国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

擬微綠球藻粉替代魚粉對大菱鲆幼魚生長性能、體組成和血清生化指標(biāo)的影響*

2019-08-05 09:47:34胡冬雪王成強(qiáng)喬洪金王際英李寶山孫永智
漁業(yè)科學(xué)進(jìn)展 2019年4期
關(guān)鍵詞:大菱鲆魚粉幼魚

胡冬雪 馬 季 王成強(qiáng) 喬洪金 王際英 李寶山 孫永智

擬微綠球藻粉替代魚粉對大菱鲆幼魚生長性能、體組成和血清生化指標(biāo)的影響*

胡冬雪1,2馬 季1,2王成強(qiáng)2喬洪金2①王際英2李寶山2孫永智2

(1. 上海海洋大學(xué)水產(chǎn)科學(xué)國家級實(shí)驗(yàn)教學(xué)示范中心 農(nóng)業(yè)農(nóng)村部魚類營養(yǎng)與環(huán)境生態(tài)研究中心 水產(chǎn)動(dòng)物遺傳育種中心上海市協(xié)同創(chuàng)新中心 上海 201306;2. 山東省海洋資源與環(huán)境研究院 山東省海洋生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室 煙臺(tái) 264006)

為探討擬微綠球藻(sp)粉替代魚粉對大菱鲆(L)幼魚生長性能、體組成和血清生化指標(biāo)的影響,用擬微綠球藻粉替代基礎(chǔ)飼料中0%、3.88%、7.76%、11.64%和15.52%的魚粉,配制成5種等氮等能的飼料(N0、N3.88、N7.76、N11.64、N15.52)。選取初始體重為(24.60 ±0.02) g的大菱鲆幼魚600尾,隨機(jī)分成5組,每組3個(gè)重復(fù),每個(gè)重復(fù)40尾魚,養(yǎng)殖周期70 d。結(jié)果顯示:1)各實(shí)驗(yàn)組大菱鲆幼魚的增重率(WGR)、特定生長率(SGR)、蛋白質(zhì)效率 (PER)、飼料系數(shù)(FCR)、日攝食率(DFI)、肥滿度(CF)和成活率(SR)均無顯著差異(0.05);2)隨著藻粉添加量的增加,全魚及肌肉中粗脂肪含量顯著降低(0.05),粗蛋白、粗灰分和水分含量無顯著差異(0.05);3)血清溶菌酶(LZM)、補(bǔ)體蛋白C3、補(bǔ)體蛋白C4及酸性磷酸酶(ACP)活力均呈先上升后下降的趨勢,分別在N7.76、N7.76、N11.64、N7.76組達(dá)到最大值,且顯著高于N0組(0.05),N15.52組堿性磷酸酶(ALP)顯著低于其他組(0.05),其他組之間無顯著差異(0.05);4)藻粉組血清總超氧化物歧化酶(T-SOD)、總抗氧化能力(T-AOC)和谷胱甘肽過氧化物酶(GSH-PX)活力,均呈先上升后下降的趨勢,在N7.76組達(dá)到最大值,且顯著高于N0組(0.05);5) N7.76組血清甘油三酯(TG)含量顯著低于其他組(0.05),其他組之間無顯著差異(0.05),藻粉組血清總膽固醇(TCHO)顯著低于N0組(<0.05),各藻粉組之間差異不顯著(0.05);6)藻粉組血清谷草轉(zhuǎn)氨酶(AST)活力呈先下降后上升的趨勢,N11.64組達(dá)到最小值,顯著低于N0組(0.05),藻粉組谷丙轉(zhuǎn)氨酶(ALT)活力顯著低于N0組(0.05)。研究表明,本實(shí)驗(yàn)條件下,擬微綠球藻粉替代大菱鲆幼魚飼料中15.52%的魚粉對其生長無顯著影響,替代7.76%可顯著提高其非特異性免疫力,降低血脂水平。

大菱鲆;擬微綠球藻粉;生長;抗氧化能力

大菱鲆()隸屬于菱鲆科(Scophthal midae),瘤棘鲆屬(),它的肌肉豐厚白嫩、骨刺少、內(nèi)臟團(tuán)小、出肉率高,口感爽滑甘美,是我國北方主要的海水養(yǎng)殖品種之一,也是世界公認(rèn)的優(yōu)質(zhì)比目魚類之一。魚粉是名貴水產(chǎn)魚類配合飼料中的主要蛋白質(zhì)來源,但近年來遠(yuǎn)洋捕獲的鮮雜魚已經(jīng)達(dá)到或者接近最大可持續(xù)生產(chǎn)(Rana, 2009; Krisetherton, 2009),造成了魚粉供需之間的矛盾。尋找新型蛋白原料(Olsen, 2012),替代或減少魚粉的使用成了目前水生動(dòng)物營養(yǎng)研究的重點(diǎn)方向之一。

植物蛋白存在抗?fàn)I養(yǎng)因子和氨基酸的平衡問題 (Thompson, 2012),在大菱鲆配合飼料中的使用比例較低。研究表明,大豆?jié)饪s蛋白僅能替代17%的魚粉而對大菱鲆幼魚的生長不產(chǎn)生影響(Day, 2015);玉米蛋白替代大菱鲆幼魚飼料中21% 的魚粉對其生長性能和飼料效率無顯著差異(Regost, 1999);復(fù)合植物蛋白替代20.7%的魚粉顯著降低大菱鲆幼魚的生長性能(陳超, 2012)。微藻,如擬微綠球藻(sp.)、小球藻()及螺旋藻(),含有人體所需的20種氨基酸、多種維生素和微量元素,以及亞油酸和亞麻酸等高度不飽和脂肪酸(Yamaguchi, 1996 ; Emma, 2017),是替代魚粉蛋白的理想原料。對鯽魚() (石西, 2015)、羅非魚(spp) (Olvera-Novoa, 1998)和虹鱒() (Dallaire, 2007)的研究表明,微藻粉替代適量的魚粉對其生長無抑制作用。此外,郭斌等(2018)研究表明,10%的藻渣與51%復(fù)合植物蛋白粉替代35%的魚粉,不影響大菱鲆的生長性能,且能促進(jìn)攝食率、降低飼料系數(shù),而10%的滸苔與51%復(fù)合植物蛋白粉替代35%的魚粉顯著降低大菱鲆生長性能。

