鞏有奎,任麗芳,羅佩云,彭永臻
NaCl濃度對SBBR同步脫氮及N2O釋放的影響
鞏有奎1,2,任麗芳1,羅佩云1,彭永臻2
(1. 煙臺職業(yè)學院建筑工程系,煙臺 264670; 2. 北京工業(yè)大學城鎮(zhèn)污水深度處理與資源化利用技術國家工程實驗室,北京 100124)
鹽度是影響生物脫氮過程的重要因素。鹽度增加會導致生物硝化和反硝化過程中N2O的產(chǎn)生并釋放。該文以添加NaCl的生活污水為研究對象,采用固定填料序批式生物膜反應器(sequencing batch biofilm reactor,SBBR),考察了不同NaCl濃度(0、5、10、15和20 g/L)對SBBR脫氮性能及N2O釋放的影響。結果表明,試驗NaCl濃度范圍內,SBBR出水COD穩(wěn)定在40~60 mg/L。硝化過程NO2-/NO3-隨NaCl濃度增加而增加。NaCl濃度≤10 g/L時,NH4+-N去除率大于95%,N2O產(chǎn)率由4.08%(NaCl濃度為0)增至6.72%(NaCl濃度為10 g/L)。NaCl濃度為20 g/L時,馴化后SBBR內平均NH4+-N去除率為70%,平均N2O產(chǎn)率為13.60%。無添加NaCl時,N2O主要產(chǎn)生于硝化階段的AOB好氧反硝化過程,SBBR內缺氧區(qū)有助于減少N2O釋放;高NaCl濃度條件下,N2O主要產(chǎn)生于AOB好氧反硝化過程和內源同步反硝化過程,高鹽度加劇內源反硝化階段NO2-和N2O之間電子競爭,抑制N2O還原,其活性抑制性能與電子受體和初始C/N有關。與硝態(tài)氮還原速率和亞硝態(tài)氮還原速率相比,氧化亞氮還原速率受NaCl抑制最為明顯,是導致高鹽度條件下N2O釋放量增加的重要因素。
污水;氮;鹽分;氧化亞氮;好氧反硝化;內源反硝化
采用分散處理的方式,對分散性、處理量小且變化系數(shù)大的農(nóng)村生活污水進行營養(yǎng)素的去除,是解決中國農(nóng)村生活污水環(huán)境污染的重要途徑[1-2]。農(nóng)村生活污水中含有大量有機質、氮磷營養(yǎng)物質、懸浮物及病菌等成分,經(jīng)生物處理后,其COD濃度能夠滿足排放要求,而氮的去除則相對復雜,涉及多個生物降解過程,且不同過程對環(huán)境要求不盡相同[3]。此外,鄉(xiāng)、鎮(zhèn)生產(chǎn)企業(yè)的快速發(fā)展也可能導致部分無機鹽廢水混入污水處理廠,從而對生物處理過程產(chǎn)生抑制[4-5]。
目前,應用較為廣泛的脫氮方法主要包括缺氧/好氧、氧化溝、序批式生物反應器等,其工藝較為成熟,但也存在固有缺陷[1]。與傳統(tǒng)處理工藝相比,序批式生物膜反應器(sequencing batch biofilm reactor,SBBR)內部同時存在好氧和缺氧區(qū),其表面生長的異養(yǎng)菌可為其內部硝化菌提供屏障,削弱鹽度沖擊負荷對硝化菌的抑制作用,在含鹽污水處理過程中具有明顯優(yōu)勢[6],可用于低碳氮比含鹽農(nóng)村生活污水脫氮處理過程。
氧化亞氮(N2O)被認為是21世紀臭氧層最嚴重的威脅之一。其全球增溫效應約為CO2的200~300倍[7]。人為活動導致N2O排放約占全球N2O總排放量的40%[8],其中,污水生物脫氮過程是重要的N2O人為排放源之一。Kampschreur等總結后得出:城鎮(zhèn)污水處理廠脫氮處理過程中,約有0~14.6%的氮轉化為N2O釋放[9]。2005-2020年,全世界污水廠排放的N2O將增加13%[10]。生物脫氮過程是包含硝化/反硝化在內的生化反應。