王成己 郭學(xué)清 曾文龍 陳慶河 唐莉娜 黃毅斌
摘要:煙草青枯病是由茄科勞爾氏菌(Ralstonia solanacearum)引起的土傳細(xì)菌性病害,該病害分布廣、危害重、毀滅性強(qiáng),是熱帶、亞熱帶煙區(qū)的主要病害。生物質(zhì)炭是生物質(zhì)材料在厭氧高溫條件下熱裂解產(chǎn)生的高度芳香化的富碳物質(zhì),具有豐富的官能團(tuán)、發(fā)達(dá)的孔隙結(jié)構(gòu)和較強(qiáng)的吸附能力,對(duì)改善煙田土壤環(huán)境具有較大潛力,是減輕或抑制煙草青枯病的長(zhǎng)效途徑,具有廣闊應(yīng)用前景。文章結(jié)合國(guó)內(nèi)外研究情況綜述了農(nóng)業(yè)、化學(xué)及生物等措施防控?zé)煵萸嗫莶〉难芯楷F(xiàn)狀,認(rèn)為單一的農(nóng)業(yè)、化學(xué)或生物措施防控?zé)煵萸嗫莶〉男Ч焕硐?,農(nóng)藥或土壤改良劑對(duì)土壤、植株、牲畜及環(huán)境造成破壞,影響生態(tài)安全;綜合防控措施可消除單一措施帶來(lái)的短板效應(yīng)。文章提出利用生物質(zhì)炭定向調(diào)控?zé)熖锔H微生物、重建健康根際生態(tài)系統(tǒng)、減輕或抑制煙草青枯病的途徑:(1)改善土壤理化性狀;(2)提升土壤肥力;(3)改善土壤微生物多樣性;(4)提高土壤酶活性。生物質(zhì)炭通過(guò)調(diào)控土壤生境來(lái)改善煙草農(nóng)藝性狀,減輕或抑制煙草青枯病發(fā)生,同時(shí)促進(jìn)煙草碳氮代謝,有效調(diào)控?zé)熑~化學(xué)品質(zhì)。生物質(zhì)炭的農(nóng)業(yè)應(yīng)用可為全面解決煙草連作障礙提供技術(shù)參考。
關(guān)鍵詞: 生物質(zhì)炭;煙草青枯病;病原菌;土壤微生物區(qū)系;防控作用
中圖分類號(hào): S435.72? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)08-1756-08
The prevention and control effects of biochar on tobacco bacterial wilt and its application prospects
WANG Cheng-ji1, GUO Xue-qing2, ZENG Wen-long3, CHEN Qing-he4,
TANG Li-na5, HUANG Yi-bin6*
(1Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences/Fuzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Fuzhou? 350013, China; 2Changting Tobacco Company of Fujian Province, Changting, Fujian? 365500, China; 3Longyan Tobacco Company of Fujian Province, Longyan, Fujian 364000, China; 4Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou? 350013, China; 5Tobacco Science Research Institute, Fujian Tobacco Monopoly Bureau, Fuzhou? 350003, China; 6Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou? 350013, China)
Abstract:Tobacco bacterial wilt is a soil-borne bacterial disease caused by Ralstonia Solanacearum, which is a major disease in tropical and subtropical tobacco areas. It spreads widely and causes devastating damage. Biochar is a highly aromatic carbon-rich material produced by pyrolysis of biomass material under anaerobic high temperature. It has rich functional groups, developed pore structure and strong adsorption capacity. It has great potential to improve the soil environment of tobacco fields, and is a long-term approach to reduce or inhibit tobacco bacterial wilt. This paper reviewed the research status of agricultural, chemical and biological measures to prevent and control tobacco bacterial wilt at home and abroad. It was concluded that single agricultural, chemical and biological measures to prevent and control tobacco bacte-rial wilt were not ideal. The pesticides or soil amendment would damage the soil, plants, livestocks and environment, and affect ecology safety. Comprehensive prevention and control measures could eliminate the shortcomings brought by a single measure. The methods of using biochar to regulate tobacco rhizosphere microorganisms, rebuild healthy rhizosphere ecosystem, and reduce or inhibit tobacco bacterial wilt were put forward. The methods could(1)improve soil physical and chemical properties; (2)improve soil fertility; (3)improve soil microbial diversity; (4)improve soil enzyme activity. By regulating soil habitat, biochar could improve the agronomic properties of tobacco, reduce or inhibit the onset of tobacco bacterial wilt, promote the carbon and nitrogen metabolism of tobacco, and effectively regulate the chemical quality of tobacco leaves. The agricultural application of biochar can provide technical reference for the comprehensive solution of tobacco continuous cropping obstacles.
