李振宏 黃濤
【摘要】 目的:研究營養(yǎng)素-1(CT-1)干預(yù)治療抗N-甲基-D-天門冬氨酸(NMDA)受體腦炎誘導(dǎo)的神經(jīng)元損傷的保護(hù)作用及機(jī)制,為抗NMDA受體腦炎提供新的治療靶點(diǎn)。方法:選擇剛出生的SD大鼠培養(yǎng)原代神經(jīng)元細(xì)胞,把原代神經(jīng)元細(xì)胞分為實(shí)驗(yàn)組﹑對(duì)照組和正常組,分別建立抗NMDA受體腦炎誘導(dǎo)的神經(jīng)元損傷模型,在實(shí)驗(yàn)組中加入CT-1(10 ng/mL),應(yīng)用臺(tái)盼藍(lán)染色法、免疫組織化學(xué)和TUNEL細(xì)胞凋亡檢測(cè)等技術(shù),檢測(cè)CT-1對(duì)抗NMDA受體腦炎誘導(dǎo)神經(jīng)元損傷的保護(hù)作用以及細(xì)胞凋亡基因Caspase-3表達(dá)水平。結(jié)果:各種濃度的谷氨酸均能誘導(dǎo)神經(jīng)元凋亡,谷氨酸濃度為100﹑200 μmol/L時(shí),細(xì)胞凋亡率高而死亡率并不高;加入CT-1神經(jīng)元細(xì)胞,第1、2、3天,實(shí)驗(yàn)組細(xì)胞存活率均高于對(duì)照組,細(xì)胞凋亡率、Caspase-3陽性細(xì)胞率均低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:CT-1對(duì)抗NMDA受體腦炎導(dǎo)致的神經(jīng)元損傷有保護(hù)作用,可能是通過促使凋亡基因Caspase-3表達(dá)下調(diào),減少細(xì)胞凋亡發(fā)生,從而對(duì)抗NMDA受體腦炎誘導(dǎo)的神經(jīng)元損傷起到保護(hù)作用。
【關(guān)鍵詞】 抗NMDA受體腦炎; 神經(jīng)元; 損傷; 心肌營養(yǎng)素-1
【Abstract】 Objective:To study the protective effect and mechanism of cardiotrophin-1(CT-1)intervention on neuronal injury induced by anti-NMDA-receptor encephalitis and to provide a new therapeutic target for anti-NMDA-receptor encephalitis.Method:The primary neuron cells were cultured in newly born SD rats,they were divided into experimental group,control group and normal group,neuronal injury models induced by anti-NMDA-receptor encephalitis were established,CT-1(10 ng/mL)was added to experimental group.Trypan blue staining,immunohistochemistry and TUNEL cell apoptosis detection were used to detect the protective effect of CT-1 on neuronal injury induced by NMDA receptor encephalitis and the expression level of Caspase-3.Result:All concentrations of glutamate could induce neuronal apoptosis,when the concentration of glutamate was 100 and 200 μmol/L,the apoptotic rate was high and the mortality rate was not high.On the 1st,2nd and 3rd day after adding CT-l neurons,the survival rate of experimental group were higher than those of control group,and the apoptotic rate and Caspase-3 positive cell rate were lower than those of control group,the differences were statistically significant(P<0.05).Conclusion:CT-1 has protective effect against neuronal injury induced by anti-NMDA-receptor encephalitis,which may be through down-regulation of Caspase-3 expression and reduction of apoptosis,thereby protecting neurons from NMDA receptor encephalitis-induced neuronal injury.