硝化過程中,氨氧化菌(ammonia-oxidizing bacteria,AOB)的好氧反硝化過程和NH4+/NH2OH氧化過程均會產(chǎn)生N2O;反硝化過程中,環(huán)境條件變化(C/N、DO、pH值、生物膜厚度),也會導致其中間產(chǎn)物N2O的積累[11-13]。SBBR內,由膜外到膜內,可分為好氧區(qū)、低氧/缺氧過渡區(qū)和缺氧區(qū)3部分,同步脫氮過程中,好氧和低氧區(qū)產(chǎn)生的N2O擴散至內部缺氧區(qū),完成其還原過程,可降低脫氮過程N2O釋放量[13]。
目前,大量研究集中在考察NaCl濃度對活性污泥系統(tǒng)脫氮過程的影響,而對不同NaCl添加SBBR系統(tǒng)脫氮及N2O釋放特性研究尚不多見。本文利用SBBR反應器,以添加NaCl生活污水為研究對象,考察不同初始NaCl添加濃度(0、5、10、15和20 g/L)下,SBBR系統(tǒng)生物脫氮過程及N2O釋放特性,分析含鹽生活污水處理過程中不同微生物活性變化特點,以期為SBBR系統(tǒng)處理含鹽污水并降低N2O釋放提供參考。
試驗用SBBR工作容積12.0 L,以瑞琪生物填料(RCP-5325S,北京神州瑞琪)作為碳纖維膜的支撐,碳纖維膜平均比表面積1 150 m2/g,懸掛碳纖維膜后,SBBR反應器內填料填充率為35%。反應器底部均勻分布3個曝氣頭,以溫控磁力攪拌器進行攪拌。試驗裝置以密閉方式運行,反應器頂部設有帶水封的U型管平衡系統(tǒng)內外壓力,以氣體流量計控制曝氣量為30 L/h(圖1)[14]。反應器每天運行2個周期,體積充水比為2:3。SBBR反應器采用進水(10 min)-缺氧(N2曝氣50 min)-好氧(空氣曝氣380 min)-排水(10 min)-閑置(270 min)共計5個進程,以PLC裝置在線控制SBBR運行。試驗共分為5個階段,以反應器連續(xù)穩(wěn)定運行2 d(即4個周期)作為改變反應器內初始NaCl濃度的依據(jù)。整個試驗過程中,通過調節(jié)進水時反應器內粗鹽添加量,控制各階段反應初始SBBR內NaCl濃度分別為0、5、10、15和20 g/L。
圖1 序批式生物膜反應器示意圖
試驗用接種污泥取自實驗室內具有良好脫氮性能的活性污泥。掛膜結束后,SBBR系統(tǒng)NH4+-N去除率大于95%,硝化階段亞硝態(tài)氮積累率(nitrite accumulation rate,NAR)NO2--N/NOx--N小于20%。試驗原水取自北方某社區(qū)化糞池出水,屬于典型低C/N實際生活污水,其COD濃度為165~225 mg/L,NH4+-N濃度為45.1~67.5 mg/L,NOx--N濃度小于1 mg/L,pH值為7.25~8.15。各反應階段分別添加不同質量粗鹽NaCl,調節(jié)進水使NaCl濃度至各設定值。
不同運行階段末期,于SBBR內部隨機取3處不同位置部分碳纖維填料(占總填料的2%~5%),經(jīng)無菌水沖洗后,置于0.5 L生理鹽水內,利用振篩震蕩30 min,脫落污泥分別置于3個有效容積為0.75 L的錐形瓶內,揮發(fā)性懸浮固體(MLVSS)濃度控制為1 200± 200 mg/L,分別測定污泥氨氮氧化速率(ammoniam oxidation rate,AOR)、亞硝態(tài)氮氧化速率(nitrite oxidation rate,NIOR)、硝態(tài)氮還原速率(nitrate denitrification rate,DNAR)亞硝態(tài)氮還原速率(nitrite denitrification rate,DNIR)和氧化亞氮還原速率(nitrous oxide denitrification rate,DN2OR),試驗方案如表1所示。