Key words: biochar; tobacco bacterial wilt; pathogen; soil microflora; prevention and control effects
0 引言
煙草是我國(guó)重要的經(jīng)濟(jì)作物,國(guó)家統(tǒng)計(jì)局的信息顯示,2017年我國(guó)煙草種植面積為113.1萬(wàn)ha,煙葉產(chǎn)量為239.1萬(wàn)t,其中烤煙面積和產(chǎn)量分別為108.1萬(wàn)ha和227.9萬(wàn)t。煙草長(zhǎng)期連作導(dǎo)致植煙土壤板結(jié)、pH失衡、有機(jī)質(zhì)活性降低(Chen et al.,2018),加之我國(guó)主要煙區(qū)氣溫高、空氣濕度大等環(huán)境因素,導(dǎo)致煙草土傳病害在我國(guó)東南和西南煙區(qū)普遍發(fā)生,甚至在個(gè)別年份暴發(fā)流行(蔣歲寒等,2016)。煙草青枯病由茄科勞爾氏菌(Ralstonia solanacearum)引起,是一種分布廣、危害重、毀滅性極強(qiáng)的土傳細(xì)菌性病害,嚴(yán)重影響煙葉生產(chǎn)(Liu et al.,2015)。青枯病已成為熱帶、亞熱帶地區(qū)煙田的主要病害,在全球氣溫變暖的背景下,青枯病向高緯度、高海拔地區(qū)蔓延,對(duì)煙草生產(chǎn)造成極大威脅(孔凡玉,2003)。生物質(zhì)炭(Biochar)是生物質(zhì)材料在厭氧高溫條件下熱裂解產(chǎn)生的高度芳香化的富碳物質(zhì)(Antal and Gronli,2003)。生物質(zhì)炭的土壤改良與緩釋效應(yīng)使其成為調(diào)控土壤連作障礙(王成己等,2018b)及實(shí)施土壤健康管理的重要途徑(劉曉雨等,2018)。文章在分析煙草青枯病成因及危害的基礎(chǔ)上,剖析傳統(tǒng)農(nóng)業(yè)、化學(xué)及生物措施防治煙草青枯病的優(yōu)缺點(diǎn),闡釋生物質(zhì)炭防控?zé)煵萸嗫莶〉耐緩胶妥饔脵C(jī)制,為全面解決煙草連作障礙提供技術(shù)參考。
1 煙草青枯病的病原及致病機(jī)制
煙草長(zhǎng)期連作導(dǎo)致植煙土壤營(yíng)養(yǎng)元素、pH和微生態(tài)等嚴(yán)重失衡,連作障礙問(wèn)題日趨嚴(yán)重(Li et al.,2014)。煙草土傳病害的發(fā)生與根際土壤微生物數(shù)量、區(qū)系和群落結(jié)構(gòu)密切相關(guān),是根際土壤微生物群體相互作用的結(jié)果(施河麗等,2018)。植煙土壤營(yíng)養(yǎng)元素含量與煙草青枯病有密切關(guān)系(黎妍妍等,2018)。鄭世燕等(2014)研究表明,青枯病發(fā)病煙株根際土壤中交換性鈣、有效硼、有效鉬等礦質(zhì)營(yíng)養(yǎng)含量顯著高于健康煙株根際土壤,土壤中有效鉬、交換性鈣含量可能是影響青枯病發(fā)生的關(guān)鍵土壤營(yíng)養(yǎng)因子。而pH、磷、鉀、鈣和銅是對(duì)根際土壤細(xì)菌群落影響較大的土壤環(huán)境因子(施河麗等,2018)。
煙草青枯病是典型的土傳細(xì)菌性維管束植物病害,主要發(fā)生在煙草根、莖和葉等部位,發(fā)病時(shí)由葉片萎縮到根系腐爛,最后整株煙草枯萎。病原茄科勞爾氏菌盡管在煙株維管束中蔓延擴(kuò)增,但仍主要分布于土壤中。存活在土壤中的青枯菌通過(guò)土壤翻耕或灌溉、除草等途徑傳播到植株根部,然后從植物根部進(jìn)入木質(zhì)部,通過(guò)脂多糖識(shí)別寄主,產(chǎn)生胞外多糖造成維管束阻塞,與此同時(shí)分泌胞外蛋白酶降解細(xì)胞壁,導(dǎo)致寄主植物快速萎蔫(McGarvey et al.,1999)。青枯菌對(duì)土壤細(xì)菌群落的影響遠(yuǎn)大于煙株。因此,青枯病防治不能局限于煙株本身,應(yīng)從植煙土壤入手加大防治力度(向立剛等,2019)。
2 煙草青枯病的防治措施
作為煙草生產(chǎn)最主要病害之一,煙草青枯病一直受到國(guó)內(nèi)外科研人員的廣泛關(guān)注,分別從農(nóng)業(yè)、化學(xué)及生物學(xué)等角度開(kāi)展了大量防控研究,并取得了一些重要進(jìn)展。
2. 1 農(nóng)業(yè)防治措施
(1)耕作措施。研究表明,不同種植模式(穰中文等,2018)、綠肥—煙草輪作(張超,2016)和稻草溶田(章文水等,2019)可增加土壤微生物多樣性及土壤酶活性,改善土壤微生境,減輕或降低烤煙青枯病發(fā)病率和發(fā)病程度。深耕改變了土壤環(huán)境條件,切斷土壤病蟲(chóng)害的傳播途徑,從而抑制土壤病蟲(chóng)的發(fā)生和繁殖(謝永輝等,2015)。(2)均衡營(yíng)養(yǎng)。煙株?duì)I養(yǎng)狀況與其抗病性密切相關(guān),定期向煙株增施鉬、鈣等營(yíng)養(yǎng)元素可增強(qiáng)煙草防御青枯病的能力(鄭世燕等,2014)。施鉀提高了植物木質(zhì)化程度,使植物細(xì)胞壁、莖稈和葉片等功能器官變厚,從而提高植物抗病性(Wang et al.,2013)。施用鉀肥增加煙草根際土壤微生物的多樣性和益生菌數(shù)量,減少青枯病病原菌在土壤中的相對(duì)豐度(陳娜,2018);同時(shí)加快酚類物質(zhì)合成,提高與抗病相關(guān)的總酚含量及葉片的鉀含量,減少病原菌入侵(Dordas,2008)。(3)農(nóng)事操作。平整煙地、調(diào)整煙草移栽時(shí)間等措施也能在一定程度上減少細(xì)菌及真菌性病害發(fā)生。
2. 2 化學(xué)防治措施
早期生產(chǎn)上主要依靠化學(xué)藥劑來(lái)控制和減輕煙草青枯病危害,效果穩(wěn)定且用于生產(chǎn)的藥劑有鏈霉素、琥珀酸銅、青枯靈和自制石硫合劑等。李大鵬和朱三榮(2008)研究表明,藥簽插莖與灌蔸相結(jié)合的方法有助于防控?zé)煵萸嗫莶?。陳澤鵬等(2011)研究表明,苯并噻二唑(BTH)具有顯著的誘導(dǎo)抗病效應(yīng)。72%農(nóng)用硫酸鏈霉素和20%青枯靈也可有效抑制煙草青枯病的發(fā)作(賴榮泉和鐘秀金,2015)。化學(xué)農(nóng)藥雖然能在短期內(nèi)控制病害發(fā)生和傳播,但過(guò)量使用化學(xué)藥劑既損害煙葉品質(zhì)又污染環(huán)境(李想等,2017)。一些抑制煙草青枯病的農(nóng)藥或土壤改良劑對(duì)土壤、植株、牲畜及環(huán)境造成破壞,影響生態(tài)安全。
2. 3 生物防治措施
