葉 磊,汪 成,倪騰亞,劉紀(jì)昌,2,孫 輝,2
(1.華東理工大學(xué)化學(xué)工程聯(lián)合國家重點(diǎn)實(shí)驗(yàn)室 上海 200237;2.綠色能源化工國際聯(lián)合研究中心)
延遲焦化作為最重要的原油二次加工工藝,由于原料組成和反應(yīng)過程的復(fù)雜性,很難定量描述反應(yīng)溫度、原料配比等操作條件對(duì)焦化產(chǎn)物分布的影響,因此工業(yè)應(yīng)用中主要依靠操作經(jīng)驗(yàn)優(yōu)化工藝,具有一定的盲目性。隨著原油重質(zhì)化日益嚴(yán)重,僅憑經(jīng)驗(yàn)已不再適應(yīng)發(fā)展要求,使得延遲焦化迫切需要精準(zhǔn)模型來優(yōu)化工藝。與此同時(shí),計(jì)算機(jī)技術(shù)的不斷發(fā)展和分析測試方法的不斷改善為建立更精準(zhǔn)模型創(chuàng)造了條件。目前,國內(nèi)有不少學(xué)者結(jié)合計(jì)算機(jī)技術(shù)和分析條件針對(duì)延遲焦化工藝建立產(chǎn)物預(yù)測模型,例如范啟明等[1]建立的減壓重油延遲焦化反應(yīng)6集總動(dòng)力學(xué)模型、馬伯文等[2]建立的11集總反應(yīng)動(dòng)力學(xué)模型和盧山等[3]建立的12集總反應(yīng)動(dòng)力學(xué)模型等,但以上模型均屬于基于餾分的集總模型,預(yù)測精度較低,無法在分子水平上對(duì)延遲焦化過程進(jìn)行產(chǎn)物分布預(yù)測和反應(yīng)網(wǎng)絡(luò)計(jì)算。
結(jié)構(gòu)導(dǎo)向集總方法(簡稱為SOL)由Jaffe等[4]于1992年首先提出,成功地將傳統(tǒng)的基于餾分的集總反應(yīng)動(dòng)力學(xué)模型在分子水平上應(yīng)用和發(fā)展,并已經(jīng)成功應(yīng)用于加氫過程和催化裂化過程[5-6]。Jaffe和Ghosh等應(yīng)用結(jié)構(gòu)導(dǎo)向集總方法分別建立了預(yù)測汽油辛烷值和柴油十六烷值的模型,辛烷值和十六烷值的預(yù)測誤差均小于2%[7-8]。
孫忠超等[9]將SOL方法與Monte Carlo法相結(jié)合構(gòu)建催化裂化汽油催化裂解動(dòng)力學(xué)模型,該方法預(yù)測的產(chǎn)物分布誤差在10%以內(nèi)。田立達(dá)等[10-11]建立了延遲焦化過程的結(jié)構(gòu)導(dǎo)向集總反應(yīng)動(dòng)力學(xué)模型,可以用于延遲焦化裝置的產(chǎn)品產(chǎn)率和性質(zhì)預(yù)測、原料優(yōu)化配置等。
但上述基于結(jié)構(gòu)導(dǎo)向集總方法的反應(yīng)動(dòng)力學(xué)模型皆采用等溫反應(yīng)器模型,未考慮反應(yīng)網(wǎng)絡(luò)的熱效應(yīng)。實(shí)際生產(chǎn)中,延遲焦化在490~505 ℃的溫度區(qū)間內(nèi)反應(yīng)溫度每降低或升高1 ℃都會(huì)對(duì)反應(yīng)產(chǎn)物分布產(chǎn)生明顯影響,而延遲焦化反應(yīng)過程是以大分子生成小分子的吸熱反應(yīng)為主,熱效應(yīng)顯著。因此,將反應(yīng)熱計(jì)入延遲焦化反應(yīng)動(dòng)力學(xué)模型顯得至關(guān)重要。