表1 微生物活性測試試驗方案
注:AOR為氨氮氧化速率,mg?L-1;NIOR為亞硝態(tài)氮氧化速率,mg?L-1;DNAR為硝態(tài)氮還原速率,mg?L-1;DNIR為亞硝態(tài)氮還原速率,mg?L-1;DN2OR為氧化亞氮還原速率,mg?L-1;E-DNAR為硝態(tài)氮內源反硝化速率,mg?L-1;E-DNIR為亞硝態(tài)氮內源反硝化速率,mg?L-1;E-DN2OR為氧化亞氮內源反硝化速率,mg?L-1。NH4Cl、NaNO2、NaNO3、N2O濃度以氮計,CH3COONa濃度以化學需氧量(COD)計。
Note: AOR is ammoniam oxidation rate, mg?L-1; NIOR is nirite oxidation rate, mg?L-1; DNAR is nitrate denitrification rate, mg?L-1; DNIR is nitrite denitrification rate, mg?L-1; DN2OR is nitrous oxide denitrification rate, mg?L-1; E-DNAR is NO3--N endogenous denitrification rate, mg?L-1; E-DN2OR is N2O-N endogenous denitrification rate, mg?L-1. NH4Cl, NaNO2, NaNO3and N2O concentrations are calculated as nitrogen, CH3COONaconcentration is calculated as COD.
以活性系數(shù)(active coefficient,AC)表示不同NaCl濃度下微生物活性變化情況。AC=/0×100%,其中為不同NaCl濃度下含氮污染物氧化(還原)速率,mg/(g?h),0為NaCl濃度為0時反應速率,mg/(g?h)。
1)水質測試方法:以德國WTW公司Multi340i型便攜式DO和pH值測定儀測定反應器中DO和pH值。COD、NO3--N、NO2--N和MLVSS均采用標準方法分析[15]。
2)N2O測試方法:所有試驗階段內,隔天對SBBR系統(tǒng)取樣測試。取樣期間,氣體均經(jīng)干燥器后進入頂部設置的氣體采樣袋,每間隔0.5 h更換一次采樣袋,直至反應結束。整個過程中,利用濕式流量計測定每個采樣袋內收集氣體體積,采用Agilent 公司6890N型氣相色譜儀測定氣相N2O,其中,所用色譜柱為HP-Plot分子篩柱(長度×外徑=30 m×0.53 mm,膜厚25m)。色譜測定條件:進樣口溫度110 ℃;爐溫180 ℃;ECD檢測器300 ℃。SBBR系統(tǒng)運行過程中,頂部空氣法確定溶解態(tài)N2O濃度[11]。微生物活性測試批次試驗中,N2O還原過程以UNISENSE Picoammeter PA2000測試,檢測下限為0.01mol/L[16]。
3)內源物測試方法:聚--羥基丁酸(poly-- hydroxybutyrate,PHB)和聚--羥基戊酸(poly-- hydroxyvalerate,PHV)采用內標法進行氣相色譜分析[17],兩者之和為聚--羥基脂肪酸脂(poly--hydroxyalkanoates,PHA);糖原(glycogen,Gly)以蒽酮法測定[18]。