內(nèi)生菌作為煙草生長(zhǎng)發(fā)育和代謝過(guò)程中不可或缺的一部分,在與宿主相互作用下形成相似或相同的功能(姚領(lǐng)愛(ài)等,2010)。苗期接種菌根真菌可有效防控?zé)煵萸嗫莶。ㄔS愛(ài)等,2011)。感染內(nèi)生菌的煙草能增強(qiáng)其抗病原菌、害蟲(chóng)等生物抗性,是綠色、安全的生物防控技術(shù)(張夢(mèng)旭等,2017;張鵬等,2017)。芽胞桿菌是土壤和植物微生態(tài)中的優(yōu)勢(shì)微生物種群,具有較強(qiáng)抗菌防病能力,一些優(yōu)良菌株已成功應(yīng)用于植物病害防治(姜乾坤等,2017)。從青枯病發(fā)病煙田中健康煙株根際土壤中篩選獲得的XC4菌株(許大鳳等,2016)、以及從煙田中分離出的解淀粉芽孢桿菌和甲基營(yíng)養(yǎng)型芽孢桿菌(夏艷等,2014)對(duì)煙草青枯病均具有較好的防控效果。
3 生物質(zhì)炭對(duì)煙草青枯病的防控作用
煙草連作障礙產(chǎn)生的根本原因是土壤微生態(tài)失衡,因此,利用生物質(zhì)炭定向調(diào)控?zé)熖锔H微生物,重建健康根際生態(tài)系統(tǒng),可增加土壤有益微生物,改善根區(qū)微生境(陳慶榮等,2016;王成己等,2017a),減輕或抑制煙草青枯病發(fā)生,并最終克服煙草連作障礙(王成己等,2018b)。
3. 1 生物質(zhì)炭特性
生物質(zhì)炭由生物質(zhì)材料在厭氧高溫條件下熱裂解形成,生物質(zhì)材料及炭化條件的不同,導(dǎo)致生物質(zhì)炭的性質(zhì)和施用效應(yīng)也存在差異(邱良祝等,2017)。近年來(lái),隨著生物質(zhì)熱裂解技術(shù)及產(chǎn)業(yè)化水平的提高(潘根興等,2015),社會(huì)各界對(duì)生物質(zhì)炭特性的認(rèn)知度也不斷提高,農(nóng)作物秸稈炭化還田—土壤改良技術(shù)得到深入研究和廣泛應(yīng)用(王成己等,2018a),成為土壤可持續(xù)管理的重要途徑(陳溫福等,2014)。
(1)物理特性。生物質(zhì)材料熱裂解后保留了原生物質(zhì)的孔隙結(jié)構(gòu),從而使生物質(zhì)炭具有較大的孔隙度和比表面積(Cornelissen et al.,2004)。不同材料和裂解方式對(duì)生物質(zhì)炭比表面積影響很大,有的只有0.7~15.00 m2/g(Ozcimen,2010),有的每平方米可高達(dá)幾百克(Chun et al.,2004)。在一定溫度范圍內(nèi),隨裂解溫度升高生物質(zhì)炭比表面積增加,而產(chǎn)率降低、持水量減少(謝祖彬等,2011)。
(2)化學(xué)特性。生物質(zhì)炭含有碳、氫、氧和氮等元素,碳的質(zhì)量分?jǐn)?shù)達(dá)38%~76%,磷、鉀、鈣和鎂的含量也較高(劉玉學(xué)等,2009)。烷基和芳香結(jié)構(gòu)是生物質(zhì)炭中最主要的成分。施用生物質(zhì)炭可提高土壤有機(jī)碳含量,且能為植物生長(zhǎng)提供較多的養(yǎng)分。生物質(zhì)炭一般呈堿性,在一定范圍內(nèi),其pH隨熱解溫度升高而增加(吳志丹等,2015;王成己等,2017b)。生物質(zhì)炭含有的-COO-(-COOH)和-O-(-OH)等含氧官能團(tuán)及表面負(fù)電荷賦予其改良土壤質(zhì)量的巨大潛力(Wu et al.,2019)。
3. 2 生物質(zhì)炭防控?zé)煵萸嗫莶〉耐緩?/p>
在我國(guó)東南和西南煙區(qū),煙草生長(zhǎng)前期低溫多雨,土壤濕度較大,是煙草土傳病害發(fā)生的重要?dú)夂蛞蛩?。土壤質(zhì)地、通氣狀況、溫度、濕度、pH及微生物區(qū)系是煙草青枯病發(fā)生的重要土壤條件。因此,利用生物質(zhì)炭改善煙田土壤理化性狀、土壤養(yǎng)分、土壤微生物多樣性及酶活性,進(jìn)而改善煙草農(nóng)藝性狀,是防控?zé)煵萸嗫莶〉闹匾緩健?/p>
(1)改善土壤理化性狀。在煙田施用生物質(zhì)炭可降低土壤容重、改變土壤三相比(劉卉等,2018),增加土壤田間持水量、土壤總孔隙度和毛管孔隙度,增強(qiáng)土壤透氣性(陳懿等,2015),促進(jìn)煙草生根及前期生長(zhǎng)(陳懿等,2017;劉卉等,2017)。土壤酸化促進(jìn)土壤中鋁的溶出,而土壤中過(guò)多的鋁離子對(duì)煙草根系造成傷害,從而更容易被青枯病菌侵入致病。生物質(zhì)炭呈堿性,可提高酸性土壤pH,降低土壤可溶性鋁和有毒形態(tài)鋁濃度(袁金華和徐仁扣,2010)。利用生物質(zhì)炭修復(fù)酸化植煙土壤,保持煙株?duì)I養(yǎng)平衡,從而降低土壤中青枯病病原菌數(shù)量,有效控制煙草青枯病的發(fā)生(牛桂言等,2017)。
(2)提升土壤肥力。研究表明,添加生物質(zhì)炭提高了煙田土壤有機(jī)質(zhì)含量、pH和CEC(王成己等,2017a),增加土壤硝態(tài)氮、速效氮、速效磷和速效鉀含量,降低銨態(tài)氮含量(管恩娜等,2016),改善土壤微生態(tài)環(huán)境(張璐等,2019),增強(qiáng)煙株抗病能力(鄭世燕等,2013)。
(3)改善土壤微生物多樣性。健康和發(fā)病煙田土壤微生物群落結(jié)構(gòu)存在明顯差異,健康土壤微生物多樣性(陳乾錦等,2019)及有益菌豐度、土壤pH和養(yǎng)分含量(施河麗等,2018)均高于發(fā)病土壤。青枯病是煙草生產(chǎn)中的毀滅性土傳病害,通過(guò)改善土壤微生物多樣性,提高羧酸類和聚合物類碳源的利用能力(胡瑞文等,2018),增加有益微生物群的繁殖來(lái)抑制病原菌增長(zhǎng),以有效降低青枯病發(fā)病率(孫思和王軍,2015)。陳懿等(2015)研究表明,生物質(zhì)炭可改變植煙土壤細(xì)菌、放線菌和真菌數(shù)量,在改良植煙土壤微生態(tài)和調(diào)控烤煙生理特性方面具有積極效應(yīng)。土壤微生物群落結(jié)構(gòu)越豐富、多樣性越高,對(duì)抗病原菌的綜合能力越強(qiáng)(Bonilla et al.,2012)。已有研究表明,生物質(zhì)炭可改善植煙土壤細(xì)菌群落多樣性和組成(陳澤斌等,2018;任天寶等,2018),提高根際土壤細(xì)菌種類的多樣性和分布的均勻程度(陳澤斌等,2018)及土壤微生物AWCD值和多樣性指數(shù)(張璐等,2019),且煙稈炭對(duì)煙草根際土壤微生物群落結(jié)構(gòu)的影響大于小麥秸稈炭(邵慧蕓等,2019)。對(duì)比研究表明,施用稻殼炭和木屑炭均能改善煙田土壤微生物狀況及其對(duì)碳源的利用(李成江等,2019),促進(jìn)以羧酸類和多聚物類物質(zhì)為碳源的微生物的生長(zhǎng)(張璐等,2019),從而減少煙草青枯病的發(fā)生。
(4)提高土壤酶活性。施用生物質(zhì)炭有利于提高煙株根系活力和根冠比(劉領(lǐng)等,2016),增加土壤蔗糖酶、脲酶活性和微生物量碳含量,減少氮素等營(yíng)養(yǎng)元素流失(吳嘉楠等,2018),但對(duì)土壤轉(zhuǎn)化酶和多酚氧化酶活性影響不顯著(龔絲雨等,2017)。
(5)改善烤煙農(nóng)藝性狀。煙田添加生物質(zhì)炭后烤煙株高、有效葉數(shù)、最大葉長(zhǎng)(寬)和莖圍等均有不同程度增加(肖和友等,2018),煙葉產(chǎn)量和上等煙比例增加,且煙葉炭效果明顯優(yōu)于煙草和玉米秸稈炭(李成江等,2019)。而劉月華等(2016)研究表明,稻殼炭對(duì)烤煙青枯病的防治效果好于煙稈炭,但前者降低了煙葉產(chǎn)量。此外,施用生物質(zhì)炭可提高煙葉細(xì)菌群落豐度(夏體淵等,2017),促進(jìn)煙草碳氮代謝,提高上部煙葉鉀氯比及中部煙葉總糖、還原糖、鉀含量、糖堿比和鉀氯比,對(duì)煙葉化學(xué)品質(zhì)具有一定調(diào)控作用(張弘等,2018)。