本課題在基于結(jié)構(gòu)導(dǎo)向集總的分子尺度延遲焦化反應(yīng)動(dòng)力學(xué)模型基礎(chǔ)上,結(jié)合反應(yīng)網(wǎng)絡(luò)中各反應(yīng)速率和反應(yīng)熱數(shù)據(jù),建立延遲焦化絕熱反應(yīng)動(dòng)力學(xué)模型,通過對(duì)比模型預(yù)測結(jié)果與延遲焦化小型試驗(yàn)產(chǎn)物產(chǎn)率和典型分子含量數(shù)據(jù),驗(yàn)證模型的可靠性。
針對(duì)典型延遲焦化體系油品的組成特點(diǎn),考慮到其重金屬鎳、釩含量較高,基于結(jié)構(gòu)導(dǎo)向集總方法,構(gòu)建了包含鎳、釩在內(nèi)的21個(gè)結(jié)構(gòu)單元來描述延遲焦化原料分子組成。21個(gè)結(jié)構(gòu)單元所代表的化學(xué)結(jié)構(gòu)式如表1所示。
由結(jié)構(gòu)單元可以構(gòu)成任意一個(gè)延遲焦化體系油品分子的結(jié)構(gòu)向量,每一個(gè)分子的結(jié)構(gòu)向量包含21個(gè)元素,每個(gè)元素對(duì)應(yīng)分子中包含的相應(yīng)結(jié)構(gòu)單元的數(shù)目。表2列舉了2個(gè)典型渣油分子(結(jié)構(gòu)如圖1所示)的結(jié)構(gòu)向量。
表1 21個(gè)結(jié)構(gòu)單元的意義
圖1 2個(gè)典型渣油分子的結(jié)構(gòu)式
結(jié)構(gòu)單元典型分子1典型分子2結(jié)構(gòu)單元典型分子1典型分子2A611br00A400IH00A200AA00N600NS01N500NN00N441AN00N300RO00N200KO00N100Ni00R33V00me01
根據(jù)渣油原料分子組成,選取55類核心分子代表延遲焦化原料中的所有同系物[12],通過對(duì)核心分子添加0~50個(gè)—CH2—支鏈的方式,在刪除部分實(shí)際不存在的分子后,確定由2 791種分子的結(jié)構(gòu)向量構(gòu)成的2 791×21分子結(jié)構(gòu)矩陣,并在矩陣最后添加一個(gè)代表對(duì)應(yīng)分子摩爾分?jǐn)?shù)、包含2 791個(gè)元素的列向量,形成一個(gè)2 791×22的延遲焦化原料分子組成矩陣。
為了建立延遲焦化原料的分子組成矩陣,首先采用紅外光譜、液相凝膠滲透色譜、氣相色譜-質(zhì)譜、核磁共振等分析儀器對(duì)延遲焦化渣油原料的組成和結(jié)構(gòu)進(jìn)行精細(xì)表征,以得到詳盡的組成和性質(zhì)數(shù)據(jù)(記作測試值),再采用基團(tuán)貢獻(xiàn)法和渣油分子的結(jié)構(gòu)向量理論計(jì)算得到相應(yīng)的組成和性質(zhì)數(shù)據(jù)(記作計(jì)算值)。然后,以測試值和計(jì)算值二者的殘差平方和構(gòu)建目標(biāo)函數(shù),再結(jié)合模擬退火算法,利用Metropolis抽樣策略在解空間中進(jìn)行搜索,最終得到一個(gè)近似全局最優(yōu)解,由此得到一個(gè)組成和性質(zhì)計(jì)算值與測試值重合度最高的分子組成矩陣。基于結(jié)構(gòu)導(dǎo)向集總的渣油分子組成矩陣可由前期構(gòu)建的模型計(jì)算獲得[13]。