【Key words】 Anti-NMDA-receptor encephalitis; Neuron; Injury; Cardiotrophin-1
First-authors address:Ganzhou Hospital Affiliated to Nanchang University,Ganzhou 341000,China
doi:10.3969/j.issn.1674-4985.2019.10.006
抗N-甲基-D-天門冬氨酸(N-methyl-D-aspartate,NMDA)受體腦炎是一種起病時(shí)臨床表現(xiàn)不典型,易被臨床工作者忽視的一種神經(jīng)系統(tǒng)疾病,心肌營養(yǎng)素-1(cardiotrophin-1,CT-1)是Pennica等于1995年發(fā)現(xiàn)的一種細(xì)胞因子,與睫狀神經(jīng)營養(yǎng)因子、白血病抑制因子、白介素6等同屬促神經(jīng)生長因子家族[1-2]。近年來發(fā)現(xiàn)CT-l對(duì)中樞神經(jīng)系統(tǒng)有重要作用,可通過其特異性受體對(duì)神經(jīng)元起保護(hù)作用[3-5]。本研究針對(duì)抗NMDA受體腦炎的發(fā)病機(jī)制,通過建立抗NMDA受體腦炎體外培養(yǎng)模型,觀察CT-1對(duì)抗NMDA受體腦炎誘導(dǎo)神經(jīng)元損傷的保護(hù)作用,了解CT-1對(duì)神經(jīng)元的作用和機(jī)制,為抗NMDA受體腦炎的臨床研究提供新的靶點(diǎn)。現(xiàn)報(bào)道如下。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物 選擇剛出生的SD大鼠,進(jìn)行原代神經(jīng)元細(xì)胞培養(yǎng)。
1.2 方法
1.2.1 原代神經(jīng)元培養(yǎng) 選擇剛出生的SD大鼠,用眼科鑷取出海馬,D-Hanks液清洗后,剪成1 mm3左右的小塊,在37 ℃溫度下用0.25%胰蛋白酶消化組織小塊后,調(diào)節(jié)細(xì)胞懸液濃度為1×106/mL,接種于經(jīng)0.01%多聚賴氨酸預(yù)處理的細(xì)胞培養(yǎng)瓶中。神經(jīng)元細(xì)胞培養(yǎng)9 d后,經(jīng)過NF-200免疫細(xì)胞組織化學(xué)法鑒定,神經(jīng)元占培養(yǎng)細(xì)胞的90%以上。
1.2.2 建立抗NMDA受體腦炎誘導(dǎo)的神經(jīng)元損傷模型 當(dāng)神經(jīng)元細(xì)胞培養(yǎng)至第9天,隨機(jī)選取60個(gè)標(biāo)本為實(shí)驗(yàn)1組,15個(gè)樣本為對(duì)照1組,將實(shí)驗(yàn)1組均分為4個(gè)小組,分別加入不同濃度谷氨酸(100、200、300、400 μmol/L),對(duì)照1組不加任何藥品處理,實(shí)驗(yàn)1組中不同濃度的谷氨酸與神經(jīng)元細(xì)胞作用15 min后更換新鮮培養(yǎng)液,24 h后進(jìn)行臺(tái)盼藍(lán)染色和TUNEL細(xì)胞凋亡檢測(cè)。(1)臺(tái)盼藍(lán)染色檢測(cè)細(xì)胞存活率:神經(jīng)元細(xì)胞經(jīng)臺(tái)盼藍(lán)染色后,隨機(jī)計(jì)數(shù)15個(gè)視野中藍(lán)染神經(jīng)元數(shù),死亡細(xì)胞被染成藍(lán)色,未著色的細(xì)胞為存活細(xì)胞。神經(jīng)元存活率=神經(jīng)元存活數(shù)/細(xì)胞總數(shù)×100%。(2)TUNEL檢測(cè)細(xì)胞凋亡率:神經(jīng)元細(xì)胞經(jīng)TUNEL檢測(cè),隨機(jī)計(jì)數(shù)15個(gè)視野中深棕色神經(jīng)元數(shù),凋亡細(xì)胞被染成深棕色,未著色的細(xì)胞為存活細(xì)胞。神經(jīng)元凋亡率=神經(jīng)元凋亡數(shù)/細(xì)胞總數(shù)×100%。