3. 3 生物質(zhì)炭防控?zé)煵萸嗫莶〉臋C(jī)制
煙草連作減少了煙田土壤有益微生物數(shù)量、改變了微生物群落結(jié)構(gòu),最終導(dǎo)致土壤微生態(tài)失衡。因此,調(diào)控土壤微生物區(qū)系是防控?zé)煵萸嗫莶〉闹匾腥朦c(diǎn)。已有的研究表明,改善植煙土壤養(yǎng)分狀況和微生物群落結(jié)構(gòu)是生物質(zhì)炭防控?zé)煵萸嗫莶〉闹饕獧C(jī)理之一。鑒于此,將生物質(zhì)炭用于煙草青枯病防控就變得切實(shí)可行,這也是生物質(zhì)炭農(nóng)學(xué)和環(huán)境效應(yīng)的具體體現(xiàn)。土壤微生物指示生態(tài)系統(tǒng)功能變化為土壤性質(zhì)變化提供依據(jù),而土壤性質(zhì)的變化反過(guò)來(lái)又對(duì)土壤微生態(tài)改善起到推動(dòng)作用(王成己等,2018b)?;诖?,筆者認(rèn)為生物質(zhì)炭防控?zé)煵萸嗫莶〉臋C(jī)制為:(1)物理化學(xué)機(jī)制。生物質(zhì)炭改善土壤孔隙結(jié)構(gòu),提高土壤保水保肥及養(yǎng)分固定能力,為土壤微生物提供豐富的養(yǎng)分和能量來(lái)源,從而增強(qiáng)土壤微生物活性,提高煙草抗病能力;生物質(zhì)炭通過(guò)提高酸性土壤pH來(lái)提高土壤養(yǎng)分利用率和微生物活性,增強(qiáng)菌根生物功能,進(jìn)而提高煙草抗病性。(2)生物學(xué)機(jī)制。生物質(zhì)炭調(diào)控根區(qū)土壤有機(jī)酸和氨基酸含量,提高羧酸類和聚合物類碳源的利用能力,改善土壤微生態(tài)條件,提高土壤微生物數(shù)量及活性,促進(jìn)有益微生物生長(zhǎng),從而抑制病原菌增長(zhǎng)。生物質(zhì)炭對(duì)土壤微生物和煙草生長(zhǎng)產(chǎn)生積極影響,抑制土壤病原菌生長(zhǎng)及對(duì)植物的侵染能力。
4 展望
煙草青枯病是典型的土傳細(xì)菌性維管束植物病害,單一的農(nóng)業(yè)、化學(xué)或生物防治措施對(duì)煙草青枯病防控效果均不理想,農(nóng)藥或土壤改良劑甚至對(duì)土壤環(huán)境造成破壞,通過(guò)傳統(tǒng)方法防控?zé)煵萸嗫莶∫呀款i。近年來(lái),綜合防控措施越來(lái)越受到關(guān)注,以消除單一措施帶來(lái)的短板效應(yīng)。生物質(zhì)炭含有多種養(yǎng)分元素,具有豐富官能團(tuán)、發(fā)達(dá)孔隙結(jié)構(gòu)、較強(qiáng)吸附能力,對(duì)改善煙田土壤環(huán)境具有較大潛力。通過(guò)生物質(zhì)炭定向調(diào)控?zé)熖锔H微生物,改善土壤微生境,重建健康的土壤微生物體系,抑制病原菌生長(zhǎng),是減輕或抑制煙草青枯病的長(zhǎng)效途徑。具體從如下幾方面入手:(1)改善土壤理化性狀。通過(guò)生物質(zhì)炭改變土壤三相比及孔隙度,增強(qiáng)土壤透氣性和田間持水量,促進(jìn)煙草生根及前期生長(zhǎng),增強(qiáng)煙株抗病性。(2)提升土壤肥力。通過(guò)生物質(zhì)炭提高煙田土壤有機(jī)質(zhì)含量、pH和CEC,增加土壤硝態(tài)氮、速效氮、速效磷和速效鉀含量,降低銨態(tài)氮含量,改善土壤微生態(tài)環(huán)境,增強(qiáng)煙株抗病能力。(3)改善土壤微生物多樣性。通過(guò)生物質(zhì)炭提高發(fā)病植煙土壤微生物多樣性及有益菌豐度,提高羧酸類和聚合物類碳源的利用能力,增加有益微生物群的繁殖來(lái)抑制病原菌的增長(zhǎng),以有效降低青枯病發(fā)病率。(4)提高土壤酶活性。通過(guò)生物質(zhì)炭提高煙株根系活力,增加土壤蔗糖酶、脲酶活性和微生物量碳含量,減少營(yíng)養(yǎng)元素流失。生物質(zhì)炭通過(guò)上述途徑改善煙草農(nóng)藝性狀,減輕或抑制煙草青枯病發(fā)作,同時(shí)促進(jìn)煙草碳氮代謝,提高上部煙葉鉀氯比及中部煙葉總糖、還原糖、鉀含量、糖堿比和鉀氯比,有效調(diào)控?zé)熑~化學(xué)品質(zhì)。
近年來(lái),熱裂解生物質(zhì)炭產(chǎn)業(yè)化水平日趨提高,農(nóng)作物秸稈炭化還田—土壤改良技術(shù)得到深入研究和廣泛應(yīng)用,已成為農(nóng)業(yè)綠色發(fā)展的新途徑。生物質(zhì)炭在農(nóng)業(yè)、能源和環(huán)境等領(lǐng)域的應(yīng)用前景將會(huì)越來(lái)越廣闊。
參考文獻(xiàn):
陳娜. 2018. 鉀肥對(duì)煙草青枯病的防控效果及其根際微生物群落的影響[J]. 安徽農(nóng)業(yè)科學(xué),46(22): 125-127. [Chen N. 2018. Control effect of potassium fertilizer on tobacco bacterial wilt and its effect on rhizosphere microbial communities[J]. Anhui Agriculture Sciences,46(22):125-127.]
陳乾錦,林書(shū)震,李紅麗,李小龍,蘆阿虔,沈建平,郭夏麗,王巖. 2019. 邵武煙田土壤微生物群落結(jié)構(gòu)變化與煙草青枯病發(fā)生關(guān)系初報(bào)[J/OL]. 中國(guó)煙草學(xué)報(bào). https://doi.org/10.16472/j.chinatobacco.2018.352. [Chen Q J,Lin S Z,Li H L,Li X L,Lu A Q,Shen J P,Guo X L,Wang Y. 2019. A preliminary analysis on relationship between soil microbial community structure and tobacco bacterial wilt in Shaowu tobacco field[J/OL]. Acta Tabacaria Sinica. https://doi.org/10.16472/j.chinatobacco.2018.352.]
陳慶榮,王成己,陳曦,唐莉娜,劉岑薇,宋鐵英,黃毅斌. 2016. 施用煙稈生物黑炭對(duì)紅壤性稻田根際土壤微生物的影響[J]. 福建農(nóng)業(yè)學(xué)報(bào),31(2): 184-188. [Chen Q R,Wang C J,Chen X,Tang L N,Liu C W,Song T Y,Huang Y B. 2016. Effect of tobacco stalk-derived biochar on microbes in rhizosphere soil at red paddy fields[J]. Fujian Journal of Agriculture Sciences,31(2): 184-188.]