結(jié)構(gòu)導(dǎo)向集總中每個(gè)反應(yīng)規(guī)則[14]都由以下兩部分構(gòu)成:①反應(yīng)物選擇規(guī)則,用來篩選出原料矩陣中能發(fā)生此類反應(yīng)的分子;②產(chǎn)物生成規(guī)則,用來確定反應(yīng)物分子發(fā)生反應(yīng)后生成的產(chǎn)物分子。結(jié)合延遲焦化過程中的反應(yīng)特征,制定了38條反應(yīng)規(guī)則用于描述整個(gè)延遲焦化反應(yīng)網(wǎng)絡(luò),其中包括了脫氫、脫氫縮合、脫一氧化碳、脫二氧化碳、脫硫化氫、加氫脫氮、雙烯合成、碳鏈斷裂、側(cè)鏈斷裂和開環(huán)這10大類反應(yīng)。
將確立后的延遲焦化反應(yīng)規(guī)則編譯成Matlab可識(shí)別的程序語言,并將渣油分子組成矩陣輸入至該程序中進(jìn)行計(jì)算,根據(jù)反應(yīng)物選擇規(guī)則判斷反應(yīng)物可能發(fā)生的反應(yīng),并根據(jù)產(chǎn)物生成規(guī)則確定反應(yīng)生成的產(chǎn)物,由此將渣油原料分子組成矩陣轉(zhuǎn)變?yōu)檠舆t焦化產(chǎn)物分子組成矩陣。計(jì)算后渣油原料分子組成矩陣中的每一個(gè)分子都形成了一個(gè)相應(yīng)的從反應(yīng)物到產(chǎn)物的反應(yīng)網(wǎng)絡(luò)。由于從渣油原料分子為反應(yīng)物到生成延遲焦化最終產(chǎn)物的反應(yīng)網(wǎng)絡(luò)所包含的反應(yīng)分子數(shù)目龐大、反應(yīng)過程復(fù)雜,因此這里僅以甲基環(huán)己烷裂解反應(yīng)為例簡要說明由反應(yīng)網(wǎng)絡(luò)生成動(dòng)力學(xué)微分方程組的過程。
圖2所示為甲基環(huán)己烷裂解的反應(yīng)網(wǎng)絡(luò)。圖2中,甲基環(huán)己烷裂解反應(yīng)網(wǎng)絡(luò)共涉及14種分子,每種分子用Yi(i=1~14)表示,其濃度用yi(i=1~14)表示。由于部分產(chǎn)物分子不包含在渣油分子組成矩陣中,所以通過在原料渣油分子組成矩陣的基礎(chǔ)上添加一些行向量,形成延遲焦化產(chǎn)物分子矩陣。甲基環(huán)己烷及其延遲焦化反應(yīng)過程產(chǎn)物在熱裂化過程中可能發(fā)生13步反應(yīng),每步反應(yīng)的速率常數(shù)用ki表示,第1、13步為脫氫反應(yīng),第2步為開環(huán)反應(yīng),第3步為側(cè)鏈全斷反應(yīng),第4、8步為脫氫芳構(gòu)化反應(yīng),第5,6,7,9,10,11,12步為碳鏈斷裂反應(yīng)。
圖2 甲基環(huán)己烷裂解的反應(yīng)網(wǎng)絡(luò)
基于延遲焦化自由基反應(yīng)機(jī)理,假設(shè)所有反應(yīng)為一級(jí)不可逆反應(yīng),共建立13個(gè)反應(yīng)動(dòng)力學(xué)方程,并將反應(yīng)網(wǎng)絡(luò)中的所有分子表示為延遲焦化產(chǎn)物分子組成矩陣中其對(duì)應(yīng)的行向量,得到如表3所示的甲基環(huán)己烷裂解反應(yīng)網(wǎng)絡(luò)分子結(jié)構(gòu)向量矩陣(矩陣中所有元素為零的列向量省略)和如表4所示的甲基環(huán)己烷裂解反應(yīng)網(wǎng)絡(luò)反應(yīng)物-產(chǎn)物對(duì)矩陣。