SBBR掛膜完成后,進水中添加NaCl模擬含鹽生活污水處理過程,各階段反應初始SBBR內NaCl濃度分別為0、5、10、15和20 g/L。鹽度增加對SBBR內COD去除率無明顯影響,整個試驗階段,反應器出水COD為40~60 mg/L。圖2所示為系統(tǒng)運行期間無機氮去除、內碳源(PHA和Gly)變化及N2O釋放特性。SBBR生物膜表面附著生物量遠大于活性污泥絮體,緩解了NaCl濃度增加對亞硝化過程的抑制。初始NaCl濃度增加導致AOB活性下降,經(jīng)NaCl梯度馴化,AOB可通過調節(jié)自身滲透壓來適應環(huán)境條件變化[19]。NaCl濃度在10 g/L以下,穩(wěn)定運行階段NH4+去除率可達95%以上。在NaCl濃度為15和20 g/L沖擊負荷下,AOB活性受到較強抑制,NH4+去除率分別降至63.1%±5.6%和50.7%±4.9%。高鹽度可能會破壞部分AOB的生物膜和菌體的活性酶,影響微生物的正常生理功能[20-21]。經(jīng)初始NaCl濃度為20 g/L高鹽度污水馴化30 d(80~110 d),生物膜內耐鹽微生物增殖并成為AOB內優(yōu)勢菌種,其NH4+去除率逐漸增至77.6%±3.6%和70.6%±2.9%。經(jīng)NaCl濃度為20 g/L生活污水馴化30 d后,SBBR內可獲得較高NH4+去除率,其主要原因可能是本研究以實際生活污水作為進水,與人工單一配水水質相比較,其馴化的微生物種類更多,其適應環(huán)境變化的能力更強。
注:NH4+-Ninf:進水氨氮,mg?L-1; NH4+-Neff:出水氨氮,mg?L-1;NH4+-NRE:氨氮去除率,%;N2O-NE:N2O-N釋放量,mg?L-1;N2O-NER:氧化亞氮產(chǎn)率,%; NO2--N:亞硝態(tài)氮濃度,mg?L-1; NO3--N:硝態(tài)氮濃度,mg?L-1;NOx--N:氮氧化物濃度,mg?L-1;ΔPHAmax:聚-β-脂肪酸酯增量,mg?g-1;ΔGlymax:糖原增量,mg?g-1;SNDE:同步硝化反硝化脫氮效率,%。
生物脫氮過程中,低氧條件下AOB的好氧反硝化和異養(yǎng)菌的反硝化過程均會導致N2O的產(chǎn)生和釋放。NaCl濃度增加引起生物膜內部NO2-含量增加,以N2O為終產(chǎn)物的AOB好氧反硝化過程增強。NaCl濃度增至10 g/L,平均N2O釋放量(以氮計)由1.56 mg/L增至2.87 mg/L,產(chǎn)率由4.08 %增至6.72 %。NaCl濃度增至20 g/L沖擊負荷下,N2O產(chǎn)率(N2O釋放量/總氮去除量,以氮計,下同)迅速增至18.25%,經(jīng)30 d馴化后,平均N2O產(chǎn)率為13.60%。隨NaCl濃度由0增至20.0 g/L,SBBR內平均NO2-積累(以氮計,下同)由1.12增至18.87 mg/L,NO3-(以氮計,下同)由22.36降至2.08 mg/L,NO2-/NO3-隨鹽度增加而增加(圖2b)。這可能是導致試驗第80~120 d反應器內N2O產(chǎn)率增加的主要因素[22]。一方面,高濃度的NO2-的可能會促進亞硝酸鹽還原酶基因()和一氧化氮還原酶基因()mRNA的顯著表達,刺激AOB好氧反硝化過程的發(fā)生,導致N2O產(chǎn)量增加[23];另一方面,與其他還原酶相比較,氧化亞氮還原酶(nitrous oxide redcutase,Nos)受環(huán)境因素(DO、pH值、碳源、有毒物質)影響較大[24-25],NaCl的鹽度刺激會導致反硝化途徑產(chǎn)生大量N2O[26],同時,高濃度NO2-/HNO2抑制Nos的活性,N2O釋放量增加[24]。