陳溫福,張偉明,孟軍. 2014. 生物炭與農(nóng)業(yè)環(huán)境研究回顧與展望[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),33(5): 821-828. [Chen W F,Zhang W M,Meng J. 2014. Biochar and agro-ecological environment: Review and prospect[J]. Journal of Agro-Environment Science,33(5): 821-828.]
陳懿,陳偉,高維常,程建中,林葉春,潘文杰. 2017. 煙稈生物炭對(duì)烤煙根系生長(zhǎng)的影響及其作用機(jī)理[J]. 煙草科技,50(6): 26-32. [Chen Y,Chen W,Gao W C,Cheng J Z,Lin Y C,Pan W J. 2017. Effects of tobacco stalk biochar on root growth of flue-cured tobacco and its action mechanism[J]. Tobacco Science & Technology,50(6): 26-32.]
陳懿,陳偉,林葉春,程建中,潘文杰. 2015. 生物炭對(duì)植煙土壤微生態(tài)和烤煙生理的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),26(12): 3781-3787. [Chen Y,Chen W,Lin Y C,Cheng J Z,Pan W J. 2015. Effects of biochar on the micro-ecology of tobacco-planting soil and physiology of flue-cured tobacco[J]. Chinese Journal of Applied Ecology,26(12): 3781-3787.]
陳澤斌,高熹,王定斌,郭麗紅,王定康,徐勝光. 2018. 生物炭不同施用量對(duì)煙草根際土壤微生物多樣性的影響[J]. 華北農(nóng)學(xué)報(bào),33(1): 224-232. [Chen Z B,Gao X,Wang D B,Guo L H,Wang D K,Xu S G. 2018. Effects of di-fferent biochar application rates on rhizosphere soil microbial diversity of tobacco[J]. Acta Agriculturae Boreali-Sinica,33(1): 224-232.]
陳澤鵬,王濤,陳偉明,王曉賓,萬(wàn)樹(shù)青. 2011. 煙草抗青枯病的藥劑誘導(dǎo)效應(yīng)與抑菌增效作用[J]. 煙草科技,(1): 74-78. [Chen Z P,Wang T,Chen W M,Wang X B,Wan S Q. 2011. Inductive effect and synergism of fungicides against tobacco bacterial wilt disease[J]. Tobacco Science & Technology,(1): 74-78.]
龔絲雨,聶亞平,張啟明,鐘思榮,張世川,何寬信,劉齊元. 2017. 增施生物炭對(duì)烤煙成熟期根際土壤酶活性的影響[J]. 江西農(nóng)業(yè)學(xué)報(bào),29(10): 54-57. [Gong S Y,Nie Y P,Zhang Q M,Zhong S R,Zhang S C,He K X,Liu Q Y. 2017. Effects of increasing biochar application on soil enzyme activities in rhizosphere of flue-cured tobacco during maturity[J]. Acta Agriculturae Jiangxi,29(10): 54-57.]
管恩娜,管志坤,楊波,董建新,胡希好,闞京軍,吳元華,張慶忠,李明光,梁洪波. 2016. 生物質(zhì)炭對(duì)植煙土壤質(zhì)量及烤煙生長(zhǎng)的影響[J]. 中國(guó)煙草科學(xué),37(2): 36-41. [Guan E N,Guan Z K,Yang B,Dong J X,Hu X H,Kan J J,Wu Y H,Zhang Q Z,Li M G,Liang H B. 2016. Effects of biochar on tobacco-planting soil quality and flue-cured tobacco growth[J]. Chinese Tobacco Science,37(2): 36-41.]
胡瑞文,劉勇軍,周清明,劉智炫,黎娟,邵巖,劉卉. 2018. 生物炭對(duì)烤煙根際土壤微生物群落碳代謝的影響[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),20(9): 49-56. [Hu R W,Liu Y J,Zhou Q M,Liu Z X,Li J,Shao Y,Liu H. 2018. Effects of bio-carbon on the carbon metabolism of rhizosphere soil microbial communities in flue-cured tobacco[J]. Journal of Agricultural Science and Technology,20(9): 49-56.]
姜乾坤,彭閣,王瑞,譚軍,邸慧慧,向必坤,趙秀云,彭五星,董善余. 2017. 抗青枯內(nèi)生細(xì)菌的篩選及其對(duì)煙草青枯病的防治效果[J]. 中國(guó)煙草科學(xué),38(5): 13-17. [Jiang Q K,Peng G,Wang R,Tan J,Di H H,Xiang B K,Zhao X Y,Peng W X,Dong S Y. 2017. Selection of endophy-tic antagonistic bacteria for control of tobacco bacterial wilt[J]. Chinese Tobacco Science,38(5): 13-17.]
蔣歲寒,劉艷霞,孟琳,朱春波,李想,沈標(biāo),石俊雄,楊興明. 2016. 生物有機(jī)肥對(duì)煙草青枯病的田間防效及根際土壤微生物的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),39(5): 784-790. [Jiang S H,Liu Y X,Meng L,Zhu C B,Li X,Shen B,Shi J X,Yang X M. 2016. Effects of biological organic fertilizer on field control efficiency of tobacco Ralstonia Solanacearum wilt and soil microbial in rhizosphere soil [J]. Journal of Nanjing Agricultural University,39(5): 784-790.]
孔凡玉. 2003. 煙草青枯病的綜合防治[J]. 煙草科技,(4): 42-43. [Kong F Y. 2003. Integrated control of tobacco bacterial wilt disease[J]. Tobacco Science & Technology,(4): 42-43.]
賴榮泉,鐘秀金. 2015. 不同藥劑對(duì)煙草青枯病的防治效果[J]. 中國(guó)農(nóng)學(xué)通報(bào),31(22): 175-179. [Lai R Q,Zhong X J. 2015. Control effects of different medicaments on tobacco bacterial wilt in tobacco field[J]. Chinese Agricultural Science Bulletin,31(22): 175-179.]
李成江,李大肥,周桂夙,許龍,徐天養(yǎng),趙正雄. 2019. 不同種類生物炭對(duì)植煙土壤微生物及根莖病害發(fā)生的影響[J]. 作物學(xué)報(bào),45(2): 289-296. [Li C J,Li D F,Zhou G S,Xu L,Xu T Y,Zhao Z X. 2019. Effects of different types of biochar on soil? microorganism and rhizome di-seases occurrence of flue-cured tobacco[J]. Acta Agrono-mica Sinica,45(2): 289-296.]
李大鵬,朱三榮. 2008. 鏈霉素不同施用方法對(duì)煙草青枯病的防效[J]. 植物保護(hù),34(4): 151-153. [Li D P,Zhu S R. 2008. Effects of different application methods of streptomycin on tobacco bacterial wilt[J]. Plant Protection,34(4): 151-153.]
李想,劉艷霞,陸寧,蔡劉體,袁有波,石俊雄. 2017. 綜合生物防控?zé)煵萸嗫莶〖捌鋵?duì)土壤微生物群落結(jié)構(gòu)的影響[J]. 土壤學(xué)報(bào),54(1): 216-226. [Li X,Liu Y X,Lu N,Cai L T,Yuan Y B,Shi J X. 2017. Integrated bio-control of tobacco bacterial wilt and its effect on soil microobial community structure[J]. Acta Pedologica Sinica,54(1): 216-226.]