擬微綠球藻是海洋單細(xì)胞微藻,屬于褐藻門(Ochrophyta),真眼點(diǎn)綱(Eustig-matophyceae),適溫范圍廣,易于培養(yǎng),繁殖快,含有豐富的天然色素如玉米黃素和蝦青素,可以增強(qiáng)免疫能力和抗氧化能力(吳吉林等, 2010),且含有豐富的高不飽和脂肪酸,尤其是EPA(余穎等, 2005),可以提高魚蝦蟹苗種的發(fā)育和存活率(杜濤等, 2010; Marques, 2006)。目前,尚無關(guān)于微藻粉替代大菱鲆配合飼料中魚粉的相關(guān)報(bào)道,因此,本研究旨在探索擬微綠球藻粉替代魚粉對大菱鲆幼魚生長、體組成、非特異性免疫和血清生化指標(biāo)的影響,為微藻粉在水產(chǎn)配合飼料中的應(yīng)用提供參考。

1 材料與方法

1.1 實(shí)驗(yàn)設(shè)計(jì)

以魚油和玉米油為主要脂肪源,用擬微綠球藻藻粉分別替代基礎(chǔ)飼料中0、3.88%、7.76%、11.64%和15.52%的魚粉,制成5種等氮等能的實(shí)驗(yàn)飼料(N0、N3.88、N7.76、N11.64、N15.52),N0為對照組。在各替代組中分別添加晶體蛋氨酸、賴氨酸和精氨酸,保持各飼料中必需氨基酸的平衡。飼料配方及營養(yǎng)組成見表1。

1.2 實(shí)驗(yàn)管理及樣品采集

實(shí)驗(yàn)魚購自蓬萊宗哲養(yǎng)殖有限公司,養(yǎng)殖實(shí)驗(yàn)在山東省海洋資源與環(huán)境研究院養(yǎng)殖實(shí)驗(yàn)室進(jìn)行。正式實(shí)驗(yàn)前,實(shí)驗(yàn)魚在養(yǎng)殖系統(tǒng)中馴養(yǎng)14 d,期間投喂對照組飼料。實(shí)驗(yàn)魚禁食24 h,挑選初始體重為(24.60± 0.02) g的600尾大菱鲆幼魚,隨機(jī)分5組,每組設(shè)3個(gè)重復(fù),每個(gè)重復(fù)40尾魚,每天定時(shí)定量投喂2次(08:00和15:30),投喂量為魚體重的1%~2%,根據(jù)攝食情況調(diào)整投喂量,投喂結(jié)束0.5 h左右排殘餌,數(shù)顆粒,計(jì)算殘餌量。養(yǎng)殖環(huán)境:綠色圓柱形水桶(直徑80 cm,高70 cm,水深為50 cm),水溫為(17.32±0.20)℃,pH為7.8~8.2,鹽度為28~30,溶氧>5 mg/L,氨氮、亞硝酸氮均<0.1 mg/L。

70 d養(yǎng)殖實(shí)驗(yàn)結(jié)束后,禁食24 h,記錄每桶魚的存活數(shù)量并稱重,計(jì)算存活率和增重率。隨機(jī)取3尾用于全魚常規(guī)分析,剩余隨機(jī)取15尾測量體長、體重,計(jì)算肥滿度,尾靜脈取血后,分離內(nèi)臟和背肌,并分別稱重,計(jì)算臟體比。背肌-20℃保存,用于常規(guī)分析,以上取樣均在冰盒上進(jìn)行。血樣在4℃冰箱靜置4 h,離心分離(4000 r/min, 10 min),取上清液,-80℃保存,用于測定血清生理生化指標(biāo)。

1.3 測定指標(biāo)和樣品分析方法

增重率(WGR, %)=(W-0)/0100

特定生長率(SGR, % /d)=(lnW-ln0)/×100;

蛋白質(zhì)效率(PER, %)=(W-0)/(×)×100;

飼料系數(shù)(FCR) =/(W-0);

日攝食率(DFI, %/d) =/[(0+W)/2×] ×100;

臟體比(VSI, %) =W/W×100;

肥滿度(CF) =W/3×100;

成活率(SR, %) =N/0×100;

式中,W為實(shí)驗(yàn)魚末體重(g),0為實(shí)驗(yàn)魚初體重(g),為養(yǎng)殖天數(shù),為攝食干飼料重(g),為飼料中粗蛋白質(zhì)的含量(%),W為內(nèi)臟質(zhì)量,為實(shí)驗(yàn)?zāi)~體長,N為實(shí)驗(yàn)?zāi)~的數(shù)量,0為實(shí)驗(yàn)初魚的數(shù)量。

飼料及組織樣品分析方法,水分測定采用105℃烘干恒重法測定(GB/T6435-2006);粗蛋白測定采用凱氏定氮法(GB/T6432-2006);粗脂肪采用索氏抽提法測定(GB/T6433-2006);粗灰分測定采用馬弗爐 550℃灼燒法(GB/T 6438-2007)。

表1 飼料配方及營養(yǎng)組成(%干物質(zhì))

Tab.1 Composition and nutrient levels of the experimental diets (% dry mater)

注:a. 白魚粉(%干物質(zhì)):粗蛋白含量65.47%,粗脂肪含量7.2%

b. 大豆?jié)饪s蛋白(%干物質(zhì)):粗蛋白含量69.85%,粗脂肪含量2.1%

c. 礦物質(zhì)預(yù)混料(mg/kg 飼料):MgSO4·7H2O, 3568.0 mg; NaH2PO4·2H2O, 25568.0 mg; KCl, 3020.5 mg; KAl(SO4)2, 8.3 mg;

CoCl2, 28.0 mg; ZnSO4·7H2O, 353.0 mg; Ca-lactate, 15968.0 mg; CuSO4·5H2O, 9.0mg; KI, 7.0mg; MnSO4·4H2O, 63.1mg;

