馬寧 劉玲
[摘要]心血管疾?。–VD)是慢性腎臟?。–KD)患者最常見的并發(fā)癥,且CVD又是CKD患者主要的死亡原因之一,而血管鈣化是CVD發(fā)生的獨立危險因素。CKD血管鈣化是以心血管結構中磷酸鈣以羥基磷灰石晶體的形式沉積為特征的病理學改變,其可導致管壁增厚和異位鈣化。無機磷酸鹽(PI)的轉運是調(diào)節(jié)PI穩(wěn)態(tài)和鈣化過程的主要因素,PI受甲狀旁腺激素和1,25-二羥基維生素D的調(diào)節(jié)。焦磷酸鹽(PPI)是一種體內(nèi)外強有力的抑制磷酸鈣沉積的內(nèi)源性抑制劑,血管鈣化抑制劑的合成是細胞抑制血管鈣化的主要機制。本文就PI的穩(wěn)態(tài)、轉運,PPI的代謝及PPI與CKD患者血管鈣化的關系等作一綜述,以期為這些患者開辟新的治療選擇。
[關鍵詞]焦磷酸鹽;磷酸鹽;血管鈣化;慢性腎臟病
[中圖分類號] R692? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1674-4721(2019)10(b)-0022-04
[Abstract] Cardial vessel disease (CVD) is the most common complication of patients with chronic kidney disease (CKD), CVD is one of the leading causes of death in patients with CKD, while vascular calcification is an independent risk factor for CVD. Vascular calcification in CKD is a pathological change characterized by the deposition of calcium phosphate in the form of hydroxyapatite crystals in the cardiovascular structure, which can lead to tube wall thickening and ectopic calcification. Inorganic phosphate (PI) transport is a major factor regulating PI homeostasis and calcification, and PI is regulated by parathyroid hormone and 1, 25-dihydroxyvitamin D. Pyrophosphate (PPI) is an intrinsic inhibitor of calcium phosphate deposition in vitro and in vivo. The synthesis of vascular calcification inhibitors is the main mechanism by which cells inhibit vascular calcification. This article reviews the homeostasis and transport of PI, the metabolism of PPI, and the relationship between vascular calcification in PPI and CKD patients, in order to open up new treatment options for these patients.
[Key words] Pyrophosphate; Phosphate; Vascular calcification; Chronic kidney disease
研究表明,慢性腎臟?。╟hronic kidney disease,CKD)患者心血管疾?。╟ardial vessel disease,CVD)發(fā)生率高于同齡一般人群5~8倍,CKD并發(fā)CVD病死率高,終末期腎衰竭患者死于CVD約占43.6%[1]。據(jù)報道透析患者合并明顯的冠狀動脈疾病者占40%~70%,因此考慮CKD患者比一般人更易發(fā)生血管鈣化[2]。CKD患者血管鈣化機制是磷酸鈣主要以羥基磷灰石晶體的形式沉積于心血管結構中,進而導致血管增厚和異位鈣化,其鈣化主要發(fā)生在血管的內(nèi)側層[內(nèi)側硬化癥(Monckeberg′s)][3-4]。而成骨基因的表達、羥基磷灰石的形成、血管鈣化的出現(xiàn)與高水平的無機磷酸鹽(inorganic phosphate,PI)有關[5]。有研究發(fā)現(xiàn),CKD患者焦磷酸鹽(pyrophosphate,PPI)水平降低、堿性磷酸酶活性升高與CKD患者發(fā)生血管鈣化有關,PPI的應用可以為這些患者開辟新的治療方案[6]。本文就PI的穩(wěn)態(tài)、轉運,PPI的代謝及PPI與CKD患者血管鈣化的關系等作一綜述。
