国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

凍融循環(huán)與沸石摻配對黑土物理性質(zhì)的影響

2020-04-09 06:33馬媛媛李鑫媛冀曉東
關(guān)鍵詞:摩擦角凍融循環(huán)沸石

張 曉,馬媛媛,李鑫媛,張 凡,冀曉東

凍融循環(huán)與沸石摻配對黑土物理性質(zhì)的影響

張 曉,馬媛媛,李鑫媛,張 凡,冀曉東※

(北京林業(yè)大學(xué)水土保持學(xué)院,北京 100083)

凍融循環(huán)作用是東北黑土區(qū)發(fā)生土壤侵蝕的原因之一,施加土壤改良劑是減弱土壤侵蝕的有效方法。該研究以未經(jīng)凍融循環(huán)作用和未經(jīng)沸石摻配的黑土作為對照,將天然沸石與黑土按不同比例摻配,探究凍融循環(huán)作用和沸石摻配對黑土物理性質(zhì)的影響,研究表明:1)凍融循環(huán)作用增大黑土容重、粘聚力、微孔占比、次大孔占比,減小土壤總孔隙度和內(nèi)摩擦角,沸石摻配可以降低凍融循環(huán)作用對除內(nèi)摩擦角以外土壤物理性質(zhì)的影響;2)沸石摻配黑土增大黑土容重、粘聚力、內(nèi)摩擦角、微孔占比,減小土壤總孔隙度,凍融循環(huán)作用對沸石摻配黑土的作用會產(chǎn)生負(fù)面影響,但是隨著沸石摻配比例增大,凍融循環(huán)作用的影響減弱。

土壤;物理性質(zhì);凍融循環(huán);土壤改良;沸石

0 引 言

中國東北黑土區(qū)是世界四大片黑土區(qū)之一,既是中國糧倉[1],也是季節(jié)性凍融區(qū)[2-4]。近年來,自然因素的影響及人類長期不合理的生產(chǎn)活動使該地區(qū)土壤侵蝕加劇,水土流失嚴(yán)重[5],東北黑土區(qū)表層土壤流失率高達(dá)3~10 mm/a[6],平均厚度已由20世紀(jì)50年代的60~80 cm下降至目前的20~30 cm[7],部分地區(qū)甚至出現(xiàn)“破皮黃”現(xiàn)象[8]。凍融循環(huán)作用是東北黑土區(qū)土壤侵蝕的重要影響因素之一,土壤凍融作用是指發(fā)生在高寒地區(qū)由于溫度變化,引起土壤中水分發(fā)生相變、體積發(fā)生變化,導(dǎo)致土體膨脹或收縮,造成土壤結(jié)構(gòu)破壞和性狀改變的過程[9]。凍融過程中土壤不一定全部發(fā)生凍融侵蝕,但是會因凍融作用的影響成為其他侵蝕的有效物質(zhì)來源[10-11]。

凍融循環(huán)作用與土壤侵蝕之間的關(guān)系及其對土壤物理性質(zhì)的影響已有大量研究。張科利團(tuán)隊(duì)的研究表明,凍融循環(huán)作用可以提高細(xì)溝黑土土壤的剝離能力、土壤剖面的孔隙率和飽和水力傳到率,降低土壤剖面的平均重量質(zhì)量直徑,減小坡面和小流域的產(chǎn)流,增加坡面和小流域年均土壤流失量[12-14]。陳祥偉團(tuán)隊(duì)的研究表明凍融循環(huán)作用破壞黑土土壤微結(jié)構(gòu),削弱黑土區(qū)黏化層抗蝕性[15-17]。李占斌團(tuán)隊(duì)的研究表明凍融作用增大風(fēng)沙土分離能力,可導(dǎo)致季節(jié)性凍融區(qū)春季解凍期土壤侵蝕量的增加,而黃土區(qū)凍融作用會加劇坡面氮磷的流失風(fēng)險(xiǎn)[18-20]。

在土壤中添加改良材料是一種降低水土流失和減弱土壤侵蝕的有效方法,生物炭、秸稈、糞肥等多種土壤改良材料已廣泛應(yīng)用[21-22]。魏霞等將玉米莖稈汁液施加到西部地區(qū)黃土中,增加土壤有機(jī)質(zhì)含量,提高土壤團(tuán)聚體的平均重量直徑,降低了產(chǎn)流產(chǎn)沙速率[23]。Fu等在東北松嫩平原野外黑土中施加生物炭,其作用與凍融循環(huán)相結(jié)合顯著增加了土壤微孔徑和總孔隙度,從而提高了土壤保水能力[22]。Zhou等將膨潤土-腐殖質(zhì)酸混合物施加到半干旱區(qū)沙質(zhì)土壤中,促進(jìn)大團(tuán)聚體生成,有效改善土壤結(jié)構(gòu)[24]。

天然沸石是一種來源廣、價(jià)格低、無毒無害的環(huán)境友好型材料和土壤改良劑[25]。將天然沸石按照不同比例摻配入黑土中,隨沸石摻配量的增加,土壤容重增大,毛管孔隙度和總孔隙度減小,土壤團(tuán)聚體的團(tuán)聚度提升,結(jié)構(gòu)穩(wěn)定性增強(qiáng),黑土的保水能力和抗侵蝕能力顯著提升[26-27]。Behzadfar等研究了模擬降雨條件下不同沸石添加量和添加時(shí)間對凍融循環(huán)作用影響基本水文要素如產(chǎn)流和土壤流失的作用,結(jié)果表明摻配沸石可延長徑流開始時(shí)間,減少徑流量和土壤流失量[28]。天然沸石也是一種天然礦物肥料,農(nóng)田應(yīng)用可促進(jìn)農(nóng)作物產(chǎn)量的顯著增加[29]。

凍融循環(huán)作用會影響土壤物理性質(zhì),而沸石摻配入土壤中既可以作為土壤肥料增加土壤肥力,也有助于提高土壤的保水和抗侵蝕能力。但目前對于凍融循環(huán)與沸石摻配共同作用對土壤物理性質(zhì)的影響缺乏深入研究。本研究以未經(jīng)凍融循環(huán)作用和未經(jīng)沸石摻配的黑土作為對照,將天然沸石與黑土按照不同比例摻配,探究凍融循環(huán)作用與沸石摻配對黑土容重、總孔隙度、孔隙分布、粘聚力和內(nèi)摩擦角等土壤物理性質(zhì)的影響,明確沸石摻配與凍融循環(huán)作用之間的關(guān)系。研究旨在為后續(xù)土壤凍融循環(huán)作用的研究奠定基礎(chǔ),也為東北黑土區(qū)防治土壤侵蝕和土壤改良提供參考。