黎妍妍,覃光炯,王林,余君,許汝冰,彭五星,饒雄飛. 2018. 清江流域煙區(qū)煙草青枯病發(fā)生的土壤營(yíng)養(yǎng)因素分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(4): 656-661. [Li Y Y,Qin G J,Wang L,Yu J,Xu R B,Peng W X,Rao X F. 2018. Soil nutrient elements affecting the occurrence of tobacco bacterial wilt in Qingjiang River Basin[J]. Journal of Sou-thern Agriculture,49(4): 656-661.]
劉卉,周清明,黎娟,向德明,張黎明. 2018. 長(zhǎng)期定位連續(xù)施用生物炭對(duì)植煙土壤物理性狀的影響[J]. 華北農(nóng)學(xué)報(bào),33(3):182-188. [Liu H,Zhou Q M,Li J,Xiang D M,Zhang L M. 2018. Effects of long-term located conti-nuous application of biochar on soil physical properties of planting tobacco[J]. Acta Agriculturae Boreali-Sinica,33(3): 182-188.]
劉卉,周清明,劉勇軍,黎娟,張黎明,張明發(fā). 2017. 生物炭對(duì)烤煙生長(zhǎng)及煙葉質(zhì)量的影響[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),19(10): 73-81. [Liu H,Zhou Q M,Liu Y J,Li J,Zhang L M,Zhang M F. 2017. Effects of biochar on the growth of flue-cured tobacco and quality of tobacco leaf[J]. Journal of Agricultural Science and Technology,19(10): 73-81.]
劉領(lǐng),王艷芳,宋久洋,周俊學(xué),王小東,陳明燦. 2016. 生物炭與氮肥減量配施對(duì)烤煙生長(zhǎng)及土壤酶活性的影響[J]. 河南農(nóng)業(yè)科學(xué),45(2): 62-66. [Liu L,Wang Y F,Song J Y,Zhou J X,Wang X D,Chen M C. 2016. Effects of biochar addition combined with reducing nitrogen application rate on growth of flue-cured tobacco and soil enzyme activities[J]. Journal of Henan Agricultural Scien-ces,45(2): 62-66.]
劉曉雨,卞榮軍,陸海飛,鄭聚鋒,程琨,李戀卿,張旭輝,潘根興. 2018. 生物質(zhì)炭與土壤可持續(xù)管理: 從土壤問(wèn)題到生物質(zhì)產(chǎn)業(yè)[J]. 中國(guó)科學(xué)院院刊,33(2): 184-190. [Liu X Y,Bian R J,Lu H F,Zheng J F,Cheng K,Li L Q,Zhang X H,Pan G X. 2018. Biochar for sustainable soil management: biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Scien-
ces,33(2): 184-190.]
劉玉學(xué),劉微,吳偉祥,鐘哲科,陳英旭. 2009. 土壤生物質(zhì)炭環(huán)境行為與環(huán)境效應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào),20(4): 977-982. [Liu Y X,Liu W,Wu W X,Zhong Z K,Chen Y X. 2009. Environmental behavior and effect of biomass-derived black carbon in soil: A review[J]. Chinese Journal of Applied Ecology,20(4): 977-982.]
劉月華,孫玉曉,張英,吳錦志,尹忠春,彭五星. 2016. 不同生物質(zhì)炭對(duì)烤煙青枯病發(fā)病情況及煙葉生長(zhǎng)的影響[J]. 湖北農(nóng)業(yè)科學(xué),55(10): 2492-2495. [Liu Y H,Sun Y X,Zhang Y,Wu J Z,Yin Z C,Peng W X. 2016. Effects of different biochar on the incidence of tobacco bacterial wilt and flue-cured tobacco growth[J]. Hubei Agricultural Scienses,55(10): 2492-2495.]
牛桂言,邵惠芳,朱金峰,黃五星,許自成,郭利. 2017. 我國(guó)植煙土壤修復(fù)的研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),19(3): 115-122. [Niu G Y,Shao H F,Zhu J F,Huang W X,Xu Z C,Guo L. 2017. Research progress on tobacco-plan-ting soil restoration in China[J]. Journal of Agricultural Science and Technology,19(3): 115-122.]
潘根興,李戀卿,劉曉雨,程琨,卞榮軍,吉春穎,鄭聚峰,張旭輝,鄭金偉. 2015. 熱裂解生物質(zhì)炭產(chǎn)業(yè)化: 秸稈禁燒與綠色農(nóng)業(yè)新途徑[J]. 科技導(dǎo)報(bào),33(13): 92-101. [Pan G X,Li L Q,Liu X Y,Cheng K,Bian R J,Ji C Y,Zheng J F,Zhang X H,Zheng J W. 2015. Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China[J]. Science & Technology Review,33(13): 92-101.]
邱良祝,朱脩玥,馬彪,李戀卿,潘根興. 2017. 生物質(zhì)炭熱解炭化條件及其性質(zhì)的文獻(xiàn)分析[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),23(6): 1622-1630. [Qiu L Z,Zhu X Y,Ma B,Li L Q,Pan G X. 2017. Literature analysis on properties and pyrolyzing conditions of biochars[J]. Plant Nutrition and Fertilizer Science,23(6): 1622-1630.]
穰中文,朱三榮,田峰,袁謀志,陳武,戴林建. 2018. 不同種植模式煙田土壤細(xì)菌種群特征與青枯病發(fā)生的關(guān)系[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),44(1): 33-38. [Rang Z W,Zhu S R,Tian F,Yuan M Z,Chen W,Dai L J. 2018. Relationship between soil bacterial population cha-racteristics and bacterial wilt in tobacco field under diffe-rent planting patterns[J]. Journal of Hunan Agricultural University(Natural Science),44(1): 33-38.]
任天寶,楊艷東,高衛(wèi)鍇,李宙文,閻海濤,王省偉,劉國(guó)順. 2018. 基于高通量測(cè)序的生物炭施用量對(duì)植煙土壤細(xì)菌群落的影響[J]. 河南農(nóng)業(yè)科學(xué),47(12): 64-69. [Ren T B,Yang Y D,Gao W K,Li Z W,Yan H T,Wang S W,Liu G S. 2018. Effects of application amount of biochar on soil bacterial community in tobacco fields based on high-throughput sequencing[J]. Journal of Henan Agricultural Sciences,47(12): 64-69.]
邵慧蕓,張阿鳳,王旭東,郝珊,張艷玲. 2019. 兩種生物炭對(duì)烤煙生長(zhǎng)、根際土壤性質(zhì)和微生物群落結(jié)構(gòu)的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),39(2): 537-544. [Shao H Y,Zhang A F,Wang X D,Hao S,Zhang Y L. 2019. Effects of two kinds of biochar on the flue-cured tobacco growth,soil properties and microbial community structure of rhizosphere soil[J]. Acta Scientiae Circumstantiae,39(2): 537-544.]
施河麗,向必坤,譚軍,彭五星,孫玉曉,王瑞,吳文昊,魏國(guó)勝,丁才夫. 2018. 煙草青枯病發(fā)病煙株根際土壤細(xì)菌群落分析[J]. 中國(guó)煙草學(xué)報(bào),24(5): 57-65. [Shi H L,Xiang B K,Tan J,Peng W X,Sun Y X,Wang R,Wu W H,Wei G S,Ding C F. 2018. Analysis of bacterial community in rhizosphere soil of bacterial wilt diseased tobacco plant[J]. Acta Tabacaria Sinica, 24(5): 57-65.]