1.2.3 CT-1對(duì)抗NMDA受體腦炎誘導(dǎo)神經(jīng)元損傷的保護(hù)作用 另隨機(jī)選取原代神經(jīng)元細(xì)胞45個(gè)標(biāo)本,將其均分為實(shí)驗(yàn)組﹑對(duì)照組和正常組,各15個(gè)標(biāo)本。實(shí)驗(yàn)組在加谷氨酸前1天加入CT-1(10 ng/mL),對(duì)照組中加入相同劑量緩沖液,正常組不做處理。當(dāng)神經(jīng)元細(xì)胞培養(yǎng)至第9天,將低濃度谷氨酸(100 μmol/L)加入實(shí)驗(yàn)組和對(duì)照組中,15 min后換回正常細(xì)胞培養(yǎng)液,正常組不加入谷氨酸。繼續(xù)培養(yǎng)細(xì)胞至1﹑2、3 d進(jìn)行細(xì)胞存活率、凋亡率和細(xì)胞凋亡基因Caspase-3表達(dá)水平。Caspase-3基因表達(dá)檢測(cè):采用免疫組化方法檢測(cè)Caspase-3基因表達(dá),隨機(jī)計(jì)數(shù)15個(gè)視野中陽性神經(jīng)元數(shù)和總神經(jīng)元數(shù),神經(jīng)元中有棕色著色者為陽性神經(jīng)元,Caspase-3基因陽性表達(dá)率=陽性神經(jīng)元數(shù)/神經(jīng)元總數(shù)×100%。
1.3 統(tǒng)計(jì)學(xué)處理 使用SPSS 19.0軟件對(duì)所得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料用(x±s)表示,多組間比較采用方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 原代神經(jīng)元培養(yǎng)和鑒定 神經(jīng)元細(xì)胞接種細(xì)胞培養(yǎng)瓶后,可見細(xì)胞為懸浮在培養(yǎng)液中的小圓形細(xì)胞,邊界清楚,細(xì)胞密度很高;1 d后在培養(yǎng)瓶壁上可見大多數(shù)細(xì)胞基本貼壁,少數(shù)細(xì)胞可見軸突生長,軸突長度約占細(xì)胞體的一半;2 d后大多數(shù)細(xì)胞有軸突生長,長度約為胞體的2~3倍;3 d后神經(jīng)元細(xì)胞胞體變大,軸突長度增長不明顯;第4~5天可見許多細(xì)胞碎片,為崩解的神經(jīng)膠質(zhì)細(xì)胞;培養(yǎng)第8天,軸突逐漸增長,彼此相互連接,形成網(wǎng)狀,見圖1;細(xì)胞培養(yǎng)第9天,免疫組織化學(xué)鑒定神經(jīng)元,神經(jīng)元細(xì)胞及其軸突被染成棕色,棕色陽性細(xì)胞占全部細(xì)胞的90%以上,見圖2。
2.2 抗NMDA受體腦炎誘導(dǎo)的神經(jīng)元損傷模型分析 臺(tái)盼藍(lán)染色發(fā)現(xiàn),不同濃度的谷氨酸作用于神經(jīng)元細(xì)胞6 h后,可見部分細(xì)胞胞體腫脹,細(xì)胞軸突變短,1 d后部分腫脹細(xì)胞裂解;TUNEL染色發(fā)現(xiàn),不同濃度的谷氨酸作用于神經(jīng)元細(xì)胞1 d后,神經(jīng)元細(xì)胞體積變小,細(xì)胞核固縮;各種濃度的谷氨酸均能誘導(dǎo)神經(jīng)元凋亡,實(shí)驗(yàn)1組不同濃度谷氨酸組細(xì)胞存活率均低于對(duì)照1組,凋亡率均高于對(duì)照1組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),且隨著谷氨酸濃度逐漸升高,神經(jīng)元細(xì)胞的存活率逐漸下降,細(xì)胞凋亡率逐漸上升,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),其中谷氨酸濃度為100﹑200 μmol/L時(shí),細(xì)胞凋亡率隨著谷氨酸濃度的升高而升高,而濃度為200﹑300﹑400 μmol/L時(shí),細(xì)胞凋亡率隨著谷氨酸濃度的升高而下降,見表1和圖3、4。
