達(dá)古拉 謝先達(dá) 王靜
[摘要] 間充質(zhì)干細(xì)胞(MSCs)具有自我更新能力和多向分化潛能,在免疫調(diào)節(jié)、控制炎癥和修復(fù)軟骨破壞等方面有重要作用。MSCs產(chǎn)生大量可溶性膜結(jié)合因子,其中一些可抑制免疫應(yīng)答,誘導(dǎo)免疫耐受,發(fā)揮重要的免疫調(diào)節(jié)作用。由于MSCs的生物學(xué)特性和免疫調(diào)節(jié)作用,在動物試驗和臨床研究中均證實了MSCs治療類風(fēng)濕關(guān)節(jié)炎的有效性與安全性。本文針對MSCs的功能特點(diǎn)和治療類風(fēng)濕關(guān)節(jié)炎方面的相關(guān)研究進(jìn)展進(jìn)行簡要綜述。
[關(guān)鍵詞] 間充質(zhì)干細(xì)胞;類風(fēng)濕關(guān)節(jié)炎;治療;免疫調(diào)節(jié)
[中圖分類號] R593.22? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)02(c)-0040-04
[Abstract] Mesenchymal stem cells (MSCs) have self-renewal ability and multi-directional differentiation potential, and they play an important role in immune regulation, inflammation control and cartilage destruction. MSCs produce a large number of soluble membrane-binding factors, some of which inhibit immune responses, induce immune tolerance, and exert important immunomodulatory effects. Due to the biological characteristics and immunomodulatory effects of MSCs, the efficacy and safety of MSCs in the treatment of rheumatoid arthritis have been confirmed in animal experiments and clinical studies in recent years. This article briefly reviews the functional characteristics of MSCs and the related research progress in the treatment of rheumatoid arthritis.
[Key words] Mesenchymal stem cells; Rheumatoid arthritis; Treatment; Immune regulation
類風(fēng)濕關(guān)節(jié)炎(RA)是一種常見的慢性炎性自身免疫病,全球發(fā)病率為0.5%~1%,國內(nèi)患病率為0.2%~0.5%[1]。主要累及全身小關(guān)節(jié),以滑膜增生、炎癥細(xì)胞浸潤以及滑膜血管翳形成為主要病理特征,是致殘率較高的疾病,嚴(yán)重影響RA患者的生活質(zhì)量。目前類風(fēng)濕關(guān)節(jié)炎的治療手段日新月異,但傳統(tǒng)的RA治療藥物如糖皮質(zhì)激素、緩解風(fēng)濕病情藥(DMARDs)以及非甾體抗炎藥(NSAIDs)副作用明顯,不能改變疾病進(jìn)程。近年來,新興生物制劑效果顯著,然而致癌性和誘發(fā)加重感染的副作用也日漸增多。此外,經(jīng)濟(jì)因素也限制了新興生物制劑的使用。盡管生物制劑聯(lián)合傳統(tǒng)DMARDs治療類風(fēng)濕關(guān)節(jié)炎有效,但并不能對損傷關(guān)節(jié)進(jìn)行骨修復(fù)。隨著間充質(zhì)干細(xì)胞(MSCs)治療領(lǐng)域的發(fā)展,MSCs在類風(fēng)濕關(guān)節(jié)炎中的應(yīng)用成為目前研究熱點(diǎn)。MSCs具有分化為骨和軟骨的能力,可修復(fù)受損組織。同時抑制促炎因子,減輕炎性反應(yīng),還具備抗纖維化和免疫調(diào)節(jié)等作用[2],為RA的治療帶來新方向和新思路。