1 PPI與PI的關系
PPI是以胞外三磷酸腺苷(adenosine triphosphate,ATP)為原料,由胞外ATP水解而成的核苷酸焦磷酸酶/磷酸二酯酶合成的,該家族的兩種酶(NPP1和NPP3)參與了PPI代謝,NPP1可將ATP水解產(chǎn)生PPI,NPP3可將PPI水解成PI進而促進血管鈣化的形成。研究表明,非特異性堿性磷酸酶(non-specific alkaline phosphatase,NAP)可將PPI水解成PI[7]。
2 PI穩(wěn)態(tài)失衡及轉運失衡與CKD患者血管鈣化的關系
2.1 PI穩(wěn)態(tài)失衡與CKD患者血管鈣化的關系
研究表明,PI是CKD患者發(fā)生CVD的主要危險因素,故其在CKD患者血管鈣化中起重要作用,PI的穩(wěn)定是防止血管鈣化的重要因素。血管平滑肌細胞對PI很敏感,會因PI的變化而導致促進鈣化的過程,其中一些作用過程包括細胞外基質(zhì)鈣化、誘導細胞凋亡、囊泡釋放以及成骨和軟骨基因的表達[5]。
2.1.1 PI穩(wěn)態(tài)失衡致血管鈣化作用通路? ①PI能上調(diào)與Runt相關的轉錄因子2(runt-related transcription factor 2,Runx2)、骨橋蛋白和堿性磷酸酶(alkaline phosphatase,ALP)等成骨和軟骨生成基因的表達,而下調(diào)促進平滑肌細胞分化的基因SM22α的表達[8-9];②PI可能通過減少基因及其參與抗凋亡途徑的受體而促進促凋亡途徑的激活[10];③高濃度的PI可促進基質(zhì)金屬蛋白酶MMP-2、MMP-9和彈性蛋白降解酶[11-12]。高濃度的鈣離子(Ca2+)與現(xiàn)有的PI形式(H2PO4-,HPO42-,PO43-)相互作用,形成羥基磷灰石晶體[Ca10(PO4)6(OH)2],該晶體是血管中磷酸鈣晶體的主要形式[13]。由于Ca2+和PI的相互調(diào)節(jié)作用,更加凸顯出Ca2+的重要意義[14-15],雖然鈣沉積以與磷酸鹽相同的速率增加,但最近的研究表明[16],即使在正常的PI濃度下,高水平的血漿Ca2+也能誘發(fā)磷酸鈣沉積,從而改變了血管鈣化的總體面貌,因此為研究開辟了新的途徑。
2.1.2影響PI穩(wěn)態(tài)的重要因素? 正常情況下PI水平通過兩種主要激素的作用而保持穩(wěn)定,即甲狀旁腺激素(parathyroid hormone,PTH)和1,25-羥基維生素D。PTH和維生素D(vitamin D,VitD)有相反的作用,PTH降低了PI在腎臟的再吸收,而VitD則增加了這種再吸收,并促進了腸道的吸收,體內(nèi)吸收的PI量必須等于腎臟排出的PI,才能保持PI穩(wěn)定[17-18]。另外,成纖維細胞生長因子23(fibroblast growth factor 23,F(xiàn)GF-23)和酶Klotho也參與PI穩(wěn)態(tài)的調(diào)節(jié),在正常情況下,體內(nèi)吸收的磷酸鹽量必須等于腎臟排出的磷酸鹽,才能保持中性PI狀態(tài)從而防止CKD患者發(fā)生血管鈣化[19]。
2.2 PI轉運失衡與CKD患者血管鈣化的關系
2.2.1 PI轉運物質(zhì)? PI的轉運主要依賴磷酸鹽轉運體家族將磷酸鹽轉運至細胞內(nèi)從而維持細胞內(nèi)外磷酸鹽的穩(wěn)態(tài),該家族是依賴鈉的磷酸鹽共轉運體,也被稱為Napi,這些轉運體是具有10~12個跨膜區(qū)的糖基化蛋白,目前為止研究較多的有三型:Napi-Ⅰ、Napi-Ⅱ、Napi-Ⅲ,Napi-Ⅰ、Napi-Ⅱ主要分布在腎臟和腸上皮中,而Napi-Ⅲ則廣泛存在于腎臟、肝臟、腦等器官中[20]。Napi-Ⅱ由3個亞型組成:Napi-Ⅱa、Napi-Ⅱb和Napi-Ⅱc,它們在磷平衡中起主要作用,如Napi-Ⅱa和Napi-Ⅱc位于腎上皮細胞內(nèi),其控制著對磷酸鹽的吸收;Napi-Ⅱb存在于腦橋中,參與PI的吸收[21]。有研究發(fā)現(xiàn)的磷酸轉運體-NapiⅢ型或SLC20家族,主要在血管平滑肌細胞、腎臟、腦、心臟、肝、肺和成骨細胞中表達,它們最初為逆轉錄病毒受體被發(fā)現(xiàn),并起初被稱為Glvr-1和Ram-1[22]。到目前為止,該家族中有兩種亞型,即PIT-1和PIT-2,這兩種亞型可能在分化為成骨/軟骨生成表型和礦化過程中起著重要作用[23]。據(jù)推測,Napi-Ⅲ型在CKD患者血管平滑肌細胞發(fā)生鈣化過程中起主要作用。
2.2.2 PI轉運失衡與血管鈣化? PTH、FGF-23和Klotho通過激活和內(nèi)化腎內(nèi)的Napi導致PI的排泄增加,使血清PI降低。由于腎功能衰竭,CKD患者的PI的吸收和排泄受到損害,導致血清PI明顯升高,隨著疾病的進展,為了維持PI在正常范圍內(nèi),F(xiàn)GF-23和PTH上調(diào),當負荷過重失代償時上述系統(tǒng)無法維持磷酸鹽的動態(tài)平衡,從而導致高磷血癥,最終致血管鈣化[24]。
3 PPI與CKD血管鈣化