表3 甲基環(huán)己烷裂解反應(yīng)網(wǎng)絡(luò)分子結(jié)構(gòu)向量矩陣
表4 甲基環(huán)己烷裂解反應(yīng)網(wǎng)絡(luò)反應(yīng)物-產(chǎn)物對(duì)矩陣
1)“×2”表示反應(yīng)產(chǎn)物H2的分子數(shù)為2。
結(jié)合表4,由反應(yīng)物-產(chǎn)物對(duì)可推出圖3所示的反應(yīng)動(dòng)力學(xué)方程式。
圖3 甲基環(huán)己烷反應(yīng)網(wǎng)絡(luò)的反應(yīng)動(dòng)力學(xué)方程式
上述每種分子都涉及多個(gè)反應(yīng),即它們既可作一些反應(yīng)的反應(yīng)物,又可作一些反應(yīng)的產(chǎn)物,在合并各分子的反應(yīng)方程式后,得到如圖4矩陣形式所示的甲基環(huán)己烷反應(yīng)網(wǎng)絡(luò)的反應(yīng)動(dòng)力學(xué)微分方程組。
圖4 甲基環(huán)己烷反應(yīng)網(wǎng)絡(luò)動(dòng)力學(xué)微分方程組的矩陣形式
2.3.1 延遲焦化過程的絕熱反應(yīng)器模型焦炭塔是延遲焦化工藝最重要的設(shè)備,渣油等延遲焦化原料在焦炭塔中轉(zhuǎn)化成價(jià)值更高的汽油、柴油和蠟油等輕質(zhì)油品。原料經(jīng)加熱爐升溫至一定溫度,進(jìn)入焦炭塔后主要發(fā)生各種大分子裂解成小分子的反應(yīng),沒有外界能量的輸入,屬于絕熱反應(yīng)過程,因此焦炭塔內(nèi)的溫度沿物流方向呈降低趨勢。
建立延遲焦化絕熱反應(yīng)模型時(shí),為了方便計(jì)算,制定3條合理假設(shè):①反應(yīng)由多個(gè)微元反應(yīng)時(shí)間段構(gòu)成,在每個(gè)微元段內(nèi)反應(yīng)溫度恒定不變,后續(xù)微元段的反應(yīng)溫度的變化值由上一微元段的反應(yīng)熱計(jì)算得到;②反應(yīng)原料由塔底勻速上升,液面上部原料裂解氣體不與焦炭塔內(nèi)壁進(jìn)行熱量交換,液面下部原料液體不與焦炭塔內(nèi)壁進(jìn)行熱量交換;③焦炭塔內(nèi)的軸向和徑向的熱量傳遞不計(jì)入模型計(jì)算中。
2.3.2 熱裂化反應(yīng)熱效應(yīng)計(jì)算反應(yīng)熱代表的是化學(xué)反應(yīng)過程中吸收或釋放的能量。在恒壓條件下,反應(yīng)熱等于反應(yīng)體系的焓變。當(dāng)反應(yīng)物的能量之和大于生成物的能量之和時(shí),反應(yīng)為放熱反應(yīng);若反應(yīng)物的能量之和小于生成物的能量之和,則反應(yīng)為吸熱反應(yīng)。由于模型計(jì)算涉及的反應(yīng)數(shù)目巨大,絕大部分無法通過查閱文獻(xiàn)獲得反應(yīng)熱數(shù)據(jù),因此需借助于量子化學(xué)計(jì)算軟件獲得反應(yīng)網(wǎng)絡(luò)中所有反應(yīng)的反應(yīng)熱。本課題采用Materials Studio(MS)軟件進(jìn)行計(jì)算,通過構(gòu)建分子結(jié)構(gòu),在進(jìn)行幾何構(gòu)型優(yōu)化的基礎(chǔ)上,獲得反應(yīng)物分子和產(chǎn)物分子能量最低的空間構(gòu)型,從而得到反應(yīng)物分子和產(chǎn)物分子的最低能量。