Na2SeO3, 1.5mg; C6H5O7Fe·5H2O, 1533.0 mg; NaCl, 100.0 mg; NaF, 4.0 mg

d. 維生素預(yù)混料(mg/kg 飼料):維生素A, 38.0 mg; 維生素D, 13.2 mg; α-生育酚, 210.0 mg; 硫胺素, 115.0 mg; 核黃素, 380.0 mg; 鹽酸吡哆醇, 88.0 mg; 泛酸, 368.0 mg; 煙酸, 1030.0 mg; 生物素, 10.0 mg; 葉酸, 20.0 mg; 維生素B12, 1.3 mg; 肌醇, 4000.0 mg; 抗壞血酸, 500.0 mg

e. 擬微綠球藻粉(%干物質(zhì)):粗蛋白50.72%, 粗脂肪18.05%, 購自煙臺(tái)海融生物技術(shù)有限公司

Notes: a. White fish meal(% dry matter): Crude protein 65.47%, Crude lipid 7.2%

b. Soy protein concentrate(% dry matter): Crude protein 69.85%, Crude lipid2.1%

c. Mineral mixture (mg/kgdiet): MgSO4×7H2O, 3568.0 mg; NaH2PO4×2H2O, 25568.0 mg; KCl, 3020.5 mg; KAl (SO4)2, 8.3 mg; CoCl2, 28.0 mg; ZnSO4×7H2O, 353.0 mg; Ca-lactate, 15968.0 mg; CuSO4×5H2O, 9.0 mg; KI, 7.0 mg; MnSO4×4H2O, 63.1 mg; Na2SeO3, 1.5 mg; C6H5O7Fe×5H2O, 1533.0 mg, NaCl, 100.0 mg; NaF, 4.0 mg

d. Vitamin mixture (mg/kg diet): retinol acetate, 38.0 mg; cholecalciferol, 13.2 mg; alpha-tocopherol, 210.0 mg; thiamin, 115.0 mg; riboflavin, 380.0 mg; pyridoxine HCl, 88.0 mg; pantothenic acid, 368.0 mg; niacin acid, 1030.0 mg; biotin, 10.0 mg; folic acid, 20.0 mg; vitamin B12, 1.3 mg; inositol, 4000.0 mg; ascorbic acid, 500.0 mg

e.meal (% dry matter): Crude protein 50.72%, Crude lipid 18.05%, buy from Yantai Hai Rong Biotechnology Co., Ltd., China

血清溶菌酶(LZM)、總抗氧化能力(T-AOC)、總超氧化物歧化酶(T-SOD)、谷胱甘肽過氧化物酶(GSH-PX)活力及丙二醛(MDA)含量采用南京建成的試劑盒測定;補(bǔ)體蛋白C3和補(bǔ)體蛋白C4采用江萊生物酶聯(lián)免疫分析(ELISA)試劑盒測定。

血清甘油三酯(TG)、膽固醇(CHO)、低密度脂蛋白膽固醇(LDL-C)、高密度脂蛋白膽固醇(HDL-C)、堿性磷酸酶(ALP)、酸性磷酸酶(ACP)、谷草轉(zhuǎn)氨酶(AST)、谷丙轉(zhuǎn)氨酶(ALT)、采用全自動(dòng)生化分析儀(7020, 日立, 日本)進(jìn)行測定,試劑盒均購自四川邁克生化技術(shù)有限公司。

1.4 數(shù)據(jù)統(tǒng)計(jì)分析

采用SPSS18.0軟件對數(shù)據(jù)進(jìn)行單因素方差分析 (One-Way ANOVA),當(dāng)處理之間差異顯著(<0.05)時(shí),用Duncan’s檢驗(yàn)進(jìn)行多重比較,結(jié)果以平均值±標(biāo)準(zhǔn)差(Means±SD)形式表示。

2 結(jié)果

2.1 擬微綠球藻粉替代魚粉對大菱鲆幼魚生長及飼料利用的影響

擬微綠球藻粉替代魚粉對大菱鲆幼魚生長和飼料利用數(shù)據(jù)見表2。隨著擬微綠球藻粉替代比例增大,大菱鲆幼魚WGR、SGR、PER和CF呈逐漸上升的趨勢,但各組間無顯著差異(>0.05),F(xiàn)CR和DFI呈逐漸下降的趨勢,無顯著差異(0.05);藻粉替代魚粉對實(shí)驗(yàn)魚的VSI和SR均無顯著影響(0.05)。

2.2 擬微綠球藻粉替代魚粉對大菱鲆幼魚全魚和肌肉體組成的影響

如表3所示,藻粉組的全魚和肌肉粗脂肪含量呈逐漸下降的趨勢,顯著低于N0組(<0.05);藻粉替代魚粉對全魚和肌肉的水分、粗蛋白及粗灰分的含量均無顯著影響(0.05)。

2.3 擬微綠球藻粉替代魚粉對大菱鲆幼魚血清非特異性免疫的影響

如表4所示,LZM和補(bǔ)體蛋白C3活力呈先上升后下降的趨勢,在N7.76組達(dá)到最大值并顯著高于N0組(<0.05);補(bǔ)體蛋白C4活力呈先上升后下降的趨勢,在N11.64組達(dá)到最大值并顯著高于N0組(<0.05);ACP活力呈先上升后下降趨勢,N7.76組達(dá)到最大值,并顯著高于N0組(<0.05)。

2.4 擬微綠球藻粉替代魚粉對大菱鲆幼魚抗氧化能力的影響

如表5所示,隨著擬微綠球藻粉的替代量增大,T-SOD、T-AOC和GSH-PX活力呈先上升后下降的趨勢,在N7.76組達(dá)到最大值并顯著高于N0組(<0.05),而MDA含量呈逐漸下降的趨勢并顯著低于N0組(<0.05)。

表2 微藻粉替代魚粉對大菱鲆幼魚生長性能及飼料利用的影響(=3;ˉ±SD)

Tab.2 Effects of fish meal replacement by microalgae meals on growth performance and feed utilization of juvenile turbot

注:同行數(shù)值后不同上標(biāo)英文表示差異顯著(<0.05),下同。a: 每組15個(gè)平行

Notes: Values in the same row with different superscripts show significant difference (<0.05), the same below. a: 15 parallels in each group