初期“飽食”條件下,原水中COD 吸附于生物膜表面并以PHA和Gly的形式儲存在微生物體內。低NaCl濃度條件下,微生物利用細胞內合成內碳源含量增加來抵抗NaCl濃度的增加,從而促進其體內PHA合成[27],NaCl濃度為5 g/L,微生物體內合成Gly增量(ΔGly)由34.5 mg/g(以每克揮發(fā)性懸浮固體化學需氧量計,下同)增至36.9 mg/g,PHA增量(ΔPHA)由43.6 mg/g增至46.9 mg/g。受低濃度NaCl沖擊后,菌群合成更多PHA以抵御逆境[28]。該部分積累的PHA和Gly可作為后續(xù)同步反硝化過程的內碳源,ΔPHA和ΔGly越大,曝氣階段所消耗的無效COD越少,同步脫氮效率越高(圖2b)。高NaCl濃度則會破壞微生物細胞膜和菌體的活性酶,抑制微生物正常生理功能至其活性完全被抑制,降低微生物儲存碳源能力,ΔPHA和ΔGly迅速降低[29],初始NaCl濃度為20 g/L,其ΔPHA和ΔGly則分別降至28.2和22.7 mg/g(圖2b)。
與ΔPHA和ΔGly變化類似,SBBR內同步硝化反硝化(simultaeous nitrification and denitrification,SND)脫氮效率隨NaCl增加亦呈先增加后減少的趨勢。NaCl濃度為10 g/L,其SND效率達最大值53.8%。一方面,SBBR內部沿生物膜方向形成了好氧-低氧-缺氧環(huán)境,硝化階段產(chǎn)生的NOx-以擴散形式進入生物膜內部缺氧區(qū)域,以外源COD或內碳源為電子供體,完成反硝化過程;另一方面,相較于AOB,亞硝態(tài)氮氧化菌(nirite oxidizing bacteria,NOB)對NaCl濃度變化更敏感,NaCl濃度增加,部分硝化過程止步于NO2-,其反硝化過程可節(jié)約40%碳源,碳源有限時,SND效率增加。除此之外,與硝化細菌相比,異養(yǎng)反硝化菌對NaCl濃度的耐受能力較強,也導致低NaCl濃度下SBBR系統(tǒng)硝化性能下降而反硝化性能增加[30]。
2.2.1 無NaCl添加時SBBR運行特性
圖3為無NaCl添加時,SBBR穩(wěn)定運行階段典型周期內含氮污染物、內碳源(PHA和Gly)變化及N2O釋放特性。初始缺氧階段,原水中部分COD作為電子供體,還原上一周期殘留NOx-,部分經(jīng)異養(yǎng)微生物吸收后以PHA形式儲存在體內。好氧開始30 min內,少量NH4+用于異養(yǎng)微生物的增殖,內碳源(PHA、Gly)繼續(xù)增加。此后,有機物含量降低,異養(yǎng)菌競爭DO能力減弱,膜內AOB獲得DO能力增強,系統(tǒng)進行NH4+氧化過程。硝化初始階段,存在外源COD,其提供電子速率較高,SBBR生物膜內可發(fā)生同步反硝化過程,無NOx-積累。同時,微生物體內PHA和Gly逐漸增加,為硝化過程后期同步發(fā)生的反硝化過程提供內碳源。180 min后,PHA達171.2 mg/g,此后(180~360 min),PHA逐漸降至115.4 mg/g。生物膜內異養(yǎng)反硝化菌以PHA作為電子供體,TN仍呈降低趨勢,但是其提供電子速率下降,SBBR內NOx-積累增加。原水C/N較低,碳源不足導致微生物體內儲存內碳源有限,無法提供充足的電子以完成反硝化過程;另一方面,有機物降低導致液相DO濃度增加,其擴散進入生物膜能力增強,降低了SBBR內部缺氧區(qū)范圍,削弱了反硝化過程。至反應結束時,其出水NOx-達19.3 mg/L,同步脫氮效率為43.2%。