1 材料與方法

1.1 研究區(qū)概況

研究區(qū)位于吉林省的中北部的吉林省榆樹市(126°01′44″~127°05′09″E,44°30′57″~45°15′02″N),處于松遼平原的中間地帶,屬典型黑鈣土區(qū)。吉林省的黑土區(qū)面積為110.1萬hm2,海拔約為157~220 m,坡度范圍為1°~5°。氣候類型為溫帶亞濕潤季風(fēng)氣候。春季干旱多風(fēng),夏季濕潤多雨,年均降雨量500~700 mm,降雨主要集中在6-9月。秋季溫和涼爽,冬季漫長寒冷,冬季土壤凍結(jié)深度為1.5~2 m。年平均溫度為4 ℃左右,平均無霜期為145 d。

1.2 土壤與天然沸石樣品的采集

1.2.1 黑 土

試驗(yàn)用土選用吉林省榆樹市耕地典型黑鈣土,質(zhì)地屬于砂壤土。取樣耕地面積約1 hm2,土壤取樣按照“隨機(jī)”“等量”“多點(diǎn)混合”的原則進(jìn)行,“S”形布設(shè)樣點(diǎn)進(jìn)行采樣。在樣地內(nèi)共設(shè)置取樣點(diǎn)100個(gè),每個(gè)樣點(diǎn)取樣深度15 cm。將各個(gè)樣點(diǎn)取樣的土壤進(jìn)行混合裝袋帶回實(shí)驗(yàn)室風(fēng)干,風(fēng)干過程中,將大土塊捏碎,同時(shí)去除土壤以外的雜物,之后過5 mm篩備用。在取樣過程中,采用烘干法測定得耕地土壤質(zhì)量含水量為22.5%。

1.2.2 天然沸石

本研究采用的天然沸石粉取自河北省靈壽縣某沸石廠,產(chǎn)地為河北省保定市一礦山,礦石純度達(dá)75%以上,以斜發(fā)沸石為主。沸石粒度為100目,密度為0.879 g/cm3。

1.3 試驗(yàn)樣品的準(zhǔn)備

1.3.1 土樣篩分

采用定制不銹鋼土壤篩干篩風(fēng)干黑土備用,土壤篩直徑30 cm,篩孔直徑分別為5、2、1、0.5、0.25 mm,各級粒徑團(tuán)聚體所占比例如表1所示。

表1 黑土各級粒徑團(tuán)聚體占比

1.3.2 土樣重塑與沸石摻配

根據(jù)表1黑土各級粒徑團(tuán)聚體質(zhì)量百分比,將土樣摻配重塑。土樣重塑過程中,各組土樣中土壤團(tuán)聚體粒徑比例一致。將沸石與重塑土樣按照質(zhì)量比0、5%、10%、15%和20%的比例分別進(jìn)行摻配攪拌,保證兩者充分混合,用于后續(xù)試驗(yàn)。

1.3.3 花盆土壤培養(yǎng)

為模擬野外土壤狀況,便于后續(xù)環(huán)刀法測定土壤容重,將經(jīng)過沸石摻配后各組土樣(每組土樣2 kg)置于大花盆中培養(yǎng),每隔3 d澆水1次,培養(yǎng)期為60 d,培養(yǎng)后待用。同一比例沸石摻配黑土共制備10個(gè)花盆土樣,用于后期凍融循環(huán)。

1.3.4 土柱制備

根據(jù)SL237-017-1999《土工試驗(yàn)規(guī)程》規(guī)定,制備重塑土圓柱形土樣,試樣制備采用擊實(shí)法,擊實(shí)器為三軸剪切儀器配套附件。按試樣高度分為5層擊實(shí),每層土擊實(shí)后進(jìn)行刮毛,然后添加下一層。將制備好的未經(jīng)凍融的土壤用保鮮膜包裹,膠帶封口,目的是減少含水率變化對土樣產(chǎn)生影響。同一沸石摻配黑土制備10個(gè)土柱,用于后期凍融循環(huán)。

1.4 凍融循環(huán)試驗(yàn)

將制備好的不同比例沸石摻配黑土花盆培養(yǎng)土壤和土柱放入可調(diào)節(jié)溫度型冰柜進(jìn)行模擬凍融循環(huán)作用實(shí)驗(yàn),本研究控制凍融循環(huán)次數(shù)為0、1、3、5和7次,同一沸石摻配比例黑土在同一凍融循環(huán)次數(shù)下進(jìn)行2次重復(fù)。凍結(jié)溫度設(shè)置為?15 ℃,時(shí)間為12 h,模擬一次凍結(jié)。凍結(jié)及融化過程均為封閉環(huán)境,無外部水分補(bǔ)給。然后將試件取出,10 ℃室溫下融化12 h,模擬一次融化過程?;ㄅ枧囵B(yǎng)土壤和土柱初始土壤含水量均為22.5%,與取樣時(shí)的土壤含水量一致。

1.5 土壤物理性質(zhì)的測定

1.5.1 土壤容重與總孔隙度

以經(jīng)過凍融循環(huán)作用的不同比例沸石摻配花盆土壤為研究對象,采用環(huán)刀法測定土壤容重,取2次試驗(yàn)結(jié)果的平均值。土壤總孔隙度采用經(jīng)驗(yàn)公式計(jì)算得到[30]:

=(93.947?32.995)×100%(1)

式中為土壤容重,g/cm3。

1.5.2 土壤孔隙分布

以經(jīng)過凍融循環(huán)作用的不同比例沸石摻配花盆土壤為研究對象,將土壤切成2 mm′2 mm′10 mm左右的小土條,使用真空冷凍干燥法(SCIENTZ-10N型冷凍干燥機(jī))對試驗(yàn)樣品進(jìn)行真空脫水,真空脫水過程中樣品溫度為?30 ℃,冷阱溫度為?61.5 ℃左右,設(shè)置時(shí)間為20 h。真空干燥后稱量土壤樣品,再將樣品放入粉末膨脹劑中進(jìn)行真空密封并再次稱質(zhì)量、記錄。將密封好的樣品依次安裝到壓汞儀(Autopore IV 9500型全自動孔徑分布壓汞儀)的低壓站和高壓站進(jìn)行壓汞試驗(yàn)。記錄每次壓力增加時(shí)的進(jìn)汞量,然后根據(jù)式(2)計(jì)算樣品的孔隙半徑,得到各實(shí)驗(yàn)樣品中孔隙直徑的大小和分布。試驗(yàn)的具體操作步驟嚴(yán)格按照國家標(biāo)準(zhǔn)GB/T 21650.1-2008《壓汞法和氣體吸附法測定固體材料孔徑分布和孔隙度第1部分:壓汞法》。土壤孔隙分布取2次試驗(yàn)結(jié)果的平均值。

壓力、材料進(jìn)汞量和孔隙之間的關(guān)系可以采用圓柱型孔隙模型的公式表示為

式中為施加的壓力,N;為汞表面的張力,N/m;為汞與所測樣品的接觸角度,(°);樣品的孔隙半徑,mm。純汞的范圍是0.410~0.515 N/m,根據(jù)相關(guān)研究[31-32],本試驗(yàn)取=0.485 N/m,=130°。