孫思,王軍. 2005. 青枯病發(fā)病率與土壤條件關(guān)系的研究進(jìn)展[J]. 江西植保,28(1): 17-20. [Sun S,Wang J. 2005. Research progress on the relationship between the incidence of bacterial wilt and soil conditions[J]. Jiangxi Plant Protection,28(1): 17-20.]
王成己,陳慶榮,陳曦,唐莉娜,劉岑薇,宋鐵英,黃毅斌. 2017a. 煙稈生物質(zhì)炭對(duì)煙草根際土壤養(yǎng)分及細(xì)菌群落的影響[J]. 中國(guó)煙草科學(xué),38(1): 42-47. [Wang C J,Chen Q R,Chen X,Tang L N,Liu C W,Song T Y,Huang Y B. 2017a. Effects of tobacco stalk-derived biochar on rhizosphere soil nutrients and bacterial communities in the tobacco field[J]. Chinese Tobacco Science,38(1): 42-47.]
王成己,李潔靜,黃毅斌. 2018a. 農(nóng)作物秸稈炭化還田—土壤改良技術(shù)研究與應(yīng)用——以“三聚環(huán)?!蹦J綖槔齕J]. 福建農(nóng)業(yè)科技,(10): 30-35. [Wang C J,Li J J,Huang Y B. 2018a. Research and application of soil improvement technology by returning carbonized crop straw to field——Taking the “Beijing Sanju Environmental Protection” mode as an example[J]. Fujian Agriculture and Technology,(10): 30-35.]
王成己,唐莉娜,黃毅斌. 2018b. 生物質(zhì)炭調(diào)控?zé)煵葸B作障礙的研究進(jìn)展[J]. 福建農(nóng)業(yè)科技,(4): 7-12. [Wang C J,Tang L N,Huang Y B. 2018b. Progress in the regulation effe-cts of biochar on continuous cropping obstacles in tobacco[J]. Fujian Agriculture and Technology,(4):7-12.]
王成己,吳志丹,胡忠良,唐莉娜,劉岑薇,黃毅斌. 2017b. 炭化溫度和時(shí)間對(duì)煙稈生物質(zhì)炭微觀結(jié)構(gòu)和理化性質(zhì)的影響[J]. 福建農(nóng)業(yè)學(xué)報(bào),32(7): 774-778. [Wang C J,Wu Z D,Hu Z L,Tang L N,Liu C W,Huang Y B. 2017b. Effects of pyrolytic time and temperature on microstructure,physical and chemical properties of biochar made from tobacco straws[J]. Fujian Journal of Agriculture Sciences,32(7): 774-778.]
吳嘉楠,彭桂新,楊永鋒,任天寶,張璐,劉國(guó)順. 2018. 生物炭與氮肥配施對(duì)土壤生物特性和烤煙氮素吸收的影響[J]. 中國(guó)煙草學(xué)報(bào),24(3):53-61. [Wu J N,Peng G X,Yang Y F,Ren T B,Zhang L,Liu G S. 2018. Effects of mined biochar and nitrogen fertilizer on biological characteristics of soil and nitrogen absorption of flue-cured tobacco[J]. Acta Tabacaria Sinica,24(3):53-61.]
吳志丹,尤志明,江福英,張磊,黃毅斌,王成己. 2015. 不同溫度和時(shí)間炭化茶樹(shù)枝生物炭理化特征分析[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),31(4): 583-588. [Wu Z D,You Z M,Jiang F Y,Zhang L,Huang Y B,Wang C J. 2015. Physico-chemical properties of tea-twig-derived biochars different in temperature and duration of pyrolysis[J]. Journal of Ecology and Rural Environment,31(4): 583-588.]
夏體淵,陳澤斌,靳松,趙鳳,王定康,郭麗紅,徐勝光. 2017. 生物炭不同施用量對(duì)煙草內(nèi)生細(xì)菌多樣性的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),30(12): 2711-2716. [Xia T Y,Chen Z B,Jin S,Zhao F,Wang D K,Guo L H,Xu S G. 2017. Effect of different biochar application rates on diversity of tobacco endophytic bacteria[J]. Southwest China Journal
of Agricultural Sciences,30(12): 2711-2716.]
夏艷,徐茜,董瑜,林勇,孔凡玉,張成省,王靜,宋毓峰. 2014. 煙草青枯病菌拮抗菌的篩選、鑒定及生防特性研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),22(2): 201-207. [Xia Y,Xu Q,Dong Y,Lin Y,Kong F Y,Zhang C S,Wang J,Song Y F. 2014. Screening,identification and characterization of antagonistic bacteria against Ralstonia solanacearum[J]. Chinese Journal of Eco-Agriculture,22(2): 201-207.]
向立剛,周浩,汪漢成,李震,陳乾麗,余知和. 2019. 健康與感染青枯病煙株不同部位細(xì)菌群落結(jié)構(gòu)與多樣性[J/OL]. 微生物學(xué)報(bào). https://doi.org/10.13343/j.cnki.wsxb.2018 0524. [Xiang L G,Zhou H,Wang H C,Li Z,Chen Q L,Yu Z H. 2019. Community structure and diversity of bacteria in different parts of healthy and bacterial wilt toba-cco plants[J/OL]. Acta Microbiologica Sinica. https://doi.org/10.13343/j.cnki.wsxb.20180524.]
肖和友,李宏圖,楊勇,鄧建功,陽(yáng)雄燦. 2018. 煙草廢棄物生物質(zhì)炭對(duì)植煙土壤、烤煙生長(zhǎng)及經(jīng)濟(jì)效益的影響[J]. 湖南農(nóng)業(yè)科學(xué),(6): 36-39. [Xiao H Y,Li H T,Yang Y,Deng J G,Yang X C. 2018. Effects of tobacco waste biochar on the growth and economic benefits of tobacco and tobacco-planting soil[J]. Hunan Agriculture Sciences,(6): 36-39.]
謝永輝,張永貴,朱利全,尤道貴,魯耀. 2015. 煙草黑脛病綜合防治研究進(jìn)展[J]. 生物技術(shù)進(jìn)展,5(1): 41-46. [Xie Y H,Zhang Y G,Zhu L Q,You D G,Lu Y. 2015. Research advances in integrated management of tobacco black shank[J]. Biotechnology Progress,5(1): 41-46.]
謝祖彬,劉琦,許燕萍,朱春悟. 2011. 生物炭研究進(jìn)展及其研究方向[J]. 土壤,43(6): 857-861. [Xie Z B,Liu Q,Xu Y P,Zhu C W. 2011. Advances and perspectives of biochar research[J]. Soils,43(6): 857-861.]
許大鳳,倪海軍,季學(xué)軍,李田,高正良,王芳,周本國(guó). 2016. 煙草青枯病拮抗菌的篩選及發(fā)酵條件試驗(yàn)[J]. 煙草科技,49(3): 24-29. [Xu D F,Ni H J,Ji X J,Li T,Gao Z L,Wang F,Zhou B G. 2016. Screening and fermentation conditions of antagonistic bacterium against tobacco bacterial wilt[J]. Tobacco Science & Technology,49(3): 24-29.]