以外源COD為電子供體,初始缺氧階段無N2O釋放。這與Yang等的研究結果一致[11]。好氧伊始,系統(tǒng)內存在部分外源有機物,硝化階段產(chǎn)生的N2O以擴散形式進入SBBR內缺氧區(qū)域,外源COD為N2O還原提供電子供體,無N2O釋放。180 min后,外碳源消耗殆盡,同步發(fā)生的反硝化過程以PHA作為電子供體,TN曲線下降放緩(圖3),其N2O-N釋放量由0.24 mg/L迅速增至1.56 mg/L,占脫氮過程N2O總釋放量的84.6%。主要原因有:1)DO濃度增加,其擴散進入生物膜內能力增強,AOR增加,NH4+/NH2OH氧化過程釋放電子能力增強,同時存在的高濃度NH4+和NO2-促進了好氧反硝化過程的發(fā)生,N2O產(chǎn)量增加[12];2)反硝化過程中,以PHA作為電子供體,提供電子能力較弱,與硝態(tài)氮還原酶(nitrate reductase,Nar)和亞硝態(tài)氮還原酶(nitrite oxide reductase,Nir)相比,Nos爭奪電子能力較弱,當多種電子受體共存時,反硝化過程止步于N2O[31];3)DO對Nos活性具有明顯抑制作用,低氧條件下異養(yǎng)菌反硝化過程中N2O的釋放[32]。
注:TN:總氮,mg?L-1;COD:化學需氧量,mg?L-1;N2O-Nd:溶解態(tài)氧化亞氮,mg?L-1。
2.2.2 NaCl濃度為20.0 g/L時SBBR運行特性
高NaCl濃度下(20 g/L),SBBR典型周期運行性能如圖4所示。高NaCl耦合高NO2-,初始缺氧反硝化過程即出現(xiàn)溶解態(tài)N2O積累。高NaCl條件下,NO3-和NO2-還原過程中均會出現(xiàn)N2O的積累,且以NO2-為電子受體,其N2O釋放量激增[33]。反硝化過程中,Nos的合成速度小于Nar和Nir,高NaCl濃度抑制Nos的合成,都會導致N2O積累。隨反硝化過程進行,NO2-降低,Nos活性恢復,溶解態(tài)N2O降至0.05 mg/L。
圖4 高NaCl濃度(20.0 g·L-1)下SBBR典型周期指標變化
好氧階段,NaCl濃度增加導致COD和NH4+降解速率降低。長時間處于高NaCl環(huán)境下,異養(yǎng)菌活性均降低,微生物“飽食”時間由150 min增至270 min。NaCl濃度對硝化過程影響更明顯,至反應結束時,其NH4+去除率僅為70%。NaCl為20 g/L,微生物體內ΔPHA和ΔGly分別降至28.2和22.7 mg/g。低濃度NaCl(5~9 g/L)可以促進細菌PHA合成能力,而NaCl增加,其PHA合成能力則會受到抑制[34]。高鹽度環(huán)境下導致微生物細胞質壁分離,抑制菌群活性,從而引起ΔPHA下降[35]。
好氧初始階段,系統(tǒng)內進行有機物降解和氨氮氧化過程。同步發(fā)生的反硝化過程以外碳源作為電子供體,高NaCl抑制了Nos的活性,AOB好氧反硝化過程和異養(yǎng)菌缺氧反硝化過程產(chǎn)生的N2O無法被充分還原,與NaCl=0相比較,其N2O釋放量略有增加。180 min后,同步反硝化過程電子供體減少,而高NaCl濃度加劇了反硝化性能受抑制程度,至反應結束時,SBBR內NO2--N達18.45 mg/L,N2O-N釋放量增至3.65 mg/L,產(chǎn)率達14.46%。內源反硝化過程中,PHA和Gly氧化速率有限,當反硝化過程存在多種電子受體(NOx-、NO和N2O)時,微生物無法通過提高內碳源氧化速率為所有受體提供電子,這就導致在Nar,Nir,Nor和Nos之間存在電子競爭。其中,Nir和Nos均從細胞色素氧化體系c550的電子傳遞過程中獲得電子,以完成其還原過程。作為反硝化反應的最末端,Nos獲得電子能力最弱,且高NaCl濃度對Nos活性具有明顯抑制作用,N2O還原在整個反硝化過程中處于劣勢,從而導致N2O的積累并釋放[36],這是高鹽度下N2O釋放增加的重要原因。
