(tài)空間結(jié)構(gòu)不盡相同,因此,對(duì)于異構(gòu)多智能體的研究顯得十分重要,目前國(guó)內(nèi)外研究人員已經(jīng)取得了一定的成果:文獻(xiàn)[8]在無(wú)向網(wǎng)絡(luò)下,給出了一階部分輸入有界與二階速度不可測(cè)的異構(gòu)多智能體系統(tǒng)的控制設(shè)計(jì)方法,基于圖論知識(shí)與LaSalle不變集,得出了系統(tǒng)一致的充分條件;文獻(xiàn)[9]針對(duì)異構(gòu)多智能體系統(tǒng),提出了一種功率積分器方法并給出了兩種一致性協(xié)議,其中對(duì)于無(wú)領(lǐng)導(dǎo)者與有領(lǐng)導(dǎo)者的系統(tǒng)給出了一種連續(xù)時(shí)間一致性協(xié)議,對(duì)于設(shè)計(jì)有限時(shí)間觀測(cè)器,則給出了一種輸出反饋有限時(shí)間一致性協(xié)議;文獻(xiàn)[10]將文獻(xiàn)[7]中的結(jié)構(gòu)改為異構(gòu)情況,考慮了固定輸出平均一致性在飛行器的應(yīng)用。然而,文獻(xiàn)[8-10]在考慮智能體系統(tǒng)時(shí),沒有考慮參數(shù)未知的情況。文獻(xiàn)[11]利用鄰居智能體的輸出,研究了相關(guān)度為1的均勻未知線性智能體系統(tǒng),當(dāng)連通圖為強(qiáng)連通圖時(shí),提出的協(xié)議可使系統(tǒng)達(dá)成一致,并同時(shí)得出了模型在子系統(tǒng)漸進(jìn)輸出的情況下實(shí)現(xiàn)輸出跟蹤的方法。文獻(xiàn)[12-13]利用內(nèi)部模型概念,設(shè)計(jì)了虛擬外部模型,并將所有智能體收斂至其外部模型:文獻(xiàn)[12]利用滿階高增益觀測(cè)器,在相關(guān)度不同且無(wú)領(lǐng)導(dǎo)者的情況下,得出了異構(gòu)未知線性多智能體系統(tǒng)的一致性協(xié)議。隨后在文獻(xiàn)[13]的研究中,對(duì)文獻(xiàn)[12]的系統(tǒng)增加了外部干擾。文獻(xiàn)[13]考慮了相關(guān)度相同的異構(gòu)不確定線性多智能體系統(tǒng),將協(xié)同輸出看成具有不確定參數(shù)的智能體系統(tǒng)的領(lǐng)導(dǎo)跟隨一致性問題,即將問題轉(zhuǎn)化為增廣矩陣特征值問題,引入一種新的內(nèi)部模型,結(jié)合高增益狀態(tài)反饋控制技術(shù)和分布式技術(shù)使其收斂一致。但文獻(xiàn)[12-13]沒有考慮峰值現(xiàn)象的影響。相對(duì)于文獻(xiàn)[13],文獻(xiàn)[14]考慮了相關(guān)度相同的異構(gòu)未知線性多智能體系統(tǒng)。文獻(xiàn)[15]考慮了具有不同未知非線性動(dòng)力學(xué)的多智能體系統(tǒng)的有限時(shí)間一致性問題,其中領(lǐng)導(dǎo)智能體的控制輸入同樣是未知且非線性的,通過將未知非線性動(dòng)力學(xué)參數(shù)化,并結(jié)合李雅普諾夫函數(shù),提出了一種自適應(yīng)有限時(shí)間協(xié)議,在有向網(wǎng)絡(luò)下,實(shí)現(xiàn)領(lǐng)航跟隨一致性。
本文采用模型參考控制策略(Model Reference Adaptive Control, MRAC),研究在無(wú)向或平衡有向網(wǎng)絡(luò)下,具有未知參數(shù)的異構(gòu)線性多智能體系統(tǒng)的無(wú)領(lǐng)導(dǎo)固定輸出平均一致性問題。換言之,本文研究了異構(gòu)未知線性多智能體系統(tǒng)的一致性問題,網(wǎng)絡(luò)中的智能體的相關(guān)度為1或2。與現(xiàn)有工作相比,本文系統(tǒng)的未知參數(shù)的上限是未知的,每個(gè)智能體的相關(guān)度是不同的,相關(guān)度為2的智能體的高頻收益是未知的,另外,由于輸出的期望值是每個(gè)智能體初始輸出的平均值,所以相對(duì)的放寬了對(duì)每個(gè)智能體輸出的限制。
1?預(yù)備知識(shí)和主要問題
1.1?圖論知識(shí)
1.2?符號(hào)說明
4?結(jié)語(yǔ)
本文研究了在無(wú)向或平衡有向網(wǎng)絡(luò)下,具有未知參數(shù)的異構(gòu)線性多智能體系統(tǒng)的固定輸出平均一致性問題?;贛RAC方案,提出了一個(gè)新的自適應(yīng)輸出一致性協(xié)議,實(shí)驗(yàn)結(jié)果表明,本文協(xié)議確保了每個(gè)智能體的輸出收斂至每個(gè)智能體參考模型的輸出,即達(dá)到了輸出平衡平均一致性。對(duì)于具有更高相關(guān)度、切換拓?fù)湟约坝懈蓴_的異構(gòu)未知線性系統(tǒng),則是未來(lái)工作的挑戰(zhàn)。
參考文獻(xiàn)(References)
[1] DEHGHANI M A, MENHAJ M B. Integral sliding mode formation control of fixed-wing unmanned aircraft using seeker as a relative measurement system[J]. Aerospace Science & Technology, 2016, 58: 318-327.