3.1 PPI穩(wěn)態(tài)調(diào)節(jié)因素
組織非特異性堿性磷酸酶(tissue-nonspecific alkaline phosphatase,TNAP)是目前與血管鈣化有關酶中研究較廣泛的一種酶,其對PPI的水解作用是導致PPI量減少的主要原因。研究表明,在CKD透析患者過程中由于磷酸和氫離子的清除,因負反饋作用使得TNAP活性增加[25-26]。此外,Lomashvili等[27-28]研究發(fā)現(xiàn),TNAP在尿毒癥大鼠主動脈中的表達及活性均顯著增加,焦磷酸鹽水解增加;使用尿毒癥大鼠血清孵育正常大鼠主動脈環(huán),TNAP的活性及PPI水解均增加,血管鈣化加重。另一種增加細胞外PPI水平的機制是通過假定的轉運體“進行性強直”蛋白釋放細胞內(nèi)的成分[29]。盡管確切的機制尚未完全了解,但“進行性強直”蛋白亦可以調(diào)節(jié)細胞外PPI的動態(tài)平衡。
3.2 PPI的減少與血管鈣化
研究表明,磷酸鈣沉積是一個不需要任何細胞活動的被動過程,合成血管鈣化抑制劑是預防血管鈣化的重要措施[25]。PPI已被證實在體內(nèi)外均為一種有效的抑制鈣化的內(nèi)源性抑制劑[30]。Lomashvili等[31]研究通過測定CKD透析患者血液透析前后的PPI,結果表明,透析后血液中PPI較透析前明顯下降,透析后細胞外PPI不僅被清除,而且紅細胞內(nèi)PPI也發(fā)生了變化,這些數(shù)據(jù)表明PPI代謝在透析患者血管鈣化過程中起重要作用。其他與PPI代謝有關的分子,如ATP和PPI本身,在透析后表現(xiàn)出下降的趨勢,發(fā)現(xiàn)在血液透析過程中PI的清除最終導致ALP活性的提高,考慮PI在ALP代謝過程中起負反饋作用。
4小結
血管鈣化是一個復雜的病理過程,是CKD患者心血管事件和死亡的獨立危險因素,有效治療血管鈣化是CKD治療的重要組成部分。PI水平在CKD患者中明顯升高,這種升高主要與PTH和FGF-23水平增加以及血漿VitD和Klotho酶水平降低有關。此外,透析期間血漿胞外PPI水平隨著ALP活性的增加而降低,ALP是導致胞外PPI降解的主要酶,雖然磷平衡的改變在鈣磷晶體的形成過程中起著關鍵作用,但PPI抑制作用的喪失亦增強了血管鈣化的過程。因此,應共同研究磷和PPI的穩(wěn)態(tài)才能為CKD血管鈣化的治療開辟更好的治療方案。
[參考文獻]
[1]王驕,殷躍輝.慢性腎臟病與心血管疾病的關系[J]重慶醫(yī)學,2011,40(20):2067-2070.
[2]林開平,余毅.慢性腎臟病血管鈣化研究進展[J].世界臨床藥物,2011,32(2):116-120.
[3]Bover J,Górriz JL,Urena-Torres P,et al.Detection of cardiovascular calcifications:is it a useful tool for nephrologists?[J].Nefrología,2016,36(6):587-596.
[4]Bover J,Urena-Torres P,Górriz JL,et al.Cardiovascular calcifications in chronic kidney disease:potential therapeutic implications[J].Nefrología,2016,36(6):597-608.
[5]Shanahan CM,Crouthamel MH,Kapustin A,et al.Arterial calcification in chronic kidney disease:key roles for calcium and phosphate[J].Circ Res,2011,109(7):697-711.
[6]Andersen K,Kesper MS,Marschner JA,et al.Intestinal dysbiosis,barrier dysfunction,and bacterial translocation account for CKD-related systemic inflammation[J].J Am Soc Nephrol,2017,28(1):76-83.
[7]Villa-Bellosta R,Wang X,Millán JL,et al.Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle[J].Am J Physiol Heart Circ Physiol,2011,30(1):61-68.
[8]Steitz SA,Speer MY,Curinga G,et al.Smooth muscle cell phenotypic transition associated with calcification:upregulation of Cbfa1 and downregulation of smooth muscle lineage markers[J].Circ Res,2001,89(4):1147-1154.