以正丁基苯裂解生成乙苯和乙烯為例,正丁基苯分子結(jié)構(gòu)進(jìn)行幾何優(yōu)化后能量為-13.1 kJmol,乙苯和乙烯分子結(jié)構(gòu)進(jìn)行幾何構(gòu)型優(yōu)化后,能量之和為82.4 kJmol,生成物和反應(yīng)物能量之差ΔH為95.5 kJmol,與文獻(xiàn)值104.4 kJmol相吻合[15]。表5列出了一些烴類在溫度為500 ℃下裂解的反應(yīng)熱計(jì)算值和文獻(xiàn)值的對(duì)比。
表5 500 ℃下部分烴類裂解的反應(yīng)熱文獻(xiàn)值和計(jì)算值的對(duì)比
實(shí)際模型計(jì)算中,反應(yīng)數(shù)量龐大,很難對(duì)每個(gè)反應(yīng)進(jìn)行準(zhǔn)確的反應(yīng)熱計(jì)算。因此,用式(1)擬合生成物和反應(yīng)物的能量之差ΔH。
(1)
式中:ai和bi為回歸待定參數(shù);xi為某一分子結(jié)構(gòu)單元;ΔH0為常量。
利用MS軟件的Dmol3模塊進(jìn)行計(jì)算,得到反應(yīng)的ΔH數(shù)值。以此為據(jù)進(jìn)行數(shù)據(jù)回歸計(jì)算,根據(jù)不同焦化反應(yīng)類型選取具有代表性的結(jié)構(gòu)單元作為xi,利用軟件Matlab中最優(yōu)化工具箱的lsqcurvefit函數(shù),回歸待定參數(shù)ai和bi,由此計(jì)算得到不同類型反應(yīng)的ΔH關(guān)聯(lián)式。部分反應(yīng)的反應(yīng)熱關(guān)聯(lián)式如下。
①碳鏈斷裂:
②脫氫:
③雙烯合成:
式中,Z表示油品分子中包含的相應(yīng)結(jié)構(gòu)單元的數(shù)目,下標(biāo)表示結(jié)構(gòu)單元,下同。
2.4.1 反應(yīng)速率常數(shù)的求取本課題進(jìn)行延遲焦化反應(yīng)網(wǎng)絡(luò)計(jì)算時(shí)采用文獻(xiàn)[16]的熱裂化反應(yīng)速率常數(shù),參照反應(yīng)ΔH的處理方法,不同反應(yīng)類型反應(yīng)速率常數(shù)關(guān)聯(lián)式為:
(2)
式中:ΔE為反應(yīng)物和過渡態(tài)之間的能壘,kJmol;ΔSm為反應(yīng)物和過渡態(tài)之間的熵變,kJ(mol·K);kB為玻爾茲曼常數(shù);h為普朗克常數(shù);R為氣體狀態(tài)常數(shù);T為溫度,K。由式(2)求解速率常數(shù)k(T),必須先求解ΔE和ΔSm,以下為碳鏈斷裂、脫氫和雙烯合成反應(yīng)的ΔE和ΔSm求解公式。
①碳鏈斷裂
②脫氫
③雙烯合成