表3 微藻粉替代魚粉對大菱鲆幼魚體組成的的影響(%濕重;=3;ˉ±SD)

Tab.3 Effects of fish meal replacement by microalgae meals on tissue proximate composition of juvenile turbot (%wet weight; n=3;xˉ±SD)

表4 微藻粉替代魚粉對大菱鲆幼魚血清非特性免疫能力的影響(=3;ˉ±SD)

Tab.4 Effects of fish meal replacement by microalgae meals on serum non-specific immune index of juvenile turbot (n=3;xˉ±SD)

表5 微藻粉替代魚粉對大菱鲆幼魚血清抗氧化能力的影響(%濕重;=3;ˉ±SD)

Tab.5 Effects of fish meal replacement by microalgae meals on serum antioxidant indeices of juvenile turbot (%wet weight; n=3;xˉ±SD)

2.5 擬微綠球藻粉替代魚粉對大菱鲆幼魚血清血脂指標(biāo)的影響

如表6所示,血清TG呈先下降后上升的趨勢,在N7.76組達(dá)到最低值并且顯著低于N0組(<0.05);藻粉組血清TCHO含量顯著低于N0組(<0.05),但各藻粉組之間無顯著差異(<0.05);LDL-C含量呈下降趨勢,HDL-C含量呈先上升后下降的趨勢,在N7.76組達(dá)到最大值并顯著高于N0組(<0.05),且N11.64和N15.52組顯著低于N0組(<0.05);藻粉組血清LDL-C/ HDL-C顯著低于N0組(<0.05),但各藻粉組之間無顯著差異(>0.05)。

2.6 擬微綠球藻粉替代魚粉對大菱鲆幼魚血清代謝指標(biāo)的影響

如表7所示,AST呈先下降后上升的趨勢,N11.64組達(dá)到最小值,顯著低于N0組(<0.05),而ALT呈逐漸下降趨勢,顯著低于N0組(<0.05)。

表6 微藻粉替代魚粉對大菱鲆幼魚血清血脂指標(biāo)的影響(=3;ˉ±SD)

Tab.6 Effects of fish meal replacement by microalgae meals on serum lipid of juvenile turbot (n=3;xˉ±SD)

表7 微藻粉替代魚粉對大菱鲆幼魚血清代謝指標(biāo)的影響(=3;ˉ±SD)

Tab.7 Effects of fish meal replacement by microalgae meals on serum metabolic index of juvenile turbot (n=3;xˉ±SD)

3 討論

3.1 擬微綠球藻粉替代魚粉對大菱鲆幼魚生長及飼料利用的影響

研究表明,飼料中添加適量的海藻(2.5%~10%)可提高魚類生長、飼料利用和抗病力(Norambuena, 2015;Wassef, 2005)。本研究中,擬微綠球藻粉替代魚粉對大菱鲆幼魚的生長和飼料的利用均無顯著影響,大菱鲆幼魚的成活率(SR)介于97.5%~100%,各組無顯著差異。微藻組與魚粉組SR相比沒有顯著降低,這與各組之間成活率均較高有關(guān)。大菱鲆幼魚增重率(WGR)、特定生長率(SGR)和肥滿度(CF)均無顯著差異,與郭斌等(2018)實(shí)驗(yàn)結(jié)果一致,而日攝食率(DFI)與其研究結(jié)果不同,DFI可能與其含有的誘食作用的物質(zhì)含量有關(guān),例如,海藻中常見的二甲基-β-丙酸噻亭(DMPT) (鄒仕庚等, 2005),可以增加攝食率,因本研究中未對擬微綠球藻的誘食成分進(jìn)行測定,其與微藻渣的差異需進(jìn)一步研究。與魚粉組相比,大菱鲆幼魚飼料系數(shù)(FCR)無顯著差異,這與小球藻粉替代鯽魚飼料中魚粉的報(bào)道存在差異(石西等, 2015)。隨著小球藻替代鯽魚飼料中魚粉比例增加,飼料系數(shù)呈先下降后升高的趨勢,出現(xiàn)差異的原因可能是小球藻粉最低替代水平21.8%遠(yuǎn)高于本研究擬微綠球藻粉最高替代水平15.52%,擬微綠球藻粉的添加量可能尚未到達(dá)引起飼料系數(shù)升高的拐點(diǎn)。與魚粉組相比,藻粉組大菱鲆幼魚臟體比(VSI)無顯著差異,這與曹申平等(2016)螺旋藻對異育銀鯽幼魚的研究和Miller等(2007)對大西洋鮭魚()的研究相符,而與石西等(2015)小球藻在鯽魚幼魚中的研究結(jié)果不一致,其原因可能與魚的初末體重有關(guān),也可能與選用的是藻粉種類或替代量有關(guān)。

3.2 擬微綠球藻粉替代魚粉對大菱鲆幼魚全魚和肌肉體組成的影響

研究表明,微藻替代魚粉對魚體組成產(chǎn)生一定影響,但這些影響對魚的營養(yǎng)價(jià)值影響比較小(Tibaldi, 2015; Kissinger, 2016)。本研究中,大菱鲆幼魚全魚的水分、粗蛋白和粗灰分不受擬微綠球藻粉添加量的影響,這與郭斌等(2018)、慈麗寧(2011)和張燕等(2017)研究結(jié)果一致,說明添加適量的擬微綠球藻粉替代大菱鲆幼魚飼料中魚粉對其全魚和肌肉蛋白質(zhì)含量無顯著影響。而大菱鲆全魚和肌肉粗脂肪含量呈下降趨勢,這可能與擬微綠球藻粉中含有較多的EPA有關(guān),EPA可以抑制6-磷酸葡萄糖脫氫酶、乙酰羥化酶和蘋果酸脫氫酶的活性,使肝臟內(nèi)脂肪合成能力減弱,從而影響脂肪的合成(胡斌等, 2013)。此外,微藻粉含有較多的色素類成分和纖維素(Iα型)等非淀粉性多糖,不能被魚類充分吸收利用(Lubian, 2002),從而影響脂肪的沉積,這一研究結(jié)果與星斑川鰈()幼魚飼料中添加擬微綠球藻粉的實(shí)驗(yàn)結(jié)果一致(張燕等, 2017)。