1 MSCs的功能與特點(diǎn)
MSCs最初來源于骨髓,還可從外周血、脂肪組織、滑膜和其他中胚層組織中分離出來。MSCs是一種具有多向分化潛能的非造血干細(xì)胞,能夠分化成各種間充質(zhì)譜系,包括軟骨細(xì)胞、成骨細(xì)胞和脂肪細(xì)胞等[3]。自身反應(yīng)性T細(xì)胞和炎性細(xì)胞因子[腫瘤壞死因子-α(TNF-α)等]在滑膜炎癥和骨破壞中起重要作用,而這種短期和長期接觸炎性刺激物(細(xì)胞因子)等導(dǎo)致的組織損傷通常主要由MSCs分化的間充質(zhì)譜系細(xì)胞修復(fù)[3-4]。此外,MSCs還參與受損組織和器官的自我修復(fù)和自我更新過程。很多關(guān)于成骨不全和軟骨缺損等疾病的臨床前和臨床研究已經(jīng)證明了這些細(xì)胞的治療潛力[5]。由于MSCs具有多種分化能力和抗炎特性,在移植物抗宿主病、系統(tǒng)性紅斑狼瘡、多發(fā)性硬化癥等自身免疫病中均安全有效[6-7]。
1.1 MSCs的免疫調(diào)節(jié)作用
骨髓MSC(BM-MSC)可以對先天性和適應(yīng)性免疫細(xì)胞發(fā)揮廣泛的調(diào)節(jié)作用。MSCs通過對有絲分裂原(如植物血凝素或伴刀豆球蛋白A)或抗體(抗CD2/CD3/CD28)的反應(yīng)抑制CD4+T細(xì)胞增殖、活化,減少炎性細(xì)胞因子分泌[8-9]。BM-MSC還可誘導(dǎo)經(jīng)典CD4+CD25 hiFOXP3+調(diào)節(jié)T細(xì)胞的分化并維持其免疫抑制功能[10],因此對機(jī)體多種免疫細(xì)胞和細(xì)胞因子具有負(fù)向調(diào)節(jié)作用,能夠維持穩(wěn)定的外周免疫耐受[11]。此外,還可干擾B淋巴細(xì)胞的分化與增殖,通過抑制趨化因子受體(CXCR)4和CXCR5表達(dá),抑制B細(xì)胞向炎癥部位的趨化和抗體分泌[12]。
與先天免疫細(xì)胞一樣,MSCs使抗原提成細(xì)胞分泌促炎細(xì)胞因子如γ-干擾素(IFN-γ)和TNF-α減少,誘導(dǎo)單核細(xì)胞轉(zhuǎn)化為具有抗炎活性的巨噬細(xì)胞從而促進(jìn)白細(xì)胞介素-10(IL-10)分泌。MSCs還可抑制中性粒細(xì)胞凋亡及活性氧(ROS)產(chǎn)生,通過抑制IL-2分泌抑制自然殺傷細(xì)胞(NK)細(xì)胞毒性和IFN-γ分泌,減弱固有免疫應(yīng)答,抑制炎性反應(yīng)進(jìn)程。MSCs還可通過直接接觸或分泌一些細(xì)胞因子,如吲哚胺2,3-雙加氧酶(IDO)可將必需氨基酸色氨酸催化成犬尿氨酸,影響各種細(xì)胞蛋白質(zhì)合成,導(dǎo)致細(xì)胞增殖受抑[13]。MSCs介導(dǎo)的其他細(xì)胞因子包括轉(zhuǎn)化生長因子-β(TGF-β)、血紅素氧合酶(HO-1)和人白細(xì)胞抗原-G5(HLA-G5)等可溶性細(xì)胞因子,作用于宿主細(xì)胞至損傷炎癥部位,從而發(fā)揮其免疫調(diào)節(jié)作用[14]。除了可溶性因子外,MSCs和T細(xì)胞之間的間接接觸也可抑制T細(xì)胞的功能,這些T細(xì)胞獲得以CD69持續(xù)表達(dá)為特征的調(diào)節(jié)表型,增加Treg相關(guān)基因的轉(zhuǎn)錄水平[15]。
1.2 MSCs的多向分化能力