2.4.2 反應(yīng)網(wǎng)絡(luò)的求解基于上述研究,將整個(gè)焦化反應(yīng)時(shí)間t劃分成n個(gè)微元反應(yīng)時(shí)間段Δti(i=1~n)。在第n個(gè)微元反應(yīng)時(shí)間Δtn內(nèi),輸入原料分子組成矩陣與焦化反應(yīng)溫度T,基于結(jié)構(gòu)導(dǎo)向集總方法的反應(yīng)規(guī)則建立反應(yīng)網(wǎng)絡(luò),根據(jù)關(guān)聯(lián)式計(jì)算得到的反應(yīng)速率常數(shù),構(gòu)建反應(yīng)動(dòng)力學(xué)微分方程組,利用改進(jìn)的Runge-Kutta法計(jì)算得到產(chǎn)物分子組成矩陣。將產(chǎn)物分子組成矩陣與未反應(yīng)的原料分子組成矩陣合并后,得到第n+1段微元反應(yīng)時(shí)間段Δtn+1的原料分子組成矩陣,并計(jì)算微元時(shí)間Δtn內(nèi)所有反應(yīng)的反應(yīng)熱之和,換算成溫差ΔTn,得到第n+1段微元反應(yīng)時(shí)間Δtn+1的焦化反應(yīng)溫度T+ΔTn,進(jìn)行Δtn+1內(nèi)的焦化反應(yīng)過程計(jì)算。依次循環(huán)計(jì)算,直到焦化反應(yīng)時(shí)間為t。
延遲焦化小型試驗(yàn)在華東理工大學(xué)石油加工研究所延遲焦化及產(chǎn)物精餾小型試驗(yàn)裝置上進(jìn)行。裝置的焦化塔體積為4 L,精餾釜體積為2 L。試驗(yàn)條件為:渣油原料進(jìn)料量1 000 gh,去離子水進(jìn)料量20 gh,共同進(jìn)料時(shí)間3 h,渣油進(jìn)料結(jié)束后,繼續(xù)進(jìn)去離子水汽提2 h,焦炭塔中反應(yīng)溫度470~505 ℃,反應(yīng)壓力0.15 MPa,循環(huán)比(指循環(huán)蠟油質(zhì)量流量與原料油質(zhì)量流量的比值)0~0.6。
試驗(yàn)結(jié)束后,基于結(jié)構(gòu)導(dǎo)向集總反應(yīng)動(dòng)力學(xué)的延遲焦化絕熱反應(yīng)器模型,通過輸入原料渣油分子矩陣與延遲焦化工藝條件,計(jì)算后可獲得延遲焦化過程中分子組成變化和產(chǎn)物分布。通過將模型預(yù)測值與延遲焦化實(shí)驗(yàn)室小型試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)照,以驗(yàn)證模型的可靠性。
延遲焦化原料經(jīng)加熱爐加熱至設(shè)定溫度后,進(jìn)入焦炭塔發(fā)生熱裂化反應(yīng),塔內(nèi)大量分子的裂解反應(yīng)熱將引起反應(yīng)體系溫度的明顯變化。將渣油的平均摩爾熱容引入延遲焦化反應(yīng)器模型,計(jì)算得到每一反應(yīng)的反應(yīng)熱,從而獲得整個(gè)延遲焦化體系反應(yīng)前后的溫度變化。在不同反應(yīng)條件下,不同渣油反應(yīng)前后反應(yīng)體系的溫度變化如表6所示。
表6 不同渣油原料反應(yīng)前后體系溫度的變化
由表6可知,渣油延遲焦化反應(yīng)前后溫差達(dá)3~4 ℃,焦化反應(yīng)前后體系溫度相差明顯,因此將反應(yīng)熱效應(yīng)計(jì)入延遲焦化模型是十分必要的。本研究考慮到反應(yīng)熱效應(yīng)引起的溫度變化,建立絕熱反應(yīng)器模型,對(duì)1號(hào)渣油和2號(hào)渣油的延遲焦化反應(yīng)過程進(jìn)行模擬計(jì)算,并與等溫反應(yīng)器模型的模擬結(jié)果及實(shí)驗(yàn)室小型試驗(yàn)結(jié)果進(jìn)行對(duì)比,產(chǎn)物分布的對(duì)比如表7所示。其中,1號(hào)渣油延遲焦化反應(yīng)條件為:入口溫度495 ℃、循環(huán)比0;2號(hào)渣油延遲焦化反應(yīng)條件為:入口溫度495 ℃、循環(huán)比0.4。
