吳斯妍 賈鑫 楊棟 梁建芬 曲桂芹 程永強
摘 要:綜述了膳食纖維的不同物理化學(xué)結(jié)構(gòu)、組成和加工方式對作用機制產(chǎn)生的影響,旨在為膳食纖維構(gòu)效關(guān)系研究和功能性纖維食品開發(fā)提供科學(xué)依據(jù)。
關(guān)鍵詞:膳食纖維;性質(zhì);結(jié)構(gòu);作用機制;生理功能
研究表明,膳食纖維具有降血脂、降血糖、改善腸道環(huán)境、控制體重等生理功能[1-2]。本文綜述了膳食纖維的不同物理化學(xué)結(jié)構(gòu)、組成和加工方式對作用機制產(chǎn)生的影響,旨在為膳食纖維構(gòu)效關(guān)系研究和功能性纖維食品開發(fā)提供科學(xué)依據(jù)。
1 膳食纖維的作用機制
1.1 降低膽固醇
研究表明,在降低膽固醇這一功能中,膳食纖維的粘性發(fā)揮重要作用。通過形成凝膠,膽汁在回腸中受到凝膠的物理性吸附,使其被腸壁的重吸收量減少,但隨糞便的排出量增加[3]。在此機制下,肝臟為了合成損失的膽汁,需利用血清中更多的膽固醇,從而降低了低密度脂蛋白(LDL)膽固醇和總膽固醇濃度[4]。Christian等[5]的體外模型結(jié)果表明,可溶性膳食纖維的粘度越高,與膽汁的結(jié)合力就越高。不溶性膳食纖維和非粘性膳食纖維不具備由粘度帶來的降低膽固醇的作用,但一些研究證實,這些纖維可以增加人體飽腹感以控制每一餐的攝入量,同時減少饑餓感,使患者主動推遲下一餐的進食時間,起到控制膽固醇攝入量的作用[6]。
1.2 控制血糖
Post等[7]通過隨機對照試驗發(fā)現(xiàn),粘性膳食纖維降低血糖的機制主要在于吸附葡萄糖和其他常量營養(yǎng)素,減少腸壁對其的吸收量,同時對消化酶和營養(yǎng)物質(zhì)的接觸起到屏障作用,降低食物分解成可吸收成分的速率,從而降低葡萄糖餐后反應(yīng)。Weickert等[8]研究表明,不溶性膳食纖維有助于提高外周組織對胰島素的敏感性,幫助改善胰島素抵抗。此外,部分粘度較小的可發(fā)酵膳食纖維可以產(chǎn)生短鏈脂肪酸,如丙酸、乙酸等,這些物質(zhì)能刺激大腸中的L細胞,促進其分泌腸激素肽(PYY)和胰高血糖素樣肽1(GLP-1)[9],起到增加飽腹感,降低血糖的作用[10]。
1.3 調(diào)節(jié)腸道紊亂
膳食纖維常用于便秘、腸易激綜合征、腸炎的治療中,其機制在于與胃腸道神經(jīng)內(nèi)分泌系統(tǒng)、微生物群和免疫系統(tǒng)的相互作用[11-12]。不溶性膳食纖維可以增加糞便質(zhì)量,糞便排出量隨著纖維粒徑的增大而增大[13],同時通過對結(jié)腸黏膜產(chǎn)生的機械刺激,纖維可以幫助腸道加速分泌和蠕動,縮短運輸時間,但Bijkerk等[14]研究表明,不溶性膳食纖維可能會惡化便秘患者的臨床癥狀。中度粘性的膳食纖維可以經(jīng)過發(fā)酵,產(chǎn)生短鏈脂肪酸和部分氣體,一方面,短鏈脂肪酸作用于腸內(nèi)神經(jīng)細胞的神經(jīng)元,改變胃腸動力,也作用于免疫細胞,減少炎癥反應(yīng)。另一方面,產(chǎn)生的氣體將增加腔內(nèi)壓力,壓力的增加可刺激5-羥色胺的分泌[15],5-羥色胺是參與胃腸分泌及腸蠕動調(diào)控的神經(jīng)遞質(zhì),對維持腸道穩(wěn)態(tài)具有重要作用,此外,短鏈脂肪酸和氣體的產(chǎn)生可以降低腸內(nèi)pH,有效抑制有害菌的生長、促進有益菌的增殖,起到調(diào)節(jié)腸道菌群的平衡的功能[16]。但并非所有可發(fā)酵的膳食纖維都對腸道有積極的治療作用,低聚糖等部分短鏈可高度發(fā)酵的膳食纖維可以快速產(chǎn)生氣體,可能會導(dǎo)致腹脹腹痛[17]。
