☉蔣 云
一題多解是指用兩種或兩種以上的方法來解決某一數(shù)學(xué)問題,這就要求學(xué)生要善于從多角度、多方位對題目進(jìn)行分析整理。引導(dǎo)學(xué)生從不同的角度對同一道題目進(jìn)行不同的解答,這不僅可以檢驗(yàn)學(xué)生的解答結(jié)論,也可以培養(yǎng)學(xué)生的創(chuàng)造思維。
對于許多學(xué)生來說解答錯(cuò)誤的根本原因就是沒有抓住題目所給的有效已知,沒有真正理解題意找準(zhǔn)思路。所以為了培養(yǎng)學(xué)生數(shù)學(xué)創(chuàng)造思維提高數(shù)學(xué)學(xué)習(xí)效率,訓(xùn)練學(xué)生學(xué)會刪減題目所給的已知條件打開做題思路是首要任務(wù)。
例如,我在教學(xué)蘇教版數(shù)學(xué)四年級下冊第五節(jié)“解決問題的策略”這一節(jié)時(shí),在講授完理論知識后為學(xué)生展示例題來將理論運(yùn)用到實(shí)際上解決數(shù)學(xué)問題。一個(gè)建筑工隊(duì)有4人計(jì)劃一個(gè)周內(nèi)挖一條水渠,計(jì)劃每天所有人總共挖1km,挖了五天后還剩全長的沒有挖。計(jì)算照這樣的速度挖水渠,工人還需要多久能將水渠挖完?先讓學(xué)生分析題目找出有效的已知條件,學(xué)生發(fā)現(xiàn)工人總數(shù)4與計(jì)劃的一周時(shí)間與解決問題無關(guān)可以剔除,則有效條件為:每天挖1km、五天后還有全長的沒有挖。經(jīng)過對已知的整理學(xué)生思路慢慢被打開,發(fā)現(xiàn)要求還需要多少天就須知道水渠總長是多少。五天挖了5×1km=5km,這5km是總長的,則總長為5÷=8km,剩余8-5=3km,需要3÷1=3天挖完。先肯定學(xué)生的答案,再讓學(xué)生仔細(xì)觀察已知,詢問有沒有不一樣的做法呢?給3分鐘時(shí)間前后桌進(jìn)行討論。學(xué)生發(fā)現(xiàn)可以先求出需要的總天數(shù),再減去已經(jīng)工作的5天就可以得出還需要的天數(shù)??隙ńY(jié)論并對學(xué)生進(jìn)行適時(shí)表揚(yáng)。
在小學(xué)數(shù)學(xué)的教學(xué)中,刪減題目所給已知條件找出準(zhǔn)確的有效已知,以此來準(zhǔn)確打開學(xué)生解決問題的思路,這是提高學(xué)生做題效率培養(yǎng)學(xué)生創(chuàng)造性思維的關(guān)鍵。
有些數(shù)學(xué)問題運(yùn)用順向推理的方法很難解答,但是如果從問題的結(jié)論出發(fā)從后向前逐步推理,問題就會很容易得到解決,這就是逆向推理法。逆向推理不同于常規(guī),要先確定目標(biāo)再從目標(biāo)開始倒著思考,這對于培養(yǎng)學(xué)生創(chuàng)造思維來說是最佳途徑。
例如,我在教學(xué)蘇教版數(shù)學(xué)三年級上冊第五節(jié)“解決問題的策略”這一節(jié)時(shí),我會先為學(xué)生展示題目。由于廠家電視機(jī)促銷商場調(diào)了很多臺電視機(jī),上午賣出去30臺銷售可觀,就又從廠家運(yùn)來50臺,由于天氣下午商場只賣出了20臺,現(xiàn)在剩余32臺,請問商場最初有多少臺電視機(jī)?給學(xué)生3分鐘時(shí)間思考做題思路。很多學(xué)生看到題目就已經(jīng)進(jìn)入“眩暈”狀態(tài)難以提起做題的興趣,這時(shí)我會提供獎(jiǎng)勵(lì)來提起學(xué)生興趣。學(xué)生思考結(jié)束對學(xué)生進(jìn)行詢問,我發(fā)現(xiàn)很多學(xué)生都是按照順向思維進(jìn)行解答,這雖然得出了結(jié)論但是結(jié)論各異,學(xué)生也不確定自己結(jié)論的準(zhǔn)確性。這個(gè)時(shí)候我會進(jìn)行追問:“那么怎樣證明你所得的結(jié)論是正確的呢?