1.5.3 土壤粘聚力與內(nèi)摩擦角

以經(jīng)過凍融循環(huán)作用的不同比例沸石摻配黑土土柱作為研究對象,采用三軸壓縮試驗(yàn)(ZS08-D3型全自動三軸壓縮儀,北京華勘科技有限責(zé)任公司)進(jìn)行剪切,剪切試驗(yàn)條件為不固結(jié)不排水(UU),試樣類型為多樣剪,剪切速率為0.800%/min,圍壓分別設(shè)置為100、200、300和400 kPa。每組試驗(yàn)重復(fù)2次,結(jié)果取平均值。

土壤的抗剪強(qiáng)度由土壤粘聚力和內(nèi)摩擦角表示,用摩爾—庫倫公式表達(dá)為

τ=+tan(3)

式中τ為土壤抗剪強(qiáng)度,kPa;為土壤粘聚力,kPa;為剪切面法向應(yīng)力,kPa;為土壤內(nèi)摩擦角,(°)。

2 結(jié)果與分析

2.1 凍融循環(huán)作用與沸石摻配對黑土容重的影響

由表2可知,凍融循環(huán)作用使得未經(jīng)沸石摻配黑土的容重增大,且隨凍融循環(huán)次數(shù)增多而不斷增大,第7次凍融循環(huán)作用后,相對于未經(jīng)凍融循環(huán)作用的黑土,土壤容重最大增幅0.135 g/cm3。同一沸石摻配比例,凍融循環(huán)作用同樣增大了沸石摻配黑土的容重。同一凍融循環(huán)次數(shù)下,5%和15%沸石摻配黑土的容重增幅均小于未經(jīng)沸石摻配黑土的容重增幅,其余比例沸石摻配黑土在凍融循環(huán)次數(shù)達(dá)到7次時(shí),土壤容重的增幅也小于未經(jīng)沸石摻配黑土的容重增幅。表明沸石摻配黑土可以降低凍融循環(huán)增大土壤容重的作用。

沸石摻配黑土增大土壤容重,且隨著沸石摻配比例增大,土壤容重不斷增大(表2)。

表2 凍融循環(huán)作用與沸石摻配對黑土土壤容重的影響

當(dāng)沸石摻配黑土經(jīng)過凍融循環(huán)作用后,同一凍融循環(huán)次數(shù)下,不同比例沸石摻配比黑土的容重相對于未經(jīng)沸石摻配黑土的土壤容重,有的增大,如經(jīng)過3次凍融循環(huán)作用后,所有沸石摻配黑土的容重均大于未經(jīng)摻配的土壤,而有的減小,如1次、5次和7次凍融循環(huán)作用后,5%沸石摻配黑土的土壤容重小于未經(jīng)沸石摻配黑土的土壤容重,表明凍融循環(huán)作用會對沸石增大土壤容重產(chǎn)生影響。當(dāng)沸石摻配比例達(dá)到20%后,各凍融循環(huán)次數(shù)下的土壤容重均大于該凍融循環(huán)次數(shù)下未經(jīng)沸石摻配黑土的容重,表明當(dāng)沸石摻配比例達(dá)到一定程度,凍融循環(huán)作用對沸石摻配黑土增大土壤容重的影響變?nèi)跎踔料А?/p>

2.2 凍融循環(huán)作用與沸石摻配對黑土總孔隙度的影響

由表3可知,凍融循環(huán)作用使得未經(jīng)沸石摻配黑土的土壤總孔隙度減小,且隨凍融循環(huán)次數(shù)增多,土壤總孔隙度不斷減小,1次凍融循環(huán)后,相對于未經(jīng)凍融循環(huán)作用的黑土,總孔隙度下降2.475個(gè)百分點(diǎn),而7次凍融循環(huán)后,總孔隙度下降4.455個(gè)百分點(diǎn)。經(jīng)過沸石摻配后,同一摻配比例下,凍融循環(huán)作用同樣減小了沸石摻配黑土的土壤總孔隙度。同一凍融循環(huán)次數(shù)下,5%和15%沸石摻配黑土的土壤總孔隙度減幅均小于未經(jīng)沸石摻配黑土的土壤總孔隙度減幅,其余比例沸石摻配黑土在凍融循環(huán)次數(shù)達(dá)到7次時(shí),土壤總孔隙度的減幅也小于未經(jīng)沸石摻配黑土的土壤總孔隙度減幅。表明沸石摻配黑土可以減弱凍融循環(huán)作用減小土壤總孔隙度的作用。

根據(jù)表3,沸石摻配后黑土總孔隙度減小,且隨著沸石摻配比例的不斷增大,總孔隙度不斷減小。1、5、7次凍融循環(huán)作用后沸石摻配黑土的土壤總孔隙度由大于未經(jīng)沸石摻配黑土的總孔隙度,轉(zhuǎn)變?yōu)榈陀谖唇?jīng)沸石摻配的黑土的總孔隙度,這表明凍融循環(huán)作用會對沸石摻配降低土壤總孔隙度產(chǎn)生影響,但當(dāng)沸石摻配達(dá)到一定比例如20%時(shí),這種影響基本不存在。

表3 凍融循環(huán)作用與沸石摻配對黑土總孔隙度的影響

2.3 凍融循環(huán)作用與沸石摻配對黑土孔隙分布的影響

將土壤孔隙按照直徑分為微孔(<0.2m)、中孔(0.2~30m)、次大孔(30~100m)和大孔(>100m)[33]。由表4可知,無論是否經(jīng)過凍融作用或沸石摻配,中孔是黑土最主要孔隙,占比超過70%,微孔次之,最高占比16.41%。

根據(jù)表4,凍融循環(huán)作用增大未經(jīng)沸石摻配黑土的微孔、次大孔占比,同時(shí)減小中孔、大孔占比和平均孔隙直徑。沸石摻配后,隨著摻配比例增大,凍融循環(huán)作用對微孔、次大孔占比的增大作用減弱,表明凍融循環(huán)作用會影響土壤孔隙的分布,但是沸石摻配會減弱這種影響。沸石摻配增大未經(jīng)凍融循環(huán)黑土的微孔占比,減小中孔占比和平均孔隙直徑,經(jīng)過凍融循環(huán)作用后,5%沸石摻配黑土的微孔減小,總孔隙直徑增大,其余比例沸石摻配黑土的孔隙分布變化情況與摻配黑土未經(jīng)凍融情況相似,表明沸石摻配可以有效改善土壤孔隙分布,凍融循環(huán)作用會對沸石改善土壤孔隙分布產(chǎn)生影響,但是沸石摻配比例增大,這種影響越弱。