2 影響膳食纖維作用效果的因素
2.1 物理和化學(xué)結(jié)構(gòu)
膳食纖維是一種復(fù)雜的碳水化合物,由有序的碳鏈排列構(gòu)成的膳食纖維具有穩(wěn)定的能量,通常為不溶性,而碳鏈結(jié)構(gòu)不規(guī)則的膳食纖維大多為可溶性,當(dāng)可溶性纖維的聚合物鏈相互纏繞形成網(wǎng)絡(luò)結(jié)構(gòu)時產(chǎn)生粘度,碳鏈鏈長、分子量大小、粒徑大小、側(cè)鏈官能團種類、溶液濃度等都會影響到溶解性、粘度和發(fā)酵性[18],進而影響生理功能。高分子量、大粒徑的膳食纖維粘度大[19],且影響發(fā)酵的速率和程度[20]。Hughes等[21]用人糞便微生物在體外發(fā)酵了分子量不同的3種阿拉伯木聚糖,結(jié)果表明,3種木糖的發(fā)酵都與雙歧桿菌、乳酸桿菌和真細菌群的增殖相關(guān),分子量最?。?6kDa)的木糖對乳酸桿菌具有特別的選擇性,證明分子量大小會影響膳食纖維的發(fā)酵效果。Onishi等[22]研究表明,魔芋葡甘聚糖的粒徑大小會影響免疫調(diào)節(jié)的功能。Dziedzic等[23]研究發(fā)現(xiàn),不同粒徑大小的小麥與膽汁酸的吸附和菌群的生長沒有顯著性關(guān)系,但粒徑越小,產(chǎn)生的丙酸和丁酸含量越高。側(cè)鏈官能團也會影響膳食纖維的生理功能,例如果膠中的甲基化程度不同,發(fā)酵速率也不同。Dongowski等[24]用甲基化程度分別為6.5%、34.5%、70.8%和92.6%的柑橘果膠飼喂大鼠,實驗結(jié)束后分析回腸、盲腸和結(jié)腸中的短鏈脂肪酸含量,結(jié)果表明,甲基化程度越低,產(chǎn)生的丁酸和總短鏈脂肪酸含量越高,且速率越快。Annison等[25]用乙酰化、丙酰化和丁?;幚磉^的玉米淀粉飼喂大鼠,結(jié)果表明,這3種酰化淀粉可以極大程度地提高大鼠盲腸和遠端結(jié)腸中短鏈脂肪酸的含量,且丁?;M最高。
2.2 種類和組合
不同類型和來源的膳食纖維通過不同的機制作用于人體[26],Parvin等[27]研究發(fā)現(xiàn),豆類、水果、蔬菜來源的纖維對降低心血管疾病的效果較顯著,其中,植物纖維主要通過降低甘油三酯和甘油三酯/高密度脂蛋白比例起作用,水果纖維主要通過降低胰島素水平起作用,而在此項研究中,谷物和堅果來源的膳食纖維攝入不會減少發(fā)生心血管疾病的風(fēng)險。膳食纖維種類決定了發(fā)酵產(chǎn)物和模式,例如果膠的發(fā)酵產(chǎn)物主要是乙酸鹽,環(huán)糊精和阿拉伯樹膠的發(fā)酵產(chǎn)物主要是丙酸鹽,豆渣可以增加結(jié)腸中的丁酸鹽、乙酸鹽和丙酸鹽,這些產(chǎn)物通過不同途徑被代謝[28],導(dǎo)致了它們對疾病的不同作用機制和效果。從自然界中直接獲取的膳食纖維來源,如水果和蔬菜,可能還富含多酚、礦物質(zhì)等成分,這些成分將與膳食纖維相互作用,在特定功能中產(chǎn)生協(xié)同或拮抗效果[29]。
2.3 加工方式