找學(xué)生進(jìn)行回答。”學(xué)生很快聯(lián)想到列式計(jì)算題的驗(yàn)算步驟進(jìn)行聯(lián)想回答:“我們可以像驗(yàn)算一樣從結(jié)果入手反推,若能夠與題目所給的已知達(dá)到完全符合的情況,那我們的結(jié)論就是正確的?!薄胺浅U_,那么我們是不是也可以用這種驗(yàn)證的方法來解答題目呢?”讓學(xué)生將此題順向推理和逆向推理的步驟均寫下來進(jìn)行觀察分析。學(xué)生發(fā)現(xiàn)逆向推理在解答疑難問題時(shí)更便捷。這樣學(xué)生在以后的數(shù)學(xué)解題會不再拘于一格,多發(fā)散思維自覺嘗試逆向推理來解決問題。
在小學(xué)數(shù)學(xué)教學(xué)中,讓學(xué)生逆向推理的引導(dǎo)學(xué)生不拘一格進(jìn)行一題多解,這不僅提高了學(xué)生學(xué)習(xí)和做題的效率,也培養(yǎng)了學(xué)生的創(chuàng)造思維。
小學(xué)數(shù)學(xué)中常常出現(xiàn)一些類似的題目,有的學(xué)生形成了思維定勢不仔細(xì)讀題就開始進(jìn)行計(jì)算,這也是他們常常丟分的原因。因此在小學(xué)數(shù)學(xué)教學(xué)中訓(xùn)練學(xué)生比較題目發(fā)現(xiàn)其中端倪,以此進(jìn)行一題多解也是培養(yǎng)學(xué)生創(chuàng)造思維的途徑。
例如,我在教學(xué)蘇教版數(shù)學(xué)三年級上冊第一節(jié)“兩、三位數(shù)乘一位數(shù)”這一節(jié)時(shí),為了引導(dǎo)學(xué)生進(jìn)行一題多解,幫助學(xué)生發(fā)展創(chuàng)造性思維,我會先為學(xué)生展示例題:“一個(gè)掛歷本每張紙的厚度是1mm,共由14頁紙組成,求解該掛歷本的厚度?!睂W(xué)生很快得到結(jié)論:共14頁紙,每張紙的厚度是1mm所以該筆記本厚度是14×1mm=14mm。先告訴學(xué)生這個(gè)答案是錯(cuò)誤的,接著為學(xué)生展示另一個(gè)題目:一個(gè)掛歷本每張紙的厚度是1mm,掛歷本共由14張紙構(gòu)成,求解該掛歷本的厚度。學(xué)生得出結(jié)論:和上一道題目如出一轍14×1mm=14mm。告訴學(xué)生這個(gè)答案是正確的。學(xué)生開始疑惑,兩道題看起來沒什么不同的地方,為什么結(jié)論不一樣呢?此時(shí),讓學(xué)生細(xì)細(xì)比較題目找出其中不同。學(xué)生發(fā)現(xiàn)前一道題目是14頁,后一道題目是14張,但是頁和張有什么區(qū)別嗎?讓學(xué)生翻開自己的課本仔細(xì)觀察頁數(shù)和張數(shù)之間的差別。學(xué)生恍然大悟,發(fā)現(xiàn)了題目之間的端倪一張紙是兩頁,所以第一題應(yīng)該為14÷2×1mm=7mm。由此一題多解引導(dǎo)學(xué)生仔細(xì)甄別題目找出其中差別,從而從不同方面來培養(yǎng)學(xué)生的創(chuàng)造性思維。
在小學(xué)數(shù)學(xué)的教學(xué)中,常為學(xué)生展示相似題目鍛煉學(xué)生仔細(xì)比較題目發(fā)現(xiàn)其中端倪,發(fā)揮自己的創(chuàng)造性思維找出相似題目的不同解法,進(jìn)而引導(dǎo)學(xué)生一題多解來培養(yǎng)學(xué)生的創(chuàng)造性思維。
在小學(xué)數(shù)學(xué)的教學(xué)中,我會適時(shí)的引導(dǎo)學(xué)生運(yùn)用不同方法從不同角度去觀察、分析題目,激發(fā)學(xué)生去發(fā)現(xiàn)和去創(chuàng)造的強(qiáng)烈欲望,以此來加深學(xué)生對所學(xué)知識的深刻理解,鍛煉學(xué)生思維的靈活性和獨(dú)創(chuàng)性,從而根據(jù)題目給出的特定條件探索出多種解題方法來發(fā)展學(xué)生的創(chuàng)造性思維。