表4 凍融循環(huán)作用與沸石摻配對黑土孔隙分布的影響

2.4 凍融循環(huán)作用與沸石摻配對黑土粘聚力的影響

根據(jù)表5,凍融循環(huán)作用使得未經(jīng)沸石摻配黑土的土壤粘聚力增大。隨著凍融循環(huán)次數(shù)的增多,土壤粘聚力逐漸降低并趨于穩(wěn)定。沸石摻配黑土的土壤粘聚力隨著凍融循環(huán)次數(shù)增多,土壤粘聚力由增大向減小轉(zhuǎn)變。5%沸石摻配黑土在多次凍融循環(huán)過程中土壤粘聚力均增大,而10%沸石摻配黑土經(jīng)過7次凍融循環(huán)、15%沸石摻配黑土經(jīng)過3次凍融循環(huán)后以及20%沸石摻配黑土在所有凍融循環(huán)次數(shù)后,其土壤粘聚力均小于該比例下未經(jīng)凍融循環(huán)的沸石摻配黑土的土壤粘聚力,這表明在黑土中摻配沸石使得凍融循環(huán)作用增大土壤粘聚力的作用減弱,或者說凍融循環(huán)次數(shù)的增多與沸石摻配比例的增大的共同作用降低了土壤的粘聚力。

表5 凍融循環(huán)作用與沸石摻配對黑土粘聚力的影響

同樣,沸石摻配使得未經(jīng)凍融循環(huán)黑土的土壤粘聚力增大,且隨著摻配沸石比例的增大,土壤粘聚力不斷增大(表5)。1次凍融循環(huán)后,各比例沸石摻配黑土的土壤粘聚力均大于未經(jīng)沸石摻配黑土的土壤粘聚力,而3次、5次和7次凍融循環(huán)作用后,15%沸石摻配黑土的土壤粘聚力小于未經(jīng)沸石摻配土壤,其余比例沸石摻配黑土的土壤粘聚力均大于未經(jīng)沸石摻配黑土的土壤粘聚力,表明凍融循環(huán)作用會影響沸石摻配增大黑土土壤粘聚力的效果,但是不能完全抵消這種作用。

2.5 凍融循環(huán)作用與沸石摻配對黑土內(nèi)摩擦角的影響

未經(jīng)沸石摻配的黑土在經(jīng)過凍融循環(huán)作用后土壤內(nèi)摩擦角減?。ū?)。當(dāng)黑土經(jīng)過沸石摻配,5%和10%沸石摻配沒有改變凍融循環(huán)作用影響黑土土壤內(nèi)摩擦角的效果,黑土的土壤內(nèi)摩擦角小于該比例下未經(jīng)凍融循環(huán)作用的土壤的內(nèi)摩擦角,而15%沸石摻配黑土在5次凍融循環(huán)作用后以及20%沸石摻配黑土在1次凍融循環(huán)作用后,土壤內(nèi)摩擦角大于該摻配比例下未經(jīng)凍融循環(huán)黑土的內(nèi)摩擦角,而其余凍融循環(huán)次數(shù)下均小于該摻配比例下未經(jīng)凍融循環(huán)黑土的內(nèi)摩擦角。上述結(jié)果表明,凍融循環(huán)作用會降低土壤內(nèi)摩擦角,沸石摻配對凍融循環(huán)降低土壤內(nèi)摩擦角的作用基本不產(chǎn)生影響。

表6 凍融循環(huán)作用與沸石摻配對黑土內(nèi)摩擦角的影響

同樣,沸石摻配增大未經(jīng)凍融循環(huán)黑土的土壤內(nèi)摩擦角,但增加不具有規(guī)律性。5次凍融循環(huán)對沸石摻配增大黑土土壤內(nèi)摩擦角不產(chǎn)生影響,而7次凍融循環(huán)使得沸石摻配增大土壤內(nèi)摩擦角的效果完全消失。表明凍融循環(huán)作用會對沸石摻配增大黑土土壤內(nèi)摩擦角的作用產(chǎn)生影響,當(dāng)凍融循環(huán)次數(shù)足夠多時(shí),凍融循環(huán)作用使得此效果完全消失。

3 討 論

土是由固體顆粒、水、氣體3部分組成的三相體系,固體顆粒構(gòu)成土的骨架,水與空氣填充于土骨架的孔隙中。凍融循環(huán)過程使得土體中的水分隨溫度的正負(fù)波動發(fā)生相變,經(jīng)歷由液態(tài)水向固態(tài)冰或固態(tài)冰向液態(tài)水的轉(zhuǎn)變[34-35]。凍融循環(huán)過程中的水分頻繁相變、冰晶生長和水分遷移對土壤顆粒和孔隙的反作用力,破壞土體原有孔隙比,進(jìn)而改變土壤容重[36-37]。相同含水量條件下,土壤經(jīng)過凍融循環(huán)后初始容重較小的松散土壤會變得緊實(shí),土壤容重增大,而初始容重較大的土壤結(jié)構(gòu)變得疏松,容重減小,中等容重的土壤則變化不明顯[38-40]。本研究中初始土壤容重小于1,土壤松散,經(jīng)過凍融循環(huán)后土壤容重增大,與上述變化規(guī)律一致。

土壤顆粒在凍融循環(huán)過程中發(fā)生破碎,顆粒組成與排列分布發(fā)生改變,相應(yīng)地,孔隙分布也隨之發(fā)生變化[35,41]。鄭勛等針對青藏高原粉質(zhì)黏土的凍融循環(huán)試驗(yàn)表明等效直徑在1~10m以及10m以上的孔隙含量隨凍融循環(huán)次數(shù)的增加而增大,而0.1~1m的孔隙總體呈減少趨勢[35]。陳鑫等以重塑黃土為研究對象的凍融循環(huán)試驗(yàn)表明未經(jīng)凍融作用的黃土孔隙分布曲線呈單峰分布,經(jīng)歷凍融作用的黃土孔隙分布曲線呈雙峰甚至多峰分布,凍融作用對0.1~10m范圍內(nèi)的孔隙影響較大[42]。張澤等針對重塑黃土的凍融循環(huán)試驗(yàn)表明隨凍融循環(huán)次數(shù)增加,0.01~0.1m超微孔隙數(shù)量減少,而5~10m范圍內(nèi)的細(xì)微孔隙增加[43]。姜宇等針對凍融循環(huán)對黑土團(tuán)聚體結(jié)構(gòu)特征的影響研究表明黑土團(tuán)聚體孔徑大小分布以>100m孔徑的非毛管孔隙為主,孔徑小于30m和30~100m的孔隙隨凍融循環(huán)湊數(shù)增加孔隙度有所減少[44]。上述研究說明,凍融循環(huán)作用會對土壤的孔隙分布產(chǎn)生顯著影響,但是不同土壤的變化情況不同,相關(guān)研究對土壤孔隙分布的劃分標(biāo)準(zhǔn)也有所區(qū)別。