膳食纖維主要存在于谷物、蔬菜和水果中,以加工食品的形式流通消費,因此,加工方式對膳食纖維含量以及性質(zhì)的影響極為重要。對谷物制品來說,加工環(huán)節(jié)包括面團形成、焙烤、高溫擠壓蒸煮等。Zhang等[30]研究了擠壓處理對燕麥麩中可溶性膳食纖維物化結(jié)構(gòu)和功能的影響,和對照組相比,經(jīng)過擠壓的可溶性膳食纖維具有高聚集程度、較大粒徑、較小比表面積的特點,溶解度和溶脹能力有所提高,粘度顯著增加。Regard等[31]比較了等熱量含有4g β-葡聚糖的脆面包、麥片、粥、面食等對空腹和餐后血糖濃度的影響,其中,粥和麥片的分子量和粘度值較大,對減弱峰值血糖反應(yīng)最有效,但面包和面食中β-葡聚糖的聚合度低,導(dǎo)致其生物活性也有所降低,降血糖作用較差。
3 結(jié)論和展望
膳食纖維的健康益處與物理化學(xué)性質(zhì)息息相關(guān),通過溶解性、粘性和可發(fā)酵性起到減少膽固醇重吸收量、延緩和較少糖吸收、增加飽腹感、調(diào)節(jié)激素反應(yīng)和腸道菌群平衡等作用,這些性質(zhì)受到膳食纖維結(jié)構(gòu)和組成的影響,產(chǎn)生作用效果的差異?!吨袊用裆攀碃I養(yǎng)素參考攝入量》中,每日膳食纖維攝入適宜量在25~35g之間[32]。近20年對我國多地居民膳食纖維攝入情況的調(diào)查結(jié)果顯示,部分地區(qū)超過9成的城鄉(xiāng)居民人均每日膳食纖維攝入量不足,甚至不到推薦攝入量的30%[33-34]。與此同時,我國作為谷物、蔬菜和水果生產(chǎn)大國,每年仍有大量富含膳食纖維的農(nóng)作物副產(chǎn)物,如麥麩、米糠、豆渣、果渣等無法得到有效利用,因此,膳食纖維產(chǎn)品的開發(fā)擁有廣闊的市場前景。
目前,膳食纖維被應(yīng)用到了烘焙食品、飲料、乳制品、肉類食品等行業(yè)中,它們在發(fā)揮健康效應(yīng)的同時,還可以起到提高食物保水能力、改善感官品質(zhì)、延長保質(zhì)期的作用[35]。有研究致力于將膳食纖維作為脂肪替代物[36-37],在提供類似脂肪的滑膩口感的同時降低了熱量的攝入,可以滿足人們對低脂、低熱量健康飲食產(chǎn)品的需求,此外,膳食纖維作為益生元的主要來源,可以保證益生菌的存活和產(chǎn)品的穩(wěn)定性,對腸道疾病[38]、心血管疾病[39]、癌癥[40]等產(chǎn)生協(xié)同作用,研究和開發(fā)潛力巨大。國內(nèi)外對膳食纖維結(jié)構(gòu)性質(zhì)和生理功能等方面的研究還在繼續(xù)深入中,其定義和評價方法還在不斷完善[41],我國應(yīng)充分利用豐富的膳食纖維資源,在實現(xiàn)對農(nóng)產(chǎn)品增值的同時優(yōu)化和滿足人民對健康生活的追求,優(yōu)化和改善我國居民膳食結(jié)構(gòu)。
參考文獻
[1]Fasge R C,F(xiàn)ahey G,Wendy L.Wright MS APRN FNP FAANP(Owner),et al.Viscous versus nonviscous soluble fiber supplements:mechanisms and evidence for fiber specific health benefits[J].Journal of the American Academy of Nurse Practitioners,2012,24(8):476-487.