1.2.1 MSCs向成骨細(xì)胞分化? MSCs具有很強(qiáng)的多向分化潛能和增殖能力,在適宜的體內(nèi)或體外環(huán)境條件下可分化為成骨細(xì)胞和軟骨細(xì)胞并抑制破骨細(xì)胞生成。相關(guān)研究顯示[16],單次靜脈注射MSCs可防止小鼠膠原誘導(dǎo)性關(guān)節(jié)炎中骨和軟骨發(fā)生嚴(yán)重和不可逆的損傷。IL-1主要通過Wnt-5α/Ror2通路有效地誘導(dǎo)人MSCs分化成成骨細(xì)胞,提示人MSCs經(jīng)IL-1刺激后具有治療受損骨的潛在作用以及受損組織的自我修復(fù)[17]。有研究發(fā)現(xiàn)[18],脂肪來源的干細(xì)胞(ADSCs)具有多能性,不僅具有強(qiáng)大的血管生成潛力,而且還具有通過IL-6和可溶性IL-6受體刺激分化為成骨細(xì)胞的潛力。
1.2.2 MSCs向軟骨細(xì)胞分化? 炎性環(huán)境破壞軟骨基質(zhì)并誘導(dǎo)軟骨細(xì)胞凋亡,這導(dǎo)致軟骨中的不可逆缺陷,在軟骨退行性疾病[包括RA和骨關(guān)節(jié)炎(OA)]中難以修復(fù)。研究顯示[19],軟骨含有具有類似MSC特征的軟骨形成祖細(xì)胞,這提示通過軟骨祖細(xì)胞向軟骨細(xì)胞的分化維持了軟骨的穩(wěn)態(tài),也使軟骨更新成為可能。由于MSCs存在于軟骨中并可分化為軟骨細(xì)胞,可有望成為軟骨修復(fù)的新工具。
1.2.3 MSCs抑制破骨細(xì)胞生成? 破骨細(xì)胞在骨吸收中起重要作用,導(dǎo)致RA的關(guān)節(jié)破壞。MSCs通過組成型骨保護(hù)素(OPG)抑制破骨細(xì)胞生成,骨保護(hù)素是RANKL的受體,可阻斷RANKL-RANK相互作用,對分裂和活化破骨細(xì)胞有重要作用[20]。用抗OPG抗體或OPG小干擾RNA處理后可部分恢復(fù)破骨細(xì)胞分化。通過向條件培養(yǎng)基中加入抗OPG抗體,可部分恢復(fù)破骨細(xì)胞的骨再吸收活性。并且產(chǎn)生OPG的MSCs和其他抑制因子也有利于抑制RA中的骨侵蝕[20]。
2 異基因MSCs治療RA研究進(jìn)展
研究顯示[21],在類風(fēng)濕性關(guān)節(jié)炎動物模型(CIA)小鼠腹腔中注射異基因MSCs可減輕CIA小鼠關(guān)節(jié)炎癥,同時血清中IL-6、TNF-α分泌減少,IL-10分泌增加,延緩了CIA小鼠病程,抑制滑膜炎癥。此外,通過關(guān)節(jié)腔內(nèi)注射UC-MSCs聯(lián)合TNF-α抑制劑可明顯減輕CIA大鼠關(guān)節(jié)炎癥狀,同樣抑制炎性因子分泌[22]。體外實驗同樣證實[23],在CIA大鼠關(guān)節(jié)腔局部注射MSCs可產(chǎn)生TGF-β1,TGF-β1誘導(dǎo)淋巴結(jié)中Treg生成,從而抑制T細(xì)胞增殖和B細(xì)胞產(chǎn)生抗CⅡ IgG,抑制CIA的初始階段,改善CIA大鼠關(guān)節(jié)破壞。因此,MSCs具有免疫調(diào)節(jié)和組織修復(fù)等作用,可降低CIA鼠關(guān)節(jié)炎的發(fā)病率,為異基因MSCs移植在臨床中的應(yīng)用提供了理論依據(jù)[24]。
在一項大規(guī)模非隨機(jī)對照試驗中,有172例對傳統(tǒng)經(jīng)典藥物治療無反應(yīng)的RA患者,其中136例靜脈內(nèi)接受UC-MSCs(4×107個細(xì)胞),而36例僅接受普通溶劑輸注治療,同時所有患者均接受DMARDs治療。MSC輸注后大多數(shù)患者沒有任何副作用,并且接受DMARDs聯(lián)合MSCs的患者組顯示出疾病活動度明顯下降,檢測外周血Treg細(xì)胞數(shù)量增加[25]。體外實驗中,將MSCs與RA患者外周血單個核細(xì)胞混合培養(yǎng)可見到,MSCs可下調(diào)Th17水平[26]。因此,異基因MSCs移植有望成為治療RA的有效新途徑[27]。