凍融循環(huán)作用通過改變土的結(jié)構(gòu)性從而改變土的力學(xué)性質(zhì)。方麗莉等研究了凍融循環(huán)對青藏粉質(zhì)黏土的力學(xué)結(jié)構(gòu)性能,研究發(fā)現(xiàn)凍融循環(huán)作用增大了土壤的粘聚力和內(nèi)摩擦角,且隨凍融循環(huán)次數(shù)的增加而增加[45]。而倪萬魁、葉萬軍等針對黃土的凍融循環(huán)作用研究表明凍融循環(huán)作用降低了土壤的粘聚力[46-47]。Zhang等研究了凍融循環(huán)作用對鹽漬土抗剪強(qiáng)度的影響,結(jié)果表明隨凍融循環(huán)次數(shù)增加,粘聚力增加,但內(nèi)摩擦角減小[48]。上述研究表明不同土壤在凍融循環(huán)作用過程中土壤粘聚力和內(nèi)摩擦角的變化不同,本研究中,凍融循環(huán)作用增大了土壤粘聚力,減小了土壤內(nèi)摩擦角,但隨凍融循環(huán)次數(shù)增多,土壤粘聚力不斷降低,張惠忍等針對青藏高原草甸砂壤土和北京粉壤土的凍融循環(huán)實(shí)驗(yàn)研究表明[49],凍融狀態(tài)下這兩種測試土的內(nèi)摩擦角顯著小于未凍土,而粘聚力整體上則大于未凍土,與本研究結(jié)果基本一致。本研究結(jié)果可能是由于凍融作用對黑土土壤顆粒聯(lián)結(jié)作用既有強(qiáng)化又有破壞,隨著凍融凍融循環(huán)次數(shù)增多,強(qiáng)化作用存在但是發(fā)揮作用減弱,土壤顆粒之間原有膠結(jié)逐漸減弱,土壤粘聚力降低。影響內(nèi)影響內(nèi)摩擦角的主要因素是土顆粒之間的接觸面積和土顆粒形狀[50],土壤內(nèi)摩擦角減小可能是黑土經(jīng)過凍融循環(huán)后土壤顆粒形狀發(fā)生改變所影響。

天然沸石具有較大的比表面積和較強(qiáng)的靜電場,具備良好的吸附性能和膠結(jié)作用,可以作為微小的質(zhì)點(diǎn)吸附在其他團(tuán)聚體的表面,同時(shí)將更多的膠體團(tuán)聚體吸附到沸石的周圍,促進(jìn)團(tuán)聚體的形成,提升團(tuán)聚體的穩(wěn)定性和土壤顆粒之間的膠結(jié)力[51-52],同時(shí),天然沸石可以填充土壤顆粒與顆粒之間的大孔隙,并附著在大粒徑團(tuán)聚體表面,增加土壤內(nèi)部的小孔隙所占比例和總孔隙面積,改變土壤的顆粒間和團(tuán)粒內(nèi)部的孔隙分布,土壤顆粒之間接觸點(diǎn)增多,增加土壤團(tuán)聚體表面的粗糙程度,改變土壤結(jié)構(gòu)性能[53],使得使土壤容重增大,并增大土壤內(nèi)摩擦角和粘聚力,減小土壤總孔隙度。

本研究中,沸石摻配黑土經(jīng)歷凍融循環(huán)作用過程時(shí),沸石與黑土土壤顆粒共同發(fā)揮作用,沸石摻配有效減弱凍融循環(huán)作用對土壤物理性質(zhì)的影響,而凍融循環(huán)作用對沸石摻配改善土壤質(zhì)量的作用會產(chǎn)生影響,但是與沸石摻配比例密切相關(guān)。Angin等將硅藻土作為土壤改良劑摻入土壤中,探究凍融循環(huán)作用對土壤物理性質(zhì)的影響,結(jié)果表明硅藻土的使用有效降低了凍融循環(huán)作用對土壤物理性質(zhì)的影響,隨著改良劑使用比例的增大,其發(fā)揮作用的有效性增加[54],與本研究結(jié)果類似,說明采用沸石摻配黑土以抵抗凍融循環(huán)作用具有有效性和可行性。

本研究屬于室內(nèi)模擬試驗(yàn),最大凍融循環(huán)此時(shí)為7次,且初始土壤含水量均一致,在野外實(shí)際過程中,凍融循環(huán)次數(shù)往往在數(shù)十次到上百次,凍融循環(huán)頻繁,天氣變化等因素對土壤含水量的影響復(fù)雜,土壤含水量在一天之內(nèi)可能會經(jīng)歷多次變化[55-56],本試驗(yàn)?zāi)M結(jié)果與實(shí)際野外凍融循環(huán)影響還具有差距,需要在后期模擬和野外試驗(yàn)過程中,增加凍融循環(huán)次數(shù),合理調(diào)配沸石摻配比例和試驗(yàn)指標(biāo)設(shè)定,使得模擬與野外實(shí)際情況接近。

4 結(jié) 論

1)凍融循環(huán)作用增大黑土容重、粘聚力、微孔占比、次大孔占比,減小土壤總孔隙度和內(nèi)摩擦角,沸石摻配可以降凍融循環(huán)作用對除內(nèi)摩擦角以外土壤物理指標(biāo)的影響;

2)沸石摻配黑土增大土壤容重、粘聚力、內(nèi)摩擦角、微孔占比,減小土壤總孔隙度,凍融循環(huán)作用對沸石摻配黑土的作用會產(chǎn)生負(fù)面影響,但是隨著沸石摻配比例增大,凍融循環(huán)作用的影響減弱。

[1]韓曉增,李娜. 中國東北黑土地研究進(jìn)展與展望[J]. 地理科學(xué),2018,38(7):1032-1041.

Han Xiaozeng, Li Na. Research progress of black soil in northeast China[J]. Scientia Geographica Sinica, 2018, 38(7): 1032-1041. (in Chinese with English abstract)

[2]黃擎,劉博睿,蔡華杰,等. 凍融交替對不同施肥水平的黑土中氮磷元素含量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):188-195.

Huang Qing, Liu Borui, Cai Huajie, et al. Effect of freeze-thawing cycles on nitrogen and phosphor concentrations in black soil under different fertilization modes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 188-195. (in Chinese with English abstract)

[3]Liu Tiejun, Xu Xiangtian, Yang Jie. Experimental study on the effect of freezing-thawing cycles on wind erosion of black soil in Northeast China[J]. Cold Regions Science and Technology, 2017, 136: 1-8.

[4]孫寶洋,李占斌,肖俊波,等. 凍融作用對土壤理化性質(zhì)及風(fēng)水蝕影響研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào),2019,30(1):337-347.

Sun Baoyang, Li Zhanbin, Xiao Junbo, et al. Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 337-347. (in Chinese with English abstract)

[5]Xu X Z, Xu Y, Chen S C, et al. Soil loss and conservation in the black soil region of northeast China: A retrospective study[J]. Environmental Science and Policy, 2010, 13(8): 793-800.

[6]Liu X B, Zhang X Y, Wang Y X, et al. Soil degradation: A problem threatening the sustainable development of agriculture in northeast China[J]. Plant Soil and Environment, 2010, 56(2): 87-97.

[7]王磊,何超,鄭粉莉,等. 黑土區(qū)坡耕地橫坡壟作措施防治土壤侵蝕的土槽試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):141-148.

Wang Lei, He Chao, Zheng Fenli, et al. Soil-bin experiment on effects of contour ridge tillage for controlling hill slope soil erosion in black soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 141-148. (in Chinese with English abstract)

[8]閆業(yè)超,張樹文,岳書平. 近40a黑土典型區(qū)坡溝侵蝕動態(tài)變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):109-115.

