国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

根據(jù)微積分理論來認(rèn)識康托集合論的錯誤

2019-08-30 08:36四川省攀枝花市老年科學(xué)技術(shù)工作者協(xié)會張喜安
數(shù)學(xué)大世界 2019年23期
關(guān)鍵詞:基數(shù)子集定理

四川省攀枝花市老年科學(xué)技術(shù)工作者協(xié)會 張喜安

康托集合論的基本觀點(diǎn)是:一個無窮集合可以和它的一個真子集一一對應(yīng),部分可以和全體相等。這個觀點(diǎn)正是康托集合論的一個定理,現(xiàn)在我們稱這個定理為康托集合論的基本定理,為了論述得方便,我們把這個定理及其證明引述如下:

康托集合論的基本定理 令a,b為實(shí)數(shù),并且a<b,則[a,b]的基數(shù)等于[0,1]的基數(shù)。

證明:令y=f(x)=a+(b-a)x,顯然y=f(x)為[0,1]→[a,b]的雙射函數(shù),這就證明了[a,b]的基數(shù)等于[0,1]的基數(shù)。

這個定理表明一個無窮集合可以和它的一個真子集一一對應(yīng),部分可以和全體相等。例如,由于存在函數(shù)y=2x為[0,1]→[0,2]的雙射函數(shù),所以[0,1]和[0,2]為一一對應(yīng)的關(guān)系,這時無窮集合[0,2]和它的真子集[0,1]一一對應(yīng),部分[0,1]和全體[0,2]相等。

為了證明康托集合論是錯誤的,我們將以具體的例子來證明康托集合論的基本定理的證明不能成立。

再有,在[0,1]在x軸上,[0,2]在y軸上,在y=2x的時候,[0,1]和[0,2]是一一對應(yīng)的關(guān)系,這時,我們還要注意到,在y=x的條件下,[0,1]和[0,2]卻是非一一對應(yīng)的關(guān)系。這時我們要問,[0,1]和[0,2]是一一對應(yīng)的關(guān)系,還是非一一對應(yīng)的關(guān)系?這表明,康托的兩個集合間一一對應(yīng)的定義是不能判斷兩個實(shí)數(shù)點(diǎn)的集合是不是一一對應(yīng)的關(guān)系。同時我們還要注意到,康托集合論的兩個集合間一一對應(yīng)的定義是一個全稱量詞命題,如果這個命題是正確的,它就不可能存在相反的命題,但是在y=x的條件下,[0,1]和[0,2]就是非一一對應(yīng)的關(guān)系,這就是一個相反的命題,這個事實(shí)說明,康托集合論的兩個集合間一一對應(yīng)的定義是錯誤的。這個定義是康托集合論的基礎(chǔ),它是錯誤的,說明康托集合論也就是錯誤的。

根據(jù)以上的分析,我們可以得出結(jié)論,康托集合論的基本定理的證明不能成立,因此康托集合論是錯誤的理論。

猜你喜歡
基數(shù)子集定理
J. Liouville定理
聚焦二項(xiàng)式定理創(chuàng)新題
拓?fù)淇臻g中緊致子集的性質(zhì)研究
Carmichael猜想的一個標(biāo)注
關(guān)于奇數(shù)階二元子集的分離序列
千萬不要亂翻番
A Study on English listening status of students in vocational school
社保繳費(fèi)基數(shù)合理化可探索更多路徑
巧妙推算星期幾
每一次愛情都只是愛情的子集
长治市| 怀来县| 都昌县| 大关县| 昌都县| 枝江市| 台安县| 平昌县| 伊金霍洛旗| 富锦市| 永靖县| 抚顺县| 巫溪县| 喀什市| 兴城市| 虞城县| 琼结县| 搜索| 苗栗县| 中宁县| 嘉黎县| 麻江县| 延安市| 雷波县| 丽水市| 大名县| 保山市| 平乐县| 沙坪坝区| 益阳市| 新干县| 密云县| 和平县| 安达市| 客服| 大新县| 清苑县| 晋中市| 广灵县| 深州市| 大连市|