3.3 擬微綠球藻粉替代魚粉對大菱鲆幼魚血清非特異性免疫指標(biāo)的影響

溶菌酶(LZM)通過溶解細(xì)菌的細(xì)胞壁來完成免疫反應(yīng),是魚類非特異性免疫系統(tǒng)的重要組成部分。本研究中,藻粉組血清中LZM活力呈先上升后下降的趨勢,在N7.76組達(dá)到最大值并顯著高于對照組,這說明適量的擬微綠球藻粉可以提升魚類溶菌酶免疫功能,而過量的會(huì)對魚類溶菌酶免疫產(chǎn)生抑制作用。補(bǔ)體蛋白C3和補(bǔ)體蛋白C4是魚類血清和組織液中一組經(jīng)活化后具有酶活性的蛋白質(zhì),補(bǔ)體蛋白C3主要是由巨噬細(xì)胞、淋巴組織和骨髓等合成的β球蛋白,可以在補(bǔ)體蛋白C3裂解酶的作用下參與補(bǔ)體激活,補(bǔ)體蛋白C4也是補(bǔ)體經(jīng)典激活途徑的重要組分(慈麗寧, 2011)。本研究補(bǔ)體蛋白C3活力呈先上升后下降趨勢,在N7.76組達(dá)到最大值并顯著高于對照組,而補(bǔ)體蛋白C4活力呈先上升后下降的趨勢,在N11.64組達(dá)到最大值并顯著高于對照組,原因是擬微綠球藻含有的藻多糖(PSP)可以與補(bǔ)體因子結(jié)合激活免疫系統(tǒng),促進(jìn)細(xì)胞的吞噬活性(Dalmo, 1996),這表明適量的擬微綠球藻粉可以提高大菱鲆幼魚非特異性免疫能力。ALP和ACP是魚類非特性免疫的重要指標(biāo),對魚體抗病力和抗應(yīng)激力起促進(jìn)作用。本研究中,血清中ALP含量僅N15.52組顯著低于對照組,ACP先上升后下降,在N7.76組達(dá)到最大值并顯著高于對照組??赡苁菙M微綠球藻中多糖和寡糖起到激活非特異性免疫的作用。

3.4 擬微綠球藻粉替代魚粉對大菱鲆幼魚抗氧化指標(biāo)的影響

總超氧化物歧化酶(T-SOD)、總抗氧化能力(T-AOC)和谷胱甘肽過氧化物酶 (GSH-PX)等活性在一定程度上能夠反映機(jī)體抵抗氧化應(yīng)激的能力,當(dāng)機(jī)體發(fā)生氧化損傷時(shí),脂質(zhì)過氧化物水平往往升高,抗氧化能力下降(梅琳等, 2015)。本研究中,隨著擬微綠球藻粉的替代比例增大,血清中T-SOD、T-AOC和GSH-PX活力呈先上升后下降的趨勢,均在N7.76組達(dá)到最大值,并顯著高于對照組。說明擬微綠球藻粉替代魚粉的水平為7.76%時(shí),大菱鲆的抗氧化能力達(dá)到最大值。隨著替代量的增加,對機(jī)體可能存在損傷,說明適量的擬微綠球藻粉的添加有利于大菱鲆幼魚抗氧化能力的提高,過多不利于大菱鲆幼魚的生長。丙二醛(MDA)是膜脂過氧化作用的最終分解產(chǎn)物,其含量可以反映大菱鲆幼魚遭受脅迫傷害的程度(Martínez-álvarez, 2005; Jain, 2001),藻粉組血清中MDA含量呈逐漸下降的趨勢,并顯著低于對照組,說明適量的擬微綠球藻粉的添加有利于大菱鲆幼魚的抗脅迫能力。

3.5 擬微綠球藻粉替代魚粉對大菱鲆幼魚血脂指標(biāo)的影響

本研究中,擬微綠球藻粉的添加顯著影響大菱鲆幼魚的血脂水平。隨著擬微綠球藻粉替代比例增加,藻粉組TCHO呈逐漸下降趨勢,而TG呈先下降后上升的趨勢,在N7.76組顯著低于對照組,造成血脂水平降低的原因可能是擬微綠球藻粉含有大量的高不飽和脂肪酸和類胡蘿卜素,特別是EPA含量占總脂肪含量的35% (魏東等, 2000),具有抗血栓和調(diào)節(jié)血脂的作用,其次含有較多亞油酸和亞麻酸,這2種高不飽和脂肪酸是線粒體膜磷脂和細(xì)胞膜重要組成成分,可以減少膽固醇和甘油三酯在肝臟和脂肪中的沉淀和堆積(Werman, 2003),有降脂的作用(Abdel, 2009)。血清中LDL-C含量增加可以使更多的TCHO和TG轉(zhuǎn)運(yùn)到血液,而HDL-C可以使更多的TCHO轉(zhuǎn)運(yùn)到肝臟,LDL-C和HDL-C影響血清中的TCHO和TG的含量(曹林等, 2017)。本研究中LDL-C呈下降趨勢,HDL-C呈先上升后下降趨勢,LDL-C/ HDL-C顯著低于對照組,各藻粉組間無顯著差異。說明飼料中添加適量擬微綠球藻對降低低密度脂蛋白含量,增加高密度脂蛋白含量有一定作用,同時(shí)能顯著降低密度脂蛋白與高密度脂蛋白的比值,有利于大菱鲆的血脂健康。