表7 絕熱、等溫反應(yīng)器模型計(jì)算的產(chǎn)物分布與實(shí)驗(yàn)室小型試驗(yàn)結(jié)果的對(duì)比 w,%
由表7可知,將實(shí)驗(yàn)室延遲焦化小型試驗(yàn)數(shù)據(jù)作為基準(zhǔn),由絕熱反應(yīng)器模型計(jì)算獲得的延遲焦化產(chǎn)物中的氣體、汽油、柴油、蠟油和焦炭5種產(chǎn)物的產(chǎn)率比未計(jì)入反應(yīng)熱效應(yīng)的等溫反應(yīng)器模型的預(yù)測誤差更小。采用結(jié)構(gòu)導(dǎo)向集總反應(yīng)動(dòng)力學(xué)模型,通過計(jì)算反應(yīng)網(wǎng)絡(luò)中典型反應(yīng)的熱效應(yīng)來描述焦化塔中的溫度變化,并將反應(yīng)速率與反應(yīng)熱效應(yīng)耦合,使模型預(yù)測實(shí)際延遲焦化過程的反應(yīng)規(guī)律更加準(zhǔn)確。
采用絕熱、等溫反應(yīng)器模型計(jì)算獲得的典型分子含量與實(shí)驗(yàn)室小型試驗(yàn)結(jié)果的對(duì)比如表8所示。由表8可知,將實(shí)驗(yàn)室延遲焦化小型試驗(yàn)數(shù)據(jù)作為基準(zhǔn),由絕熱反應(yīng)器模型計(jì)算獲得的延遲焦化產(chǎn)物中甲烷、乙烷、丙烷、氫氣、正庚烷等典型分子的含量比由等溫反應(yīng)器模型計(jì)算的結(jié)果誤差更小,進(jìn)一步證明延遲焦化絕熱反應(yīng)器模型的預(yù)測精度優(yōu)于延遲焦化等溫反應(yīng)器模型。
表8 絕熱、等溫反應(yīng)器模型計(jì)算的典型分子含量與實(shí)驗(yàn)室小型試驗(yàn)結(jié)果的對(duì)比 w,%
3.2.1 延遲焦化SOL絕熱反應(yīng)器模型預(yù)測不同反應(yīng)溫度下的產(chǎn)物分布在循環(huán)比為0、反應(yīng)溫度為470~505 ℃(間隔為5 ℃)的反應(yīng)條件下,對(duì)1號(hào)渣油原料進(jìn)行延遲焦化小型試驗(yàn),并通過延遲焦化SOL絕熱反應(yīng)器模型進(jìn)行模擬計(jì)算,所得氣體、汽油、柴油、蠟油和焦炭5種產(chǎn)物產(chǎn)率的模型預(yù)測值與試驗(yàn)值的對(duì)比如圖5所示。
圖5 1號(hào)渣油原料在不同反應(yīng)溫度下延遲焦化的產(chǎn)物產(chǎn)率模型預(yù)測值與試驗(yàn)值的對(duì)比■—?dú)怏w產(chǎn)率預(yù)測值; ●—汽油產(chǎn)率預(yù)測值; ▲—柴油產(chǎn)率預(yù)測值; 蠟油產(chǎn)率預(yù)測值; ◆—焦炭產(chǎn)率預(yù)測值; □—?dú)怏w產(chǎn)率試驗(yàn)值; ○—汽油產(chǎn)率試驗(yàn)值; △—柴油產(chǎn)率試驗(yàn)值; 蠟油產(chǎn)率試驗(yàn)值; ◇—焦炭產(chǎn)率試驗(yàn)值