[9]Mathew S,Tustison KS,Sugatani T,et al.The mechanism of phosphorus as a cardiovascular risk factor in CKD[J].J Am Soc Nephrol,2008,19(6):1092-1105.
[10]Son BK,Kozaki K,Iijima K,et al.Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway[J].Circ Res,2006,98(8):1024-1031.
[11]Bouvet C,Moreau S,Blanchette J,et al.Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis[J].Arterioscler Thromb Vasc Biol,2008,28(5):856-862.
[12]Basalyga DM,Simionescu DT,Xiong W,et al.Elastin degradation and calcification in an abdominal aorta injury model:role of matrix metalloproteinases[J].Circulation,2004,110(22):3480-3487.
[13]Villa-Bellosta R.Vascular calcification revisited:a new perspective for phosphate transport[J].Curr Cardiol Rev,2015,12(5):22-25.
[14]Kovesdy CP,Kuchmak O,Lu JL,et al.Outcomes associated with serum calcium level in men with non-dialysis-dependent chronic kidney disease[J].Clin J Am Soc Nephrol,2016,5(3):468-476.
[15]Moe SM.Calcium as a cardiovascular toxin in CKD-MBD[J].Bone,2017,100(15):94-99.
[16]Villa-Bellosta R,Sorribas V.Calcium phosphate deposition with normal phosphate concentration.-Role of pyrophosphate-[J].Circ J,2011,75(11):2705-2710.
[17]Palmer SC,Gardner S,Tonelli M,et al.Phosphate-binding agents in adults with CKD:a network Meta-analysis of randomized trials[J].Am J Kidney Dis,2016,68(5):691-702.
[18]Toapanta Gaibor NG,Nava Pérez NC,Martínez Echevers Y,et al.PTH levels and not serum phosphorus levels are a predictor of the progression of kidney disease in elderly patients with advanced chronic kidney disease[J].Nefrología,2017,37(2):149-157.
[19]Salanova Villanueva L,Sánchez González C,Sánchez Tomero JA,et al.Bone mineral disorder in chronic kidney disease:Klotho and FGF23; cardiovascular implications[J].Nefrología,2016,36(4):368-375.
[20]Werner A,Dehmelt L,Nalbant P.Na+-dependent phosphate cotransporters:the NaPi protein families[J].J Exp Biol,1998, 201(Pt 23):3135-3142.
[21]Villa-Bellosta R,Sorribas V.Compensatory regulation of the sodium/phosphate cotransporters NaPi-Ⅱc(SCL34A3)and Pit-2 (SLC20A2) during Pi deprivation and acidosis[J].Pflugers Arch,2010,459(3):499-508.
[22]Li X,Yang HY,Giachelli CM.Role of the sodium-dependent phosphate cotransporter,Pit-1,in vascular smooth muscle cell calcification[J].Circ Res,2006,98(7):905-912.
[23]Kavanaugh MP,Kabat D.Identification and characterization of a widely expressed phosphate transporter retrovirus receptor family[J].Kidney Int,1996,49(8):959-963.
[24]Ritter CS,Slatopolsky E.Phosphate toxicity in CKD:the killer among us[J].Clin J Am Soc Nephrol,2016,11(6):1088-1100.
[25]Villa-Bellosta R,Wang X,Millán JL,et al.Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle[J].Am J Physiol Heart Circ Physiol,2011,301(13):61-68.
[26]Villa-Bellosta R,Rivera-Torres J,Osorio FG,et al.Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment[J].Circulation,2013,127(22):2442-2451.
[27]Lomashvili KA,Garg P,Narisawa S,et al.Upregulation of alkaline phosphatase and pyrophosphate hydrolysis poten- tial mechanism for uremic vascular calcification[J].Kidney Int,2008,73(9):1024-1030.
[28]劉夢苑,吳立玲,王瑾瑜.焦磷酸鹽與血管鈣化[J].生理科學進展,2016,47(6):413-417.
[29]Ho AM,Johnson MD,Kingsley DM.Role of the mouse ank gene in control of tissue calcification and arthritis[J].Science,2000,289(5477):265-270.
[30]Villa-Bellosta R,Sorribas V.Prevention of vascular calcification by polyphosphates and nucleotides role of ATP[J].Circ J,2013,77(8):2145-2151.
[31]Lomashvili KA,Khawandi W,O′Neill WC.Reduced plasma pyrophosphate levels in hemodialysis patients[J].J Am Soc Nephrol,2005,16(8):2495-2500.
(收稿日期:2019-03-04? 本文編輯:任秀蘭)