Yan Yechao, Zhang Shuwen, Yue Shuping. Dynamic change of hill slope and gully erosion in typical area of black soil region during the past 40 years[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 109-115. (in Chinese with English abstract)

[9]張科利,劉宏遠(yuǎn). 東北黑土區(qū)凍融侵蝕研究進(jìn)展與展望[J]. 中國水土保持科學(xué),2018,16(1):17-24.

Zhang Keli, Liu Hongyuan. Research progresses and prospects on freeze-thaw erosion in the black soil region of northeast China[J]. Science of Soil and Water Conservation, 2018, 16(1): 17-24. (in Chinese with English abstract)

[10]張瑞芳,王瑄,范昊明,等. 我國凍融區(qū)劃分與分區(qū)侵蝕特征研究[J]. 中國水土保持科學(xué),2009,7(2):24-28.

Zhang Ruifang, Wang Xuan, Fan Haoming, et al. Study on the regionalization of freeze-thaw zones in China and the erosion characteristics[J]. Science of Soil and Water Conservation, 2009, 7(2): 24-28. (in Chinese with English abstract)

[11]魏霞,李勛貴,Huang Chihua. 交替凍融對坡面產(chǎn)流產(chǎn)沙的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):157-163.

Wei Xia, Li Xungui, Huang Chihua. Impacts of freeze-thaw cycles on runoff and sediment yield of slope land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 157-163. (in Chinese with English abstract)

[12]Liu Hongyuan, Yang Yang, Zhang Keli, et al. Soil erosion as affected by freeze-thaw regime and initial soil moisture content[J]. Soil Science Society of America Journal, 2017, 81(3): 459.

[13]劉笑妍,張卓棟,張科利,等. 不同尺度下凍融作用對東北黑土區(qū)產(chǎn)流產(chǎn)沙的影響[J]. 水土保持學(xué)報(bào),2017,31(5):45-50.

Liu Xiaoyan, Zhang Zhuodong, Zhang Keli, et al. Effect of freezing and thawing on runoff and sediment yield in the black soil region of northeast China at different scales[J]. Journal of Soil and Water Conservation, 2017, 31(5): 45-50. (in Chinese with English abstract)

[14]Ma Qianhong, Zhang Keli, Jabro J D, et al. Freeze-thaw cycles effects on soil physical properties under different degraded conditions in Northeast China[J]. Environmental Earth Sciences, 2019, 78(10): 321.

[15]王恩姮,盧倩倩,陳祥偉. 模擬凍融循環(huán)對黑土剖面大孔隙特征的影響[J]. 土壤學(xué)報(bào),2014,51(3):490-496.

Wang Enheng, Lu Qianqian, Chen Xiangwei. Characterization of macro-pores in mollisol profile subjected to simulated freezing-thawing alterantion[J]. Acta Pedologica Sinica, 2014, 51(3): 490-496. (in Chinese with English abstract)

[16]王恩姮,趙雨森,夏祥友,等. 凍融交替后不同尺度黑土結(jié)構(gòu)變化特征[J]. 生態(tài)學(xué)報(bào),2014,34(21):6287-6296.

Wang Enheng, Zhao Yusen, Xia Xiangyou, et al. Effects of freeze-thaw cycles on black soil structure at different size scales[J]. Acta Ecologica Sinica, 2014, 34(21): 6287-6296. (in Chinese with English abstract)

[17]夏祥友,王恩姮,楊小燕,等. 模擬凍融循環(huán)對黑土黏化層孔隙結(jié)構(gòu)的影響[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2015,37(6):70-76.

Xia Xiangyou, Wang Enheng, Yang Xiaoyan, et al. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journbal of Beijing Forestry University, 2015, 37(6): 70-76. (in Chinese with English abstract)

[18]肖俊波,孫寶洋,李占斌,等. 凍融循環(huán)對風(fēng)沙土物理性質(zhì)及抗沖性的影響試驗(yàn)[J]. 水土保持學(xué)報(bào),2017,31(2):67-71.

Xiao Junbo, Sun Baoyang, Li Zhanbin, et al. Effects of freeze-thaw cycles on aeolian sand soil physical properties and soil anti-scouribility[J]. Journal of Soil and Water Conservation, 2017, 31(2): 67-71. (in Chinese with English abstract)

[19]成玉婷,李鵬,徐國策,等. 凍融條件下土壤可蝕性對坡面氮磷流失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):141-149.

Cheng Yuting, Li Peng, Xu Guoce, et al. Effect of soil erodibility on nitrogen and phosphorus loss undercondition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract)

[20]肖俊波,孫寶洋,馬建業(yè),等. 季節(jié)性凍融對東柳溝流域風(fēng)沙土分離能力的影響[J]. 中國水土保持科學(xué),2017,15(6):1-8.

Xiao Junbo, Sun Baoyang, Ma Jianye, et al. Effect of seasonal freeze-thaw on the detachment capacity of Aeolian sandy soil in Dongliugou watershed[J]. Science of Soil and Water Conservation, 2017, 15(6): 1-8. (in Chinese with English abstract)

[21]楊永輝,武繼承,毛永萍,等. 利用計(jì)算機(jī)斷層掃描技術(shù)研究土壤改良措施下土壤孔隙[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):99-108.

Yang Yonghui, Wu Jicheng, Mao Yongping, et al. Using computed tomography scanning to study soil pores under different soil structure improvement measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 99-108. (in Chinese with English abstract)

[22]Fu Qiang, Zhao Hang, Li Tianxiao, et al. Effects of biochar addition on soil hydraulic properties before and after freezing-thawing[J]. Catena, 2019, 176: 112-124.

[23]魏霞,蘇輝東,李勛貴,等. 玉米莖稈汁液對土壤的減水減沙效益及其機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):142-147.

Wei Xia, Su Huidong, Li Xungui, et al. Runoff and sediment reduction benefits of soil and water conservation and its mechanism of corn stalk juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 142-147. (in Chinese with English abstract)

[24]Zhou Lei, Monreal C M, Xu Shengtao, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region[J]. Geoderma, 2019, 338: 269-280.

[25]張莉,趙保衛(wèi),李瑞瑞. 沸石改良土壤的研究進(jìn)展[J]. 環(huán)境科學(xué)與管理,2012,37(1):39-43.

Zhang Li, Zhao Baowei, Li Ruirui. Research progress of soil amelioration with zeolite[J]. Environmental Science and Management, 2012, 37(1): 39-43. (in Chinese with English abstract)

[26]馬媛媛,戴顯慶,彭紹好,等. 天然沸石對松嫩平原黑鈣土理化性質(zhì)和保水能力的影響[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2018,40(2):51-57.

Ma Yuanyuan, Dai Xianqing, Peng Shaohao, et al. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. (in Chinese with English abstract)

[27]戴顯慶,冀曉東,楊茂林,等. 天然沸石對黑土團(tuán)聚體含量及穩(wěn)定性的影響[J]. 中國水土保持,2016(5):38-41,77.