[2] 陳永, 黨建武, 胡曉輝.基于多智能體理論的列車追蹤運(yùn)行建模與仿真[J]. 計(jì)算機(jī)應(yīng)用, 2014, 34(5): 1521-1525. (CHEN Y, DANG J W, HU X H. Modeling and simulating of train tracking based on multi-agent theory [J]. Journal of Computer Applications, 2014, 34(5): 1521-1525.)
[3] CHEN X, HAO F, MA B. Periodic event-triggered cooperative control of multiple non-holonomic wheeled mobile robots [J]. IET Control Theory & Applications, 2017, 11(6): 890-899.
[4] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533.
[5] LIN X, ZHENG Y. Finite-time consensus of switched multiagent systems [J]. IEEE Transactions on Systems, Man & Cybernetics Systems, 2017, 47(7): 1535-1545.
[6] YU Z, JIANG H, HU C. Second-order consensus for multiagent systems via intermittent sampled data control [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(11): 1986-2002.
[7] REZAEI M H, MENHAJ M B. Stationary average consensus for high-order multi-agent systems[J]. IET Control Theory & Applications, 2017, 11(5): 723-731.
[8] 朱美玲, 趙蕊, 徐勇.速度不可測(cè)的異構(gòu)多智能體系統(tǒng)一致性分析[J]. 計(jì)算機(jī)工程與科學(xué), 2017, 39(9): 1729-1735. (ZHU M L, ZHAO R, XU Y. Consensus analysis for heterogeneous multi-agent systems with immeasurable velocity [J]. Computer Engineering & Science, 2017, 39(9): 1729-1735.)
[9] ZHOU Y, YU X, SUN C, et al. Higher order finite-time consensus protocol for heterogeneous multi-agent systems[J]. International Journal of Control, 2015, 88(2): 285-294.
[10] REZAEI M H, MENHAJ M B. Stationary average consensus protocol for a class of heterogeneous high-order multi-agent systems with application for aircraft[J]. International Journal of Systems Science, 2018, 49(10): 1-15.
[11] LI Z, DING Z. Distributed adaptive consensus and output tracking of unknown linear systems on directed graphs[J]. Automatica, 2015, 55: 12-18.
[12] KIM H, SHIM H, JIN H S. Output consensus of heterogeneous uncertain linear multi-agent systems [J]. IEEE Transactions on Automatic Control, 2011, 56(1): 200-206.
[13] SU Y, HUANG J. Cooperative robust output regulation of a class of heterogeneous linear uncertain multi-agent systems[J]. Systems & Control Letters, 2015, 24(17): 2819-2839.
[14] DING Z. Distributed adaptive consensus output regulation of network-connected heterogeneous unknown linear systems on directed graphs [J]. IEEE Transactions on Automatic Control, 2016, 62(9): 4683-4690.
[15] YU H, SHEN Y, XIA X. Adaptive finite-time consensus in multi-agent networks[J]. Systems & Control Letters, 2013, 62(10): 880-889.
[16] DESOER C A, VIDYASAGAR M. Feedback Systems: Input-Output Properties[M]. New York: American Press, 1975: 72.
[17] NARENDRA K S, ANNASWAMY A M. Stable Adaptive Systems [M]. Upper Saddle River, NJ: Prentice Hall Press, 1989: 66.
[18] REN W, BEARD R W, ATKINS E M. Information consensus in multivehicle cooperative control[J]. IEEE Control Systems, 2007, 27(2): 71-82.
[19] IOANNOU P A, SUN J. Robust Adaptive Control [M]. Upper Saddle River, NJ: Prentice Hall Press, 1996: 31.
[20] MEYER K R. On the existence of lyapunov function for the problem of Lur'e[J]. Journal of the Society for Industrial and Applied Mathematics Series A: Control, 1965, 3(3): 373-383.