2.3 CT-1對(duì)神經(jīng)元的保護(hù)作用
2.3.1 細(xì)胞凋亡率、存活率比較 當(dāng)神經(jīng)元細(xì)胞培養(yǎng)至第9天,加入100 μmol/L谷氨酸誘導(dǎo)凋亡后,TUNE檢測(cè)顯示:第1、2、3天,正常組細(xì)胞凋亡率均低于實(shí)驗(yàn)組和對(duì)照組,且實(shí)驗(yàn)組低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);臺(tái)盼藍(lán)染色顯示:第1、2、3天,正常組細(xì)胞存活率均高于實(shí)驗(yàn)組和對(duì)照組,且實(shí)驗(yàn)組均高于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見表2、圖5~9。
2.3.2 Caspase-3基因表達(dá)情況分析 細(xì)胞免疫組化技術(shù)檢測(cè)Caspase-3蛋白在神經(jīng)元細(xì)胞中的表達(dá)情況,Caspase-3陽性細(xì)胞可見神經(jīng)元胞漿和軸突著色;凋亡后第1、2、3天,正常組Caspase-3陽性細(xì)胞率均低于實(shí)驗(yàn)組和對(duì)照組,且實(shí)驗(yàn)組均低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見表3和圖10、11。
3 討論
抗NMDA受體腦炎是一種起病時(shí)臨床表現(xiàn)不典型,易被臨床工作者忽視的一種神經(jīng)系統(tǒng)疾病,主要累及人體大腦邊緣系統(tǒng),典型臨床表現(xiàn)以精神異常與癲癇發(fā)作為特征,其中大多數(shù)病人由腫瘤、感染等引起[6-12]??筃MDA受體腦炎的發(fā)病機(jī)制迄今尚未完全闡明,目前大部分學(xué)者認(rèn)為該病是抗NMDA抗體介導(dǎo)的免疫損傷所致,NMDA受體是一種谷氨酸離子型受體,由多種亞基組成的異四聚體,屬電壓門控通道,大量存在于大腦神經(jīng)細(xì)胞中,其中主要分布在大腦海馬區(qū)等邊緣系統(tǒng),功能主要是調(diào)節(jié)突觸傳遞及促發(fā)突觸重塑,異常激活常導(dǎo)致驚厥發(fā)作、精神異常等臨床表現(xiàn)[13-17]。
本研究在神經(jīng)元細(xì)胞培養(yǎng)至第10天,當(dāng)神經(jīng)元發(fā)育成熟,細(xì)胞狀態(tài)良好時(shí),用不同濃度的谷氨酸作用于神經(jīng)元細(xì)胞,檢測(cè)細(xì)胞凋亡率,結(jié)果顯示,各種濃度的谷氨酸均能誘導(dǎo)神經(jīng)元凋亡,實(shí)驗(yàn)1組不同濃度谷氨酸組細(xì)胞凋亡率均高于對(duì)照1組,且隨著谷氨酸濃度逐漸升高,神經(jīng)元細(xì)胞凋亡率逐漸上升,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),其中谷氨酸濃度為100﹑200 μmol/L時(shí),細(xì)胞凋亡率隨著谷氨酸濃度的升高而升高,而濃度為200﹑300﹑400 μmol/L時(shí),細(xì)胞凋亡率隨著谷氨酸濃度的升高而下降。而且本研究結(jié)果顯示,實(shí)驗(yàn)1組不同濃度谷氨酸組細(xì)胞存活率均低于對(duì)照1組,且隨著谷氨酸濃度逐漸升高,神經(jīng)元細(xì)胞的存活率逐漸下降,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。由于谷氨酸濃度為100﹑200 μmol/L時(shí),細(xì)胞凋亡率高而細(xì)胞死亡率并不高,提示100﹑200 μmol/L的谷氨酸為誘導(dǎo)神經(jīng)元凋亡的最佳濃度。