Dai Xianqing, Ji Xiaodong, Yang Maolin, et al. Influence of natural zeolite to aggregate content and stability of black soil[J]. Soil and Water Conservation in China, 2016(5): 38-41, 77. (in Chinese with English abstract)

[28]Behzadfar M, Sadeghi S H, Khanjani M J, et al. Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle[J]. International Soil and Water Conservation Research, 2017, 5(2): 95-101.

[29]Eprikashvili L, Zautashvili M, Kordzakhia T, et al. Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils[J]. Annals of Agrarian Science, 2016, 14(2): 67-71.

[30]中國科學(xué)院南京土壤研究所土壤物理研究室. 土壤物理性質(zhì)測定法[M]. 北京:科學(xué)出版社,1978.

[31]Delage P, Lefebvre G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35.

[32]閆小慶,房營光,張平. 膨潤土對土體微觀孔隙結(jié)構(gòu)特征影響的試驗(yàn)研究[J]. 巖土工程學(xué)報(bào),2011,33(8):1303-1305.

Yan Xiaoqing, Fang Yingguang, Zhang Ping. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Geotechnical Engineering, 2011, 33(8): 1303-1305. (in Chinese with English abstract)

[33]陳學(xué)文,張曉平,梁愛珍,等. 耕作方式對黑土耕層孔隙分布和水分特征的影響[J]. 干旱區(qū)資源與環(huán)境,2012,26(6):114-120.

Chen Xuewen, Zhang Xiaoping, Liang Aizhen, et al. Tillage effects on soil pore size distribution and soil moisture in Northeast China[J]. Journal of Arid Land Resources and Environment, 2012, 26(6): 114-120. (in Chinese with English abstract)

[34]鄭鄖,馬巍,邴慧. 凍融循環(huán)對土結(jié)構(gòu)性影響的機(jī)理與定量研究方法[J]. 冰川凍土,2015,37(1):132-137.

Zheng Yun, Ma Wei, Bing Hui. Impact of freezing and thawing cycles on the structures of soil and a quantitative approach[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 132-137. (in Chinese with English abstract)

[35]鄭鄖,馬巍,邴慧. 凍融循環(huán)對土結(jié)構(gòu)性影響的試驗(yàn)研究及影響機(jī)制分析[J]. 巖土力學(xué),2015,36(5):1282-1287,1294.

Zheng Yun, Ma Wei, Bing Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese with English abstract)

[36]Konrad J M. Physical processes during freeze-thaw cycles in clayey silts[J]. Cold Regions Science and Technology, 1989, 16(3): 291-303.

[37]Dagesse D F. Freezing-induced bulk soil volume changes[J]. Canadian Journal of Soil Science, 2010, 90(3): 389-401.

[38]楊成松,何平,程國棟,等. 凍融作用對土體干容重和含水量影響的試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2003,(S2):2695-2699.

Yang Chengsong, He Ping, Cheng Guodong, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, (S2): 2695-2699. (in Chinese with English abstract)

[39]Sahin U, Angin I, Kiziloglu F M. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash[J]. Soil & Tillage Research, 2008, 99(2): 254-260.

[40]溫美麗,劉寶元,魏欣,等. 凍融作用對東北黑土容重的影響[J]. 土壤通報(bào),2009,40(3):492-495.

Wen Meili, Liu Baoyuan, Wei Xin, et al. Impact of freezing and thawing on bulk density of black soil[J]. Chinese Journal of Soil Science, 2009, 40(3): 492-495. (in Chinese with English abstract)

[41]Zhang Ze, Ma Wei, Feng Wenjie, et al. Reconstruction of soil particle composition during freeze-thaw cycling: A Review[J]. Pedosphere, 2016, 26(2): 167-179.

[42]陳鑫,張澤,李東慶. 基于不同分形模型的凍融黃土孔隙特征研究[J]. 冰川凍土,2019,41(2):1-11.

Chen Xin, Zhang Ze, Li Dongqing. Study on the pore features of freezing-thawing loess based on different fractal models[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 1-11. (in Chinese with English abstract)

[43]張澤,周泓,秦琦,等. 凍融循環(huán)作用下黃土的孔隙特征試驗(yàn)[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2017,47(3):839-847.

Zhang Ze, Zhou Hong, Qin Qi, et al. Experimental study on porosity characteristics of loess under freezing-thawing cycles[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3): 839-847. (in Chinese with English abstract)

[44]姜宇,范昊明,侯云晴,等. 基于同步輻射顯微CT研究凍融循環(huán)對黑土團(tuán)聚體結(jié)構(gòu)特征的影響[J]. 生態(tài)學(xué)報(bào),2019,39(11):4080-4087.

Jiang Yu, Fan Haoming, Hou Yunqing, et al. Characterization of aggregate microstructure of black soil with different number of freeze-thaw cycles by synchrotron-based micro-computed tomography[J]. Acta Ecologica Sinica, 2019, 39(11): 4080-4087. (in Chinese with English abstract)

[45]方麗莉,齊吉琳,馬巍. 凍融作用對土結(jié)構(gòu)性的影響及其導(dǎo)致的強(qiáng)度變化[J]. 冰川凍土,2012,34(2):435-440.

Fang Lili, Qi Jilin, Ma Wei. Freeze-thaw induced changes in soil structure and its relationship with variations in strength[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435-440. (in Chinese with English abstract)

[46]倪萬魁,師華強(qiáng). 凍融循環(huán)作用對黃土微結(jié)構(gòu)和強(qiáng)度的影響[J]. 冰川凍土,2014,36(4):922-927.

Ni Wankui, Shi Huaqiang. Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922-927. (in Chinese with English abstract)

[47]葉萬軍,劉寬,楊更社,等. 凍融循環(huán)作用下黃土抗剪強(qiáng)度劣化試驗(yàn)研究[J]. 科學(xué)技術(shù)與工程,2018,18(3):313-318.

Ye Wanjun, Liu Kuan, Yang Gengshe, et al. Experimental study on shear strength deterioration of loess under freeze-thaw cycling[J]. Science Technology and Engineering, 2018, 18(3): 313-318. (in Chinese with English abstract)

[48]Zhang Yu, Yang Zhaohui, Liu Jiankun, et al. Impact of cooling on shear strength of high salinity soils[J]. Cold Regions Science and Technology, 2017, 141: 122-130.

[49]張惠忍,李法虎,呂威. 凍融狀態(tài)和初始含水率對土壤力學(xué)性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):128-133.

Zhang Huiren, Li Fahu, LǚWei. Effects of freeze-thaw status and initial water content on soil mechanical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 128-133. (in Chinese with English abstract)

[50]董曉宏,張愛軍,連江波,等. 長期凍融循環(huán)引起黃土強(qiáng)度劣化的試驗(yàn)研究[J]. 工程地質(zhì)學(xué)報(bào),2010,18(6):887-893.