3 異基因MSCs治療RA所面臨的問題與挑戰(zhàn)
在前期的動物實驗和臨床研究中,都提示MSCs具有治療自身免疫病的潛力。但作用機(jī)制至今仍未徹底闡明,且在動物試驗和臨床應(yīng)用中仍存在一些問題亟待解決。MSCs易受周圍環(huán)境影響,并且在急性炎性風(fēng)暴中,會改變MSCs的免疫調(diào)節(jié)功能同時會使移植存活率下降。導(dǎo)致異基因MSCs在移植宿主內(nèi)由抗炎作用轉(zhuǎn)變?yōu)橹卵鬃饔?。因此,關(guān)于MSCs在CIA動物模型中的作用仍有很大爭議。有學(xué)者認(rèn)為[28],在佐劑誘導(dǎo)關(guān)節(jié)炎模型的急性進(jìn)展期,MSCs并未起到治療作用,反而加重了關(guān)節(jié)炎評分和關(guān)節(jié)病理損傷評分。
如何提高異基因MSCs移植的治療效果?至少有3種不同的策略在臨床前模型中看起來有希望:①M(fèi)SCs的轉(zhuǎn)基因工程以過表達(dá)與特定疾病模型相關(guān)的蛋白質(zhì),如實驗性自身免疫性腦脊髓炎中的睫狀神經(jīng)營養(yǎng)因子;②在體內(nèi)給藥前體外預(yù)處理MSCs,如缺氧性疾病的缺氧預(yù)處理;③使用組織特異性標(biāo)志物進(jìn)行MSCs靶向標(biāo)記,如CD44表面受體的酶促修飾,使用生物化學(xué)技術(shù)將歸巢分子偶聯(lián)到細(xì)胞表面[29]。但這些方法并不是臨床應(yīng)用,目前只是處于實驗階段。如何與臨床應(yīng)用緊密連接起來,仍需要大量實踐去證實。
異基因MSCs移植作為一種新興的治療手段,由于其本身生物學(xué)特性以及炎性微環(huán)境導(dǎo)致其免疫調(diào)節(jié)功能失調(diào)等方面,使臨床應(yīng)用面臨著巨大的問題與挑戰(zhàn)。因此,如何提高異基因MSCs在宿主體內(nèi)的存活率、保證MSCs長期有效地在宿主體內(nèi)發(fā)揮抗炎作用和免疫調(diào)節(jié)作用,是臨床應(yīng)用實踐中要解決的關(guān)鍵問題,能夠為異基因MSCs治療RA提供更多的理論依據(jù)和支持。
[參考文獻(xiàn)]
[1]? Zeng QY,Chen R,Darmawan J,et al. Rheumatic diseases in China [J]. Arthritis Res Ther,2008,10(1):R17.
[2]? Pistoia V,Raffaghello L. Mesenchymal stromal cells and autoimmunity [J]. Int Immunol,2017,29(2):49-58.
[3]? Urban VS,Kiss J,Kovacs J,et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes [J]. Stem Cells,2008,26(1):244-253.
[4]? da Silva Meirelles L,Chagastelles PC,Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues [J]. J Cell Sci,2006,119(Pt11):2204-2213.
[5]? de Bari C. Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? [J]. Arthritis Res Ther,2015, 17:113.
[6]? Le Blanc K,Rasmusson I,Sundberg B,et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells [J]. Lancet,2004, 363(9419):1439-1441.