在證實(shí)了低濃度的谷氨酸可引起神經(jīng)元凋亡之后,筆者在使用谷氨酸誘導(dǎo)神經(jīng)元凋亡的前1天,在實(shí)驗(yàn)組神經(jīng)元細(xì)胞中加入CT-1,然后采用TUNEL檢測(cè)和臺(tái)盼藍(lán)染色等方法來評(píng)價(jià)CT-1對(duì)神經(jīng)元的保護(hù)作用,結(jié)果顯示,第1、2、3天,正常組細(xì)胞凋亡率均低于實(shí)驗(yàn)組和對(duì)照組,且實(shí)驗(yàn)組低于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),正常組細(xì)胞存活率均高于實(shí)驗(yàn)組和對(duì)照組,且實(shí)驗(yàn)組均高于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),說明加入了CT-1的實(shí)驗(yàn)組細(xì)胞存活率明顯高于對(duì)照組,而細(xì)胞凋亡率卻明顯低于對(duì)照組,提示CT-1對(duì)抗NMDA受體腦炎導(dǎo)致的神經(jīng)元損傷具有抑制作用,對(duì)神經(jīng)元具有保護(hù)作用。而其對(duì)神經(jīng)元的保護(hù)作用,可能主要是通過抑制凋亡的途徑來實(shí)現(xiàn)的。
Caspase家族在介導(dǎo)細(xì)胞凋亡的過程中起著非常重要的作用,其中Caspase-3為關(guān)鍵的執(zhí)行分子,其在凋亡信號(hào)傳導(dǎo)的許多途徑中發(fā)揮作用。Caspase-3正常以酶原的形式存在于胞漿中,在凋亡的早期階段被激活,活化的Caspase-3由兩個(gè)大亞基和兩個(gè)小亞基組成,裂解相應(yīng)的胞漿胞核底物,最終導(dǎo)致細(xì)胞凋亡[18-20]。在抗NMDA受體腦炎導(dǎo)致的神經(jīng)元凋亡的機(jī)制中,為探究有無Caspase-3的參與,而CT-1對(duì)其表達(dá)有無抑制作用,筆者作了Caspase-3免疫組化,結(jié)果顯示:凋亡后第1、2、3天,正常組Caspase-3陽性細(xì)胞率均低于實(shí)驗(yàn)組和對(duì)照組(P<0.05),提示谷氨酸損傷使Caspase-3蛋白表達(dá)增加,Caspase-3參與了抗NMDA受體腦炎導(dǎo)致的神經(jīng)元凋亡的機(jī)制;實(shí)驗(yàn)組Caspase-3蛋白表達(dá)低于對(duì)照組(P<0.05),提示CT-1可抑制Caspase-3蛋白表達(dá),因此其抑制凋亡的作用可能與抑制Caspase-3蛋白表達(dá)有關(guān)。
綜上所述,本研究提示低濃度谷氨酸可作為抗NMDA受體腦炎導(dǎo)致的神經(jīng)元凋亡的良好模型,CT-1對(duì)抗NMDA受體腦炎導(dǎo)致的神經(jīng)元損傷有保護(hù)作用,可能是通過促使凋亡基因Caspase-3表達(dá)下調(diào),減少細(xì)胞凋亡發(fā)生,從而對(duì)抗NMDA受體腦炎誘導(dǎo)的神經(jīng)元損傷起到保護(hù)作用。
參考文獻(xiàn)
[1] Viaccoz A,Desestret V,Ducray F,et al.Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis[J].Neurology,2014,82(7):556-563.
[2] Dong Y,Kalueff A V,Song C.N-methyl-d-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus[J].J Neuroimmunol,2017,307(15):7-13.
[3] Nardou R,F(xiàn)errari D C,Ben-Ari Y.Mechanisms and effects of seizures in the immature brain[J].Semin Fetal Neonatal Med,2013,18(4):175-184.