姚領(lǐng)愛(ài),胡之璧,王莉莉,周吉燕,黎萬(wàn)奎. 2010. 植物內(nèi)生菌與宿主關(guān)系研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),19(7): 1750-1754. [Yao L A,Hu Z B,Wang L L,Zhou J Y,Li W K. 2010. Research development of the relatioship between plant endophyte and host[J]. Ecology and Environmental Sciences,19(7): 1750-1754.]
袁金華,徐仁扣. 2010. 稻殼制備的生物質(zhì)炭對(duì)紅壤和黃棕壤酸度的改良效果[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),26(6): 472-476. [Yuan J H,Xu R K. 2010. Effects of rice hull based biochar regulating acidity of red soil and yellow brown soil[J]. Journal of Ecology and Rural Environment,26(6): 472-476.]
曾維愛(ài),龍世平,李宏光,彭福元,黃艷寧. 2011. 苗期接種不同叢枝菌根真菌對(duì)煙草青枯病防治效果的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),42(6): 612-615. [Zeng W A,Long S P,Li H G,Peng F Y,Huang Y N. 2011. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco[J]. Journal of Sou-thern Agriculture,42(6): 612-615.]
張超. 2016. 綠肥—煙草輪作對(duì)土壤細(xì)菌多樣性和煙草青枯病發(fā)生的影響研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué). [Zhang C. 2016. The impacts of green manure-tobacco crop rotation on diversity of soil bacteria and disease occurrence of tobacco bacterial wilt[D]. Changsha:Hunan Agricultural University.]
張弘,李影,張玉軍,朱金峰,劉世亮,申鳳敏,劉芳,姜桂英. 2018. 生物炭對(duì)不同氮水平下烤煙生長(zhǎng)發(fā)育、碳氮代謝及品質(zhì)的影響[J]. 浙江農(nóng)業(yè)科學(xué),59(2): 224-230. [Zhang H,Li Y,Zhang Y J,Zhu J F,Liu S L,Shen F M,Liu F,Jiang G Y. 2018. Effects of biochar on growth,carbon and nitrogen metabolism and quality of flue-cured tobacco under different nitrogen levels[J]. Journal of Zhe-jiang Agricultural Sciences,59(2): 224-230.]
張璐,閻海濤,任天寶,李帥,楊永鋒,彭桂新,于建春,劉國(guó)順. 2019. 有機(jī)物料對(duì)植煙土壤養(yǎng)分、酶活性和微生物群落功能多樣性的影響[J]. 中國(guó)煙草學(xué)報(bào),25(2): 55-62. [Zhang L,Yan H T,Ren T B,Li S,Yang Y F,Peng G X,Yu J C,Liu G S. 2019. Effects of organic matter on nu-trient,enzyme activity and functional diversity of microbial community in tobacco planting soil[J]. Acta Tabaca-ria Sinica, 25(2): 55-62.]
張夢(mèng)旭,潘明明,胡瓏瀚,劉國(guó)慶,周開(kāi)燕,古力,張重義. 2017. 內(nèi)生菌的功能及在煙草上的研究進(jìn)展[J]. 煙草科技,50(11): 105-112. [Zhang M X,Pan M M,Hu L H,Liu G Q,Zhou K Y,Gu L,Zhang C Y. 2017. Function of endophytes and their corresponding functions on tobacco[J]. Tobacco Science & Technology,50(11): 105-112.]
張鵬,李盼盼,高林,杜詠梅,劉新民,張忠鋒,申國(guó)明. 2017. 煙草內(nèi)生真菌多樣性及其功能研究進(jìn)展[J]. 中國(guó)煙草科學(xué),38(2): 93-99. [Zhang P,Li P P,Gao L,Du Y M,Liu X M,Zhang Z F,Shen G M. 2017. Research advances on biodiversity and functions of tobacco endophytic fungi[J]. Chinese Tobacco Science,38(2): 93-99.]
章文水,張瀛,王雪仁,林建麒. 2019. 不同土壤改良措施對(duì)植煙土壤理化性狀及煙草青枯病的影響[J]. 中國(guó)煙草科學(xué),40(2):16-22. [Zhang W S,Zhang Y,Wang X R,Lin J Q. 2019. Effects of different soil improvement measures on physicochemical properties of soil and bacterial wilt of tobacco[J]. Chinese Tobacco Science,40(2): 16-22.]
鄭世燕,丁偉,陳弟軍,杜根平,徐小洪,謝華東. 2013. 根際土壤調(diào)控對(duì)連作煙田青枯病的控制作用[J]. 中國(guó)煙草學(xué)報(bào),19(1): 47-52. [Zheng S Y,Ding W,Chen D J,Du G P,Xu X H,Xie H D. 2013. Bacterial wilt control in continuously cropped tobacco field by manipulation of rhizosphere soil[J]. Acta Tabacaria Sinica, 19(1): 47-52.]
鄭世燕,丁偉,杜根平,楊亮,劉曉姣,張永強(qiáng). 2014. 增施礦質(zhì)營(yíng)養(yǎng)對(duì)煙草青枯病的控病效果及其作用機(jī)理[J]. 中國(guó)農(nóng)業(yè)科學(xué),47(6): 1099-1110. [Zheng S Y,Ding W,Du G P,Yang L,Liu X J,Zhang Y Q. 2014. Control efficacy and action mechanism of mineral nutrition on tobacco bacterial wilt[J]. Scientia Agricultura Sinica,47(6): 1099-1110.]
Antal M J,Gronli M. 2003. The art,science and technology of charcoal production[J]. Industrial and Engineering Che-mistry,42: 1619-1640.
Bonilla N, Gutiérrez-Barranquero J A, de Vicente A, Francisco M C. 2012. Enhancing soil quality and plant health through suppressive organic amendments[J]. Diversity,4(4): 475-491.
Chen S,Qi G F,Luo T,Zhang H C,Jiang Q K,Wang R,Zhao X Y. 2018. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils[J]. Land Degradation & Development,29(11): 4106-4120.
Chun Y,Sheng G Y,Cary T C,Xing B S. 2004. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology,38(17): 4649-4655.
Cornelissen G,Kukulska Z,Kalaitidis S,Christanis K,Gustafsson O. 2004. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science and Technology,38(13): 3632-3640.
Dordas C. 2008. Role of nutrients in controlling plant disease in sustainable agriculture: A review[J]. Agronomy for Sustainable Development,28(1): 33-46.
Li X G,Ding C F,Zhang T L,Wang X X. 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut mono culturing[J]. Soil Biology and Biochemistry,72: 11-18.
Liu Y X,Li X,Cai K,Cai L T,Lu N,Shi J X. 2015. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology,93:78-87.
McGarvey J A,Denny T P,Schell M A. 1999. Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars[J]. Phytopathology,89(12): 1233-1239.
Ozcimen D. 2010. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy,35: 1319-1324.
Wang M,Zheng Q S,Shen Q R,Guo S W. 2013. The critical role of potassium in plant stress response[J]. Internatio-nal Journal of Molecular Sciences,14(4): 7370-7390.
Wu P,Ata-Ul-Karim S T,Singh B P,Wang H L,Wu T L,Liu C,F(xiàn)ang G D,Zhou D M,Wang Y J,Chen W F. 2019. A scientometric review of biochar research in the past 20 years(1998–2018)[J]. Biochar,1(1): 23-43.
(責(zé)任編輯 麻小燕)