3.6 擬微綠球藻粉替代魚粉對大菱鲆幼魚血清代謝指標(biāo)的影響

谷草轉(zhuǎn)氨酶(AST)和谷丙轉(zhuǎn)氨酶(ALT)是反映肝功能的指標(biāo),AST主要存在肝細(xì)胞線粒體內(nèi),當(dāng)肝臟發(fā)生嚴(yán)重壞死和破損時(shí),才會(huì)導(dǎo)致血清中AST偏高(魏佳麗等, 2016)。本研究中,AST呈先下降后上升的趨勢,原因是擬微綠球藻粉含有亞油酸和亞麻酸,可以防止膽固醇和甘油三脂在肝臟中的堆積,一定替代范圍內(nèi)可以保護(hù)肝臟等組織的正常生理功能不受損傷,但隨著添加量的增加,這種保護(hù)作用會(huì)呈下降趨勢甚至過多的添加可能造成損傷。ALT主要存在于肝細(xì)胞中,血清中含量很低,只有當(dāng)細(xì)胞大量壞死或者細(xì)胞膜的通透性增強(qiáng)時(shí)含量會(huì)增加(Chen, 2003)。本實(shí)驗(yàn)中ALT呈下降趨勢,說明添加一定量的擬微綠球藻粉可能維持了肝細(xì)胞膜對ALT的穩(wěn)定性。

4 結(jié)論

綜上所述,在本實(shí)驗(yàn)條件下,用擬微綠球藻粉替代15.52%以內(nèi)魚粉對大菱鲆幼魚的生長性能無顯著影響,同時(shí)可以降低脂肪在魚體內(nèi)的沉積;添加7.76%的擬微綠球藻粉替代魚粉能夠顯著提高大菱鲆幼魚的免疫性能和抗氧化能力,同時(shí)保護(hù)其營養(yǎng)價(jià)值。

Abdel TM, Ahmad MH. Live spirulina () as a growth and immunity promoter for Nile tilapia,(L.), challenged with pathogenicAquaculture Research, 2010, 40(9): 1037–1046

Cao L, Zhang TT, Xu HG,. Effects of different protein hydrolysates in high plant protein diets on the lipid accumulation of Juvenile Japanese seabass (). Progress in Fishery Sciences, 2017, 38(03): 89–98 [曹林, 張婷婷, 徐后國, 等. 飼料中不同水解蛋白對鱸魚()幼魚魚體及組織脂肪含量的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(3): 89–98]

Cao SP, Han D, Xie SQ,. Effects of dietary replacement fish meal protein withpowder protein on feed intake, growth performance, feed utilization and protein deposition in Juvenile Gibel Carp (). Acta Hydrobiologica Sinica, 2016, 40(4): 647–654 [曹申平, 韓冬, 解綬啟, 等. 螺旋藻粉替代飼料中魚粉對異育銀鯽幼魚生長、飼料利用和蛋白沉積的影響. 水生生物學(xué)報(bào), 2016, 40(4): 647–654]

Chen C, Chen JH. Effects of taurine and compound crystalline amino acid on feed intake, growth and feed utilization of turbot (L)Chinese Agricultural Science Bulletin2012, 28(23): 108–112 [陳超, 陳京華. ?;撬帷⒕w氨基酸對大菱鲆攝食、生長和飼料利用率的影響. 中國農(nóng)學(xué)通報(bào), 2012, 28(23): 108–112]

Chen JY, Chen JC, Wu JL. Molecular cloning and functional analysis of zebrafish high-density lipoprotein-binding protein. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2003, 136(1): 117–130

Ci LN. Effect of the diets replacing different proportions of fish meal with aglae powder on the growth performance, nutrients digestbilty and immunity of bluntnose black bream (). Magte’s Thsis of Nanjing Agricultural University, 2011 [慈麗寧. 藻粉替代魚粉對團(tuán)頭魴生產(chǎn)性能、營養(yǎng)成分、消化機(jī)能和免疫的影響. 南京農(nóng)業(yè)大學(xué)碩士研究生學(xué)位論文, 2011]

Dallaire V, Lessard P, Vandenberg G,. Effect of algal incorporation on growth, survival and carcass composition of rainbow trout () fry. Bioresource Technology, 2007, 98(7): 1433–1439

Dalmo RA, Bogwald J, Ingebrigtsen K,. The immunomodulatory effect of laminaran [β(1,3)-D-glucan] on Atlantic salmon,L. anterior kidney leucocytes after intraperitoneal, peroral and peranal administration. Journal of Fish Diseases, 1996, 19(6): 449–457

Day OJ, Hgp G. Soybean protein concentrate as a protein source for turbotL. Aquaculture Nutrition, 2015, 6(4): 221–228

Du T, Huang Y, Luo J. Effects of rotifer enriched with algaintensively on artificial breeding of three fish species. Journal of Dalian Fisheries University, 2010, 25(2): 158–161 [杜濤, 黃洋, 羅杰. 酵母輪蟲和以小球藻、螺旋藻強(qiáng)化的輪蟲對3種仔魚人工育苗效果的影響. 大連海洋大學(xué)學(xué)報(bào), 2010, 25(2): 158–161]

Emma T, Schrama JW, Gruppen H,. Effect of cell wall characteristics on algae nutri ent digestibility in Nile tilapia () and African catfish (). Aquaculture, 2017, 479: 490–500

Guo B, Liang MQ, Xu HG,. Effects of gracilaria verrucosa, enteromorpha prolifera, algae residue and fungi residue on growth performance, serum and liver biochemical Indices, body composition and intestinal histological morphology of juvenile turbot ()Chinese Journal of Animal Nutrition, 2018, 30(1): 299–312 [郭斌, 梁萌青, 徐后國, 等. 江蘺、滸苔、藻渣和菌渣替代魚粉對大菱鲆幼魚生長性能、血清和肝臟生化指標(biāo)、體組成和腸道組織結(jié)構(gòu)的影響. 動(dòng)物營養(yǎng)學(xué)報(bào), 2018, 30(1): 299–312]

Hu B, Song LP, Yan JR,. Research advance on marine microalgae eicosapentaenoic acid. Hebei Fisheries, 2013, 43(4): 43–47 [胡斌, 宋理平, 閆家仁, 等. 海洋微藻源二十碳五烯酸的研究進(jìn)展. 河北漁業(yè), 2013, 43(4): 43–47]

Jain SK, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+, K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radical Biology & Medicine, 2001, 30(3): 232–237

Kissinger KR, Garcia OA, Trushenski JT. Partial fish meal replacement by soy protein concentrate, squid and algal meals in low fish-oil diets containingfor long fin yellow tail. Aquaculture, 2016(452): 37–44