[2]Mehta N,Ahlawat S S,Sharma D P,et al.Novel trends in development of dietary fiber rich meat products-a critical review[J].Journal of Food Science and Technology,2015,52(2):633-647.
[3]Mcrorie J W,Mckeown N M .Understanding the physics of functional fibers in the gastrointestinal tract:an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber[J].Journal of the Academy of Nutrition and Dietetics,2017,117(2):251-264.
[4]Eastwood M A,Hamilton D .Studies on the adsorption of bile salts to non-absorbed components of diet[J].Biochimica Et Biophysica Acta,1968,152(1):165-173.
[5]Christian,Zacherl,Peter,et al.In-vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres[J].Food Chemistry,2011,126(2):423-428.
[6]Jia-Ping C,Guo-Chong C,Xiao-Ping W,et al.Dietary fiber and metabolic syndrome:a meta-analysis and review of related mechanisms[J].Nutrients,2017,10(1):24-34.
[7]Post R E,Mainous A G,King D E,et al.Dietary fiber for the treatment of Type 2 Diabetes Mellitus:a meta-analysis[J].Journal of the American Board of Family Medicine Jabfm,2012,25(1):16-23.
[8]Weickert M O,Roden M,Isken F,et al.Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans[J].American Journal of Clinical Nutrition,2011,94(2):459-471.
[9]Isken F,Klaus S,Osterhoff M,et al.Effects of long-term soluble vs.insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice[J].Journal of Nutritional Biochemistry,2010,21(4):278-284.
[10]Psichas A,Sleeth M L,Murphy K G,et al.The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents[J].International Journal of Obesity,2015,39(3):424-429.
[11]Caleigh S,Kara L,Martin O,et al.Dietary fiber and the human gut microbiota:application of evidence mapping methodology[J].Nutrients,2017,9(2):125-146.
[12]Magdy E S .Is irritable bowel syndrome an organic disorder?[J].World Journal of Gastroenterology,2014,20(2):384-400.
[13]Bosaeus I .Fibre effects on intestinal functions(diarrhoea,constipation and irritable bowel syndrome)[J].Clinical Nutrition Supplements,2004,1(2):33-38.
[14]Bijkerk C J,Muris J W M,Knottnerus J A,et al. Systematic review:the role of different types of fibre in the treatment of irritable bowel syndrome[J].Aliment Pharmacol Ther,2004,19(3):245-251.
[15]El-Salhy M,Ystad S,Mazzawi T,et al.Dietary fiber in irritable bowel syndrome(Review)[J].International Journal of Molecular Medicine,2017,40(3):607-613.
[16]Holscher,Hannah D .Dietary fiber and prebiotics and the gastrointestinal microbiota[J].Gut Microbes,2017,8(2):172-184.
[17]Biesiekierski J R,Rosella O,Rose R,et al.Quantification of fructans,galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals[J].Journal of Human Nutrition and Dietetics,2011,24(2):154-176.
[18]Dikeman C L,F(xiàn)ahey G C.Viscosity as related to dietary fiber:a review[J].Critical Reviews in Food Science and Nutrition,2006,46(8):649-663.
[19]Kristensen M,Jensen M G .Dietary fibres in the regulation of appetite and food intake.Importance of viscosity[J].Appetite,2011,56(1):70.
[20]Stewart M L,Slavin J L .Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation [J].Molecular Nutrition & Food Research,2010,50(10):971-976.
[21]Hughes S A,Shewry P R,Li L,et al.In vitro fermentation by human fecal microflora of wheat arabinoxylans[J].Journal of Agricultural and Food Chemistry,2007,55(11):4589-4595.
[22]Onishi N,Kawamoto S,Nishimura M,et al.The ability of konjac-glucomannan to suppress spontaneously occurring dermatitis in NC/Nga mice depends upon the particle size.[J].Biofactors,2010,21(1-4):163-166.
[23]Dziedzic K,Szwengiel A,Danuta Górecka,et al.Effect of wheat dietary fiber particle size during digestion in vitro on bile acid,faecal bacteria and short-chain fatty acid content[J].Plant Foods for Human Nutrition,2016,71(2):151-157.