[7]? Cras A,F(xiàn)arge D,Carmoi T,et al. Update on mesenchymal stem cell-based therapy in lupus and scleroderma [J]. Arthritis Res Ther,2015,17:301.
[8]? DI Nicola M,Carlo-Stella C,Magni M,et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli [J]. Blood,2002,99(10):3838-3843.
[9]? Krampera M,Glennie S,Dyson J,et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide [J]. Blood,2003,101(9):3722-3729.
[10]? Gao F,Chiu SM,Motan DA,et al. Mesenchymal stem cells and immunomodulation:current status and future pros-pects [J]. Cell Death Dis,2016,7:e2062.
[11]? Caprnda M,Kubatka P,Gazdikova K,et al. Immunomodulatory effects of stem cells:Therapeutic option for neurodegenerative disorders [J]. Biomed Pharmacother,2017, 91:60-69.
[12]? Corcione A,Benvenuto F,F(xiàn)erretti E,et al. Human mesenchymal stem cells modulate B-cell functions [J]. Blood,2006,107(1):367-372.
[13]? Ciccocioppo R,Cangemi GC,Kruzliak P,et al. Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn′s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact [J]. Stem Cell Res Ther,2015,6:137.
[14]? Gimeno ML,F(xiàn)uertes F,Barcala Tabarrozzi AE,et al. Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1 [J]. Stem Cells Transl Med,2017,6(1):161-173.
[15]? Saldanha-Araujo F,Haddad R,F(xiàn)arias KC,et al. Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes:roles of canonical and non-canonical NF-κB signalling [J]. J Cell Mol Med,2012,16(6):1232-1244.
[16]? Augello A,Tasso R,Negrini SM,et al. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis [J]. Arthritis Rheum,2007,56(4):1175-1186.
[17]? Sonomoto K,Yamaoka K,Oshita K,et al. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway [J]. Arthritis Rheum,2012, 64(10):3355-3363.
[18]? Fukuyo S,Yamaoka K,Sonomoto K,et al. IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent [J]. Rheumatology(Oxford,England),2014,53(7):1282-1290.
[19]? Choi JR,Yong KW,Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering [J]. J Cell Physiol,2018,233(3):1913-1928.
[20]? Tanaka Y. Human mesenchymal stem cells as a tool for joint repair in rheumatoid arthritis [J]. Clin Exp Rheumatol,33(4 Suppl 92):S58-S62.
[21]? Yan X,Cen Y,Wang Q. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression [J]. Sci Rep,2016,6:28915.
[22]? Shin TH,Kim HS,Kang TW,et al. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis [J]. Cell Death Dis,2016,7(12):e2524.
[23]? Zhang X,Yamaoka K,Sonomoto K,et al. Local delivery of mesenchymal stem cells with poly-lactic-co-glycolic acid nano-fiber scaffold suppress arthritis in rats [J]. PLoS ONE,2014,9(12):e114621.
[24]? Contreras RA,F(xiàn)igueroa FE,Djouad F,et al. Mesenchymal Stem Cells Regulate the Innate and Adaptive Immune Responses Dampening Arthritis Progression [J]. Stem Cells Int,2016,2016:3162743.
[25]? Wang L,Wang L,Cong X,et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis:safety and efficacy [J]. Stem Cells Dev,2013,22(24):3192-3202.
[26]? Sun Y,Deng W,Geng L,et al. Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells [J]. J Immunol Res,2015,2015:284215.
[27]? Alvaro-Gracia JM,Jover JA,Garcia-Vicuna R,et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611):results of a multicentre,dose escalation,randomised,single-blind,placebo-controlled phase Ib/IIa clinical trial [J]. Ann Rheum Dis,2017,76(1):196-202.
[28]? Cosenza S,Toupet K,Maumus M,et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis [J]. Theranostics,2018,8(5):1399-1410.
[29]? Li T,Xia M,Gao Y,et al. Human umbilical cord mesenchymal stem cells:an overview of their potential in cell-based therapy [J]. Expert Opin Biol Ther,2015,15(9):1293-1306.
(收稿日期:2019-09-17? 本文編輯:王曉曄)