由圖5可以看出,通過延遲焦化SOL絕熱反應(yīng)器模型預(yù)測得到的氣體、汽油、柴油、蠟油和焦炭5種產(chǎn)物的產(chǎn)率與小型試驗(yàn)數(shù)據(jù)較為接近,預(yù)測誤差均未超過1.7百分點(diǎn)。表明該模型可用于預(yù)測渣油在不同反應(yīng)溫度下延遲焦化所得氣體、汽油、柴油、蠟油和焦炭的產(chǎn)率。
3.2.2 延遲焦化SOL絕熱反應(yīng)器模型預(yù)測不同反應(yīng)溫度下焦化產(chǎn)物中典型分子含量使用色譜分析儀器分析不同反應(yīng)溫度下1號(hào)渣油延遲焦化反應(yīng)所得氣體和汽油中的典型分子含量,并與SOL絕熱反應(yīng)器模型預(yù)測值進(jìn)行對(duì)比,結(jié)果如表9所示。
由表9可以看出,在不同反應(yīng)溫度條件下,1號(hào)渣油原料油的焦化產(chǎn)物中典型分子含量的SOL絕熱反應(yīng)器模型預(yù)測誤差均在2.0百分點(diǎn)以內(nèi),與小型試驗(yàn)數(shù)據(jù)較為接近,這表明延遲焦化SOL絕熱反應(yīng)器模型可用于預(yù)測在不同反應(yīng)溫度條件下焦化產(chǎn)物中典型分子的含量。
表9 1號(hào)渣油原料不同反應(yīng)溫度下焦化產(chǎn)物中典型分子含量的模型預(yù)測值與試驗(yàn)值的對(duì)比
(1)基于結(jié)構(gòu)導(dǎo)向集總方法和延遲焦化反應(yīng)機(jī)理,制定了包含脫氫、脫氫縮合、脫一氧化碳、脫二氧化碳、脫硫化氫、加氫脫氮、雙烯合成、碳鏈斷裂、側(cè)鏈斷裂和開環(huán)等10類38條反應(yīng)規(guī)則,用于描述延遲焦化過程的反應(yīng)網(wǎng)絡(luò)。結(jié)合相應(yīng)的反應(yīng)速率常數(shù)和反應(yīng)熱數(shù)據(jù),建立了反應(yīng)動(dòng)力學(xué)微分方程組,通過改進(jìn)的Runge-Kutta法求解,構(gòu)建出基于結(jié)構(gòu)導(dǎo)向集總的延遲焦化絕熱反應(yīng)動(dòng)力學(xué)模型,預(yù)測延遲焦化過程的典型分子組成和產(chǎn)物分布。
(2)基于結(jié)構(gòu)導(dǎo)向集總動(dòng)力學(xué)對(duì)延遲焦化絕熱反應(yīng)器模型進(jìn)行計(jì)算,結(jié)果表明渣油延遲焦化反應(yīng)前后溫差達(dá)3~4 ℃,焦化反應(yīng)結(jié)束溫度與進(jìn)料溫度差異明顯,因此考慮反應(yīng)熱效應(yīng)對(duì)延遲焦化過程的影響是完全有必要的。延遲焦化SOL絕熱反應(yīng)器模型的預(yù)測精度優(yōu)于未計(jì)入反應(yīng)熱效應(yīng)的等溫反應(yīng)器模型。
(3)采用延遲焦化SOL絕熱反應(yīng)器模型對(duì)1號(hào)渣油原料油在反應(yīng)溫度470~505 ℃下的延遲焦化反應(yīng)過程進(jìn)行模擬,計(jì)算得到的延遲焦化氣體、汽油、柴油、蠟油和焦炭5種產(chǎn)物的產(chǎn)率與延遲焦化小型試驗(yàn)數(shù)據(jù)較為接近,預(yù)測誤差不超過1.7百分點(diǎn),焦化產(chǎn)物中典型分子含量與延遲焦化小型試驗(yàn)數(shù)據(jù)較為接近,預(yù)測誤差在2.0百分點(diǎn)以內(nèi)。