Krisetherton PM, Grieger JA, Etherton TD. Dietary reference intakes for DHA and EPA. Prostaglandins Leukotrienes & Essential Fatty Acids, 2009, 81(2): 99–104

Lubian LM, Montero O, Moreno-Garrido I,.(Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 2000, 12(3–5): 249–255

Marques A, Thanh TH, Sorgeloos P,. Use of micro-algae and bacteria to enhance protection of gnotobiotic Artemia, against different pathogens. Aquaculture, 2006, 258(1–4): 116–126

Martínez-álvarez RM, Morales AE, Sanz A. Antioxidant Defenses in Fish: Biotic and Abiotic Factors. Reviews in Fish Biology & Fisheries, 2005, 15(1–2): 75–88

Mei L, Zhou HH, Mai KS,. Effects of dietary substitution of fish meal by fermented silkworm pupae on the growth, feed intake, digestion and immunity of Juvenile Turbot (L.). Progress in Fishery Sciences, 2015, 36(3): 85–92 [梅琳, 周慧慧, 麥康森, 等.蛹肽蛋白替代魚粉對大菱鲆(L.)幼魚生長、飼料利用、消化代謝酶及免疫性能的影響. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(3): 85–92]

Miller MR, Nichols PD, Carter CG. Replacement of fish oil with thraustochytridsp. L oil in Atlantic salmon parr (L) diets. Comparative Biochemistry & Physiology Part A: Molecular & Integrative Physiology, 2007, 148(2): 382–392

Norambuena F, Hermon K, Skrzypczyk V,. Algae in Fish Feed: Performances and fatty acid netabolism in Juvenile. PLoS One, 2015, 10(4): 1–17

Olsen RL, Hasan MR. A limited supply of fish meal: Impact on future increases in global aquaculture production. Trends in Food Science & Technology, 2012, 27(2): 120–128

Olvera-Novoa MA, Domínguez-Cen LJ, Olivera-Castillo L,. Effect of the use of the microalgaeas fish meal replacement in diets for tilapia,(Peters), fry. Aquaculture Research, 1998, 29(10): 709– 715

Rana KJ, Siriwardena S, Hasan MR. Impact of rising feed ingredient prices on aqua feeds and aquaculture production. FAO, Fisheries and Aquaculture Technical Paper, Rome: FAO. 2009, 541: 63–64

Regost C, Arzel J, Kaushik SJ. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (). Aquaculture, 1999, 180(1–2): 99–117

Shi X, Luo Z, Huang C,. Effect of Substituting. for regular fish meal on growth, body composition, hepatic lipid metabolism and histology in crucian carp. Acta Hydrobiologica Sinica, 2015, 39(3): 498–506 [石西, 羅智, 黃超, 等. 小球藻替代魚粉對鯽生長、體組成、肝臟脂肪代謝及其組織學(xué)的影響. 水生生物學(xué)報(bào), 2015, 39(3): 498–506]

Tibaldi E, ChiniZittelli G, Parisi G,. Growth performance and quality traits of European sea bass () fed diets including increasing levels of freeze-driedsp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture, 2015(440): 60–68

Thompson KR, Velasquez A, Patterson JT,. Evaluation of plant and animal protein sources as partial or total replacement of fish meal in diets for Nile tilapia fry and juvenile stages. North American Journal of Aquaculture, 2012, 74(3): 365–375

Wassef EA, El-Sayed A FM, Kandeel KM,. Evaluation of Pterocla dia () and Ulva () meals as additives to gilthead sea breamdiets. Egyptian Journal of Aquatic Research, 2005(31): 321–332

Wei D, Zhang XC, Sui ZH,. Effects of nitrogen sources and N/P ration on cell growth, total lipid content and fatty acid composition of. Marine Sciences, 2000, 24(7): 46–51 [魏東, 張學(xué)成, 隋正紅, 等. 氮源和N/P對眼點(diǎn)擬微球藻的生長、總脂含量和脂肪酸組成的影響. 海洋科學(xué), 2000, 24(7): 46–51]

Werman MJ, Sukenik A, Mokady S. Effects of the marine unicellular algaspto reduce the plasma and liverlevels in male rats fed on diets with cholesterol. Journal of the Agricultural Chemical Society of Japan, 2003, 67(10): 2266–2268

Wei KL, Wang JY, Song ZD,. Effects of partial substitute for fish meal by hydrolyzed kill meal on the growth performance, the body composition and the serum biochemical prameters of juvenile pearl gentian grouper. Progress in Fishery Sciences, 2016, 37(1): 100–110 [魏佳麗, 王際英, 宋志東, 等. 酶解磷蝦粉替代魚粉對珍珠龍膽石斑魚幼魚生長性能、體組成及血清生化的影響. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(1): 100–110]

Wu JL, Zhou B, Ma MY,. Research progress on micro-algae pigment. Food Science, 2010, 31(23): 395–400 [吳吉林, 周波, 麻明友, 等. 微藻色素的研究進(jìn)展. 食品科學(xué), 2010, 31(23): 395–400]

Yamaguchi K. Recent advances in micro-algal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. Journal of Applied Phycology, 1996, 8(6): 487–502

Yu Y, Chen BL. Progress of the studies onMarine Science Bulletin, 2005, 24(6): 75–81 [余穎, 陳必鏈. 微綠球藻的研究進(jìn)展. 海洋通報(bào), 2005, 24(6): 75–81]

Zhang Y, Qiao HJ, Li BS,. Effects of replacement of fish oil by micro-algae meals on growth performance, tissue proximate composition and biochemical indices of juvenile starry ?ounder,. Journal of Fishery Sciences of China, 2017, 24(6): 1223–1233 [張燕, 喬洪金, 李寶山, 等. 微藻粉替代魚油對星斑川鰈幼魚生長、體組成和生理指標(biāo)的影響. 中國水產(chǎn)科學(xué), 2017, 24(6): 1223–1233]

Zou SG, TAo ZG, Xu Y. Application of DMPT in aquatic animal nutrition. Guangdong Feed, 2005, 14(3): 34–35 [鄒仕庚, 陶正國, 許毅. DMPT在水產(chǎn)動(dòng)物營養(yǎng)中的應(yīng)用. 廣東飼料, 2005, 14(3): 34–35]

Effects of Replacement of Dietary Fish Meal bysp. Meal on Growth Performance, Body Composition, and Serum Biochemical Indices of Juvenile Turbot (L.)