[24]Rose D J,Demeo M T,Keshavarzian A,et al.Influence of dietary fiber on inflammatory bowel disease and colon cancer:importance of fermentation pattern[J].Nutrition Reviews,2010,65(2):51-62.
[25]Annison G,Illman R J,Topping D L .Acetylated,propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats1,2[J].Journal of Nutrition,2003,133(11):3523-3528.
[26]Wang L,Xu H,Yuan F et al.Physicochemical characterization of five types of citrus dietary fibers[J].Biocatalysis and Agricultural Biotechnology,2015,4(2):250-258.
[27]Parvin M,Zahra B,Sajad K M,et al.A prospective study of different types of dietary fiber and risk of cardiovascular disease:tehran lipid and glucose study[J].Nutrients,2016,8(11):686.
[28]Kaczmarczyk M M,Miller M J,F(xiàn)reund G G.The health benefits of dietary fiber:beyond the usual suspects of type 2 diabetes,cardiovascular disease and colon cancer[J].Metabolism-clinical & Experimental,2012,61(8):1058-1066.
[29]Athanasios K,Maria L,Lorenza C.Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model[J].Nutrients,2017,9(6):533-556.
[30]Zhang M,Bai X,Zhang Z .Extrusion process improves the functionality of soluble dietary fiber in oat bran[J].Journal of Cereal Science,2011,54(1):98-103.
[31]Regand A,Tosh S M,Wolever T M S,et al. Physicochemical properties of beta-glucan in differently processed oat foods influence glycemic[J].Journal of Agricultural and Food Chemistry,2009,57(19):8831-8838.
[32]中國營養(yǎng)學(xué)會.中國居民膳食營養(yǎng)素參考攝入量[J].飯店現(xiàn)代化,2000,23(6):193-196.
[33]吳文倩,丁鋼強,章榮華,等.浙江省城鄉(xiāng)居民膳食纖維攝入情況調(diào)查[J].中國公共衛(wèi)生,2011,27(7):868-870.
[34]林修全,袁平,陳鐵暉,等.2013年福建省城鄉(xiāng)居民膳食纖維攝入現(xiàn)狀調(diào)查[J].慢性病學(xué)雜志,2014(8):596-598.
[35]Elleuch M,Bedigian D,Roiseux O,et al.Dietary fibre and fibre-rich by-products of food processing:characterisation,technological functionality and commercial applications:a review[J].Food Chemistry,2011,124(2):411-421.
[36]Schmiele M,Barretto A C D S.Dietary fiber as fat substitute in emulsified and cooked meat model system[J].LWT-Food Science and Technology,2015,61(1):105-111.
[37]Ying L,Dandan S,Wei F U,et al.Optimization of preparation process for fat substitute from rice bran dietary fiber by response surface methodology[J].Food Science,2016,37(4):37-43.
[38]Choi S C,Kim B J,Rhee P L,et al.Probiotic fermented milk containing dietary fiber has additive effects in IBS with constipation compared to plain probiotic fer-mented milk[J].Gut and Liver,2011,5(1):22-28.
[39]aulina K,Arkadiusz H,Ewa P,et al.The influence of probiotic lactobacillus caseiin combination with prebiotic inulin on the antioxidant capacity of human plasma[J].Oxidative Medicine and Cellular Longevity,2016(6):1-10.
[40]Lim C C,F(xiàn)erguson L R,Tannock G W.Dietary fibres as“prebiotics”:implications for colorectal cancer[J].Molecular Nutrition & Food Research,2005,49(6):609-619.
[41]Jones J M .Dietary fiber future directions:integrating new definitions and findings to inform nutrition research and communication[J].Advances in Nutrition,2013,4(1):8-15.
Abstract:This paper reviewed the influence of different physical and chemical structure,composition and processing ways on mechanism of dietary fiber to provide scientific foundation for the study on relationship between structure and activity,and development of functional food.
Keywords:dietary fiber;property;structure;mechanism;physiological function
(責(zé)任編輯 李婷婷)