Dong Xiaohong, Zhang Aijun, Lian Jiangbo, et al. Laboratory study on shear strength deterioration of loess with long-term freezing-thawing cycles[J]. Journal of Engineering Geology, 2010, 18(6): 887-893. (in Chinese with English abstract)

[51]霍習(xí)良,周恩湘,姜淳,等. 沸石改良土壤結(jié)構(gòu)性狀的研究[J] . 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),1991(2):20-24.

Huo Xiliang, Zhou Enxiang, Jiang Chun, et al. A research of zeolite improving the structural property of soils[J]. Journal of Hebei Agricultural University, 1991(2): 20-24. (in Chinese with English abstract)

[52]閆豐. 環(huán)境礦物材料改良土壤的研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2015,43(21):95-96,126.

Yan Feng. Research progress of soil amelioration with environmental mineral materials[J]. Journal of Anhui Agriculture Science, 2015, 43(21): 95-96, 126. (in Chinese with English abstract)

[53]余振寶. 沸石加工與應(yīng)用(第二版)[M]. 北京:化學(xué)工業(yè)出版社,2013.

[54]Angin I, Sari S, Aksakal E L. Effects of diatomite(DE) application on physical properties of soils subjected to freeze-thaw cycles[J]. Soil & Tillage Research, 2016, 160: 34-41.

[55]劉鐵軍. 黑土地凍融作用與土壤風(fēng)蝕研究[M]. 北京:中國水利水電出版社,2013.

[56]牛崇桓. 水土保持情況普查報(bào)告[M]. 北京:中國水利水電出版社,2017.

Effects of freeze-thaw cycles and zeolite blending on black soil physical properties

Zhang Xiao, Ma Yuanyuan, Li Xinyuan, Zhang Fan, Ji Xiaodong※

(,100083,)

The freeze-thaw cycle is one of the causes of soil erosion in the black soil region of Northeast China. The application of soil conditioner is an effective way to reduce soil erosion. Natural zeolite is an environmentally friendly material and soil conditioner with a wide range of sources, low prices, non-toxic or harm. In this study, the black soil of the Songliao Plain of Northeast China was taken as the research object. Random sampling was carried out at multiple sites in the experimental farmland. Soil moisture content was determined by drying method. The samples of black soil were dried after debris removal. According to the percentage of aggregates of different grain sizes, the soil was reconstructed after sieving. The natural zeolite and the black soil were thoroughly stirred and mixed according to the mass ratio of 0, 5%, 10%, 15%, 20%, then the mixed soil samples were used for pot experiment and soil column. The potted soil and soil column were placed in a temperature-adjustable freezer to simulate the freeze-thaw cycle. The initial soil water content of potted soil and soil column was 22.5%, which was consistent with the soil water content of cultivated land when soil was sampled. In this study, freeze-thaw cycles were controlled for 0, 1, 3, 5 and 7 times, and the same proportion of zeolite mixed with black soil was repeated twice under the same freeze-thaw cycles. The effects of freeze-thaw cycles and zeolite blending on black soil physical indices were studied by comparing the black soil without freeze-thaw cycles or without zeolite blending. Soil physical indexes include soil bulk density, soil total porosity, soil pore distribution, and soil cohesion force and soil internal friction angle. Soil bulk density was measured by ring knife method, soil total porosity was calculated by empirical formula, and soil pore distribution was measured by vacuum freeze-drying and mercury intrusion meter method. Soil cohesion force and soil internal friction angle were determined by triaxial shear test. All indicators were averaged by two repetitions. The research shows that: 1) For the black soil without zeolite addition, freeze-thaw cycles increase soil bulk density, soil cohesion force, micropore and sub-macropore, decrease soil total porosity, soil internal friction angle, mesopore, macropore and average pore diameter. Zeolite blending can reduce the effect of freeze-thaw cycles on soil physical indexes except soil internal friction angle. The larger proportion of zeolite, the more obvious effect of reducing the effect of freeze-thaw cycles. 2) For the black soil that has not experienced freeze-thaw cycles, soil bulk density, soil cohesion force, soil internal friction angle, soil micropores increase, soil total porosity, mesopores and average the pore diameter decreases after zeolite blending. The effect of freeze-thaw cycles on the effect of zeolite-modified black soil will have a negative impact. However, as the zeolite blending ratio increases, the effect of freeze-thaw cycles weakens. This study can lay a foundation for the follow-up study of soil freeze-thaw cycle, and also provide a reference for soil improvement in the black soil region of Northeast China.

soils; physical properties; freeze-thaw cycle; soil improvement; zeolite

張 曉,馬媛媛,李鑫媛,張 凡,冀曉東. 凍融循環(huán)與沸石摻配對黑土物理性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):144-151.doi:10.11975/j.issn.1002-6819.2020.03.018 http://www.tcsae.org

Zhang Xiao, Ma Yuanyuan, Li Xinyuan, Zhang Fan, Ji Xiaodong. Effects of freeze-thaw cycles and zeolite blending on black soil physical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 144-151. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.018 http://www.tcsae.org

2019-08-09

2019-09-09

國家水體污染控制與治理科技重大專項(xiàng)子課題二“山地灌草叢荒溪生態(tài)重建與坡面蓄流技術(shù)”(2017ZX07101002-002);北京林業(yè)大學(xué)青年教師科學(xué)研究中長期項(xiàng)目“土壤侵蝕過程與機(jī)理”(2015ZCQ-SB-01);北京林業(yè)大學(xué)科技創(chuàng)新計(jì)劃-交叉創(chuàng)新科學(xué)研究試點(diǎn)專項(xiàng)“水土流失面源污染及其防控機(jī)理”(2016JX04)

張 曉,博士研究生。主要研究方向:生態(tài)恢復(fù)與土壤修復(fù)。Email:zhangxiao3e@bjfu.edu.cn

冀曉東,博士,教授。主要研究方向:生態(tài)恢復(fù)與土壤修復(fù)。Email:jixiaodong@bjfu.edu.cn

10.11975/j.issn.1002-6819.2020.03.018

S156

A

1002-6819(2020)-03-0144-08

猜你喜歡
摩擦角凍融循環(huán)沸石
凍融循環(huán)下引江濟(jì)淮河道水泥改性膨脹土性能試驗(yàn)研究
干濕循環(huán)和凍融循環(huán)作用下硫酸鈉腐蝕對混凝土應(yīng)力應(yīng)變曲線的影響
5種沸石分子篩的吸附脫碳對比實(shí)驗(yàn)
蒸餾定銨法測定沸石粉吸氨量
上天梯沸石對重金屬離子的吸附性能及其對污染土壤的修復(fù)
AX沸石制備及其對衣料的洗滌性能
凍融循環(huán)作用對砂巖強(qiáng)度特性影響的試驗(yàn)研究
共點(diǎn)力平衡問題中學(xué)生科學(xué)思維能力的培養(yǎng)
嘗試用特殊求極值的方法進(jìn)行自編物理題
巧用摩擦角解決高考力學(xué)中的極值與臨界問題