HU Dongxue1,2, MA Ji1,2, WANG Chengqiang2, QIAO Hongjin2①, WANG Jiying2, LI Baoshan2, SUN Yongzhi2

(1. National Demonstration Center for Experimental Fisheries Science Education, Centre for Research on Environmental Ecology and Fish Nutrion (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306; 2. Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006)

A 70-day trial was conducted to investigate the effect of replacement of dietary fish meal byspmeal on growth performance, body composition, and serum biochemical indices of juvenile turbotLwith an initial weight body weight of (24.60±0.02) gFive isonitrogenous and isoenergetic diets (N0, N3.88, N7.76, N11.64, and N15.52) were formulated with 0%, 3.88%, 7.76%, 11.64%, and 15.52% fish meal replaced byspmeal, respectively. Each diet was randomly fed to three replicates of fish, with 40 fish per replicate. The following results were obtained. 1) There were no significant differences (0.05) in weight growth rate, specific growth rate, protein efficiency ratio, feed coefficient ratio, feed intake, condition factor, and survival rate among the groups. 2) As the meal content ofspincreased, the crude lipid content in the whole body and muscle was significantly decreased (0.05); however the crude protein, crude ash, and moisture content were not significantly different (0.05). 3) Lysozyme, complement protein C3, complement protein C4, and acid phosphatase activities showed a rising trend followed by a decline, with the highest point reached in the N7.76, N7.76, N11.64, and N7.76groups, respectively, and were significantly higher than that in the N0group (0.05). The alkaline phosphatase activity of the N15.52group was significantly lower than that the other groups and there were no significant differences among other groups (0.05). 4) The total superoxide dismutase, total antioxidant capacity, and glutathione peroxidase activities in the serum of the algae meal groups first increased and then decreased, and reached a maximum in the N7.76group, which was significantly higher than that in the N0group (0.05). 5) The triglyceride content in the serum of the N7.76group was significantly lower than that in the other groups (0.05), and there were no significant differences among the other groups (0.05). The total cholesterol content of the algae meal groups was significantly lower than in the N0group (0.05), but there were no significantly differences among the algae meal groups. 6) The aspartate aminotransferase activity in the serum of the algae meal groups followed a decreasing to increasing trend, reaching the lowest point in the N11.64group and was significantly lower than that in the N0group (<0.05). The alanine aminotransferase activity of the algae meal groups was significantly lower than that in the N0group (0.05). In conclusion, under the experimental conditions tested,sp. meal could replace 15.52% of fish meal in juvenile turbot feed without any effects on the growth performance, and the replacement of 7.76% fish meal significantly improved the nonspecific immunity and reduced the blood lipid levels in juvenile turbot.

Juvenile turbot;spmeal; Growth performance; Antioxidant activity

QIAO Hongjin, E-mail: hongjinqiao@hotmail.com

10.19663/j.issn2095-9869.20180529003號S963

A

2095-9869(2019)04-0021-10

* 煙臺(tái)市重點(diǎn)研發(fā)計(jì)劃(2017ZH066)、山東省自然科學(xué)基金青年基金(ZR2017QD007)、海洋公益性行業(yè)科研專項(xiàng)(201505022-5)和山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系藻類產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)項(xiàng)目(SDAIT-26-05)共同資助[This work was supported by Key Research and Development Program of Yantai City(2017ZH066); Shandong Provincial Natural Science Foundation, China (ZR2017QD007); Public Science and Technology Research Funds Projects of Ocean (201505022-5); Modern Agricultural Industry System of Shandong Province of China: Industrial Innovation Team of Algae (SDAIT-26-05)]. 胡冬雪,E-mail: 1018865124@qq.com

喬洪金,副研究員,E-mail: hongjinqiao@hotmail.com

2018-05-29,

2018-06-25

胡冬雪, 馬季, 王成強(qiáng), 喬洪金, 王際英, 李寶山, 孫永智. 擬微綠球藻粉替代魚粉對大菱鲆幼魚生長性能、體組成和血清生化指標(biāo)的影響. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(4): 21–30

Hu DX, Ma J, Wang CQ, Qiao HJ, Wang JY, Li BS, Sun YZ. Effects of replacement of dietary fish meal bysp. meal on growth performance, body composition, and serum biochemical indices of juvenile turbot (L). Progress in Fishery Sciences, 2019, 40(4): 21–30

(編輯 江潤林)

猜你喜歡
大菱鲆魚粉幼魚
魚粉普遍上漲100~200元/噸,背后“推手”是什么?
瘋狂!直擊魚粉飆漲,與國外魚粉市場緣何倒掛?
黃海水產(chǎn)研究所“一種大菱鲆油乳化疫苗及其應(yīng)用”獲國家發(fā)明專利授權(quán)
魚粉:秘魯A季捕撈良好,國內(nèi)外魚粉市場穩(wěn)定為主
魚粉:秘魯B季捕撈良好,國內(nèi)外魚粉價(jià)格下滑
遼寧大菱鲆養(yǎng)殖產(chǎn)業(yè)發(fā)展形勢分析
體外培養(yǎng)法探討不同蛋白源對大菱鲆腸道菌群的影響
黃顙魚幼魚的賴氨酸需要量
黃顙魚幼魚對飼料中維生素C的需要量
不同溫度條件下褐菖鲉幼魚的耗氧率和排氨率
克山县| 大洼县| 满洲里市| 茂名市| 麻城市| 侯马市| 黔西县| 太湖县| 洛川县| 闽清县| 安岳县| 于田县| 东乌珠穆沁旗| 隆昌县| 青海省| 衡阳市| 甘德县| 珲春市| 鄱阳县| 安丘市| 常宁市| 永顺县| 竹溪县| 广州市| 江山市| 馆陶县| 共和县| 兴义市| 平江县| 锡林浩特市| 曲沃县| 新田县| 民权县| 望谟县| 调兵山市| 比如县| 曲阳县| 安阳市| 龙门县| 鱼台县| 安庆市|