[4] Armangue T,Leypoldt F,Málaga I,et al.Herpes simplex virus encephalitis is a trigger of brain autoimmunity[J].Ann Neurol,2014,75(3):317-320.
[5] Sayin U,Hutchinson E,Meyerand M E,et al.Age-dependent long-term structural and functional effects of early-life seizures:Evidence for a hippocampal critical period influencing plasticity in adulthood[J].Neuroscience,2015,288(12):120-134.
[6] Grabrucker S,Jannetti L,Eckert M,et al.Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders[J].Brain,2014,137(Pt1):137-152.
[7] Suzuki H,Kitada M,Ueno S,et al.Anti-N-methyl-D-aspartate receptor encephalitis preceded by dura materlesions[J].Neurol Sci,2013,34(6):1021-1023.
[8] Ni H,Ren S Y,Zhang L L,et al.Expression profiles of hippocampal regenerative sprouting-related genes and their regulation by E-64d in a developmental rat model of penicillin-induced recurrent epilepticus[J].Toxicol Lett 2013,217(12):162-169.
[9] Tian T,Ni H,Sun B L.Neurobehavioral deficits in a rat model of recurrent neonatal seizures are prevented by a ketogenic diet and correlate with hippocampal Zinc/Lipid transporter signals[J].Biol Trace Elem Res,2015,167(2):251-258.
[10] Scholl E A,Dudek F E,Ekstrand J J.Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat[J].Neuroscience,2013,252(11):45-59.
[11] Faylon P,Koltes D,Spurlock M.Regulation of lipid droplet-associated proteins following growth hormone administration and feed restriction in lactating Holstein cows[J].J Dairy Sci,2014,97(5):2847-2855.
[12] Zhao Y,Pan R,Li S.Chelating intracellularly accumulated Zinc decreased ischemie brain injury through reducing neuronal apoptotic death[J].Stroke,2014,45(4):1139-1147.
[13] Faylon M P,Koltes D E,Spurlock D M.Regulation of lipid droplet-associated proteins following growth hormone admin- istration and feed restriction in lactating Holstein cows[J].J Dairy Sci,2014,97(5):2847-2855.
[14] Mann A P,Grebenciucova E,Lukas R V.Anti-N-methyl-D-aspartate-receptor encephalitis:diagnosis,optimal management,and challenges[J].Ther Clin Risk Manag,2014,10(3):517-525.
[15] Ni H,Ren S Y,Zhang L L,et al.Expression profiles of hippocampal regenerative sprouting-related genes and their regulation by E-64d in a developmental rat model of penicillin-induced recurrent epilepticus[J].Toxicol Lett,2013,217(12):162-169.
[16] Henshall D C,Engel T.Contribution of apoptosis-associated signaling pathways to epileptogenesis:lessons from Bcl-2 family knockouts[J].Front Cell Neurosci,2013,7(3):110-112.
[17] Strauss U,Br?uer A U.Current views on regulation and function of plasticity-related genes(PRGs/LPPRs)in the brain[J].Biochim Biophys Acta,2013,1831(1):133-138.
[18] Blanco-Alvarez V M,Lopez-Moreno P,Soto-Rodriguez G,et al.
Subacute zinc administration and L-NAME caused an increase of NO,zinc,lipoperoxidation,and caspase-3 during a cerebral hypoxia-ischemia process in the rat[J].Oxid Med Cell Longev,2013,2013:240560.
[19] Vander Weele C M,Saenz C,Yao J,et al.Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment[J].Front Behav Neurosci,2013,25(7):66-69.
[20] Henshall D C,Engel T.Contribution of apoptosis-associated signaling pathways to epileptogenesis:Lessons from Bcl-2 family knockouts[J].Front Cell Neurosci,2013,7(11):110.
(收稿日期:2018-08-13) (本文編輯:董悅)
中國醫(yī)學(xué)創(chuàng)新2019年10期