圖5為不同初始NaCl濃度下SBBR脫氮過程的N2O變化曲線。反硝化階段,以原水中COD作為電子供體,無鹽度投加時,僅在反硝化初期出現(xiàn)溶解態(tài)N2O積累,此后迅速降至接近0。N2O積累原因可能是反硝化過程中Nos的合成速率遠小于Nar和Nir。鹽度增加,反硝化階段溶解態(tài)N2O積累逐漸增強,達0.29 mg/L。高NaCl以Na+取代Nos內Cu2+,從而實現(xiàn)其對Nos活性抑制[33],導致反硝化過程N2O的積累(圖5a)。提供充足外碳源,反硝化結束時,其溶解態(tài)N2O均降至0.10 mg/L以下。
SBBR填料表面生物膜內存在好氧區(qū)、低氧/缺氧過渡區(qū)和缺氧區(qū)。大部分AOB位于膜內低氧區(qū)域,其好氧反硝化過程產(chǎn)生的N2O 可擴散至內部缺氧區(qū)還域,完成原過程[6],有助于N2O減量。低NaCl濃度(0~10 g/L),硝化過程結束,溶解態(tài)N2O即降至0,N2O釋放量趨于穩(wěn)定(圖5),表明AOB好氧反硝化過程是導致N2O釋放的主要因素。SBBR內部存在的缺氧微環(huán)境的存在降低了N2O產(chǎn)率,硝化過程初期未發(fā)現(xiàn)N2O大量釋放。僅在硝化過程后期,DO濃度增加,缺氧區(qū)域降低,N2O還原過程受抑制,N2O釋放速率增加(圖5b)。
圖5 不同NaCl濃度下SBBR脫氮過程的N2O變化
高NaCl濃度條件下(15~20 g/L),好氧曝氣伊始N2O釋放量即迅速增加,溶解態(tài)N2O亦呈逐漸增加趨勢。表明硝化初始階段產(chǎn)生的N2O并不能通過生物膜內的同步反硝化過程還原。鹽度增加,適應高NaCl濃度的菌群種類減少,硝化過程止步于NO2-,反應結束時,系統(tǒng)內仍殘留有10 mg/L以上NH4+-N。高濃度NO2-和NH4+共存,促進了低氧區(qū)好氧反硝化過程發(fā)生;另一方面,SBBR內部以PHA和Gly作為電子供體,反硝化過程受阻,高鹽度和高NO2-導致生物膜內部反硝化過程止步于N2O;除此之外,高NaCl濃度下,微生物代謝受阻,其生長速率下降,產(chǎn)率系數(shù)降低,其表面Zeta電位隨鹽度增加而趨于更負[37],污泥絮凝性降低,且水體密度增加,加劇了污泥流失[38],碳纖維膜表面附著的微生物聚集性降低,DO進入生物膜內部的能力增強,底部缺氧區(qū)減少,低氧條件下發(fā)生的反硝化過程則會止步于N2O。因此,高鹽度條件所導致的NO2-積累、內碳源合成量減少以及DO擴散進入生物膜內部能力增強,是導致N2O大量釋放的主要原因。
表2為不同鹽度條件下SBBR生物膜內微生物活性變化情況。無NaCl添加,AOR約是NIOR的1.5倍。SBBR反應器內,生物膜表面附著異養(yǎng)菌,其內部為硝化菌群。低NaCl濃度刺激(5 g/L),AOR和NIOR均略有增加。高NaCl濃度條件(20 g/L),AOR和NIOR活性系數(shù)別降至56.56%±4.65%和23.55%±1.98%,降幅遠小于活性污泥系統(tǒng)內鹽度沖擊負荷下AOB和NOB的減少幅度[2],其主要原因是:SBBR內生物膜表面異養(yǎng)菌形成保護層,降低了鹽度對其內部硝化菌的抑制;另一方面,與活性污泥系統(tǒng)相比,填料表面的截留作用有利于黏附大量微生物,可馴化出增值速率較低的硝化菌,AOB和NOB內馴化出了部分耐鹽菌種,其活性有所增加,這也是SBBR抗鹽性能增強的重要因素之一。
以CH3COONa為電子供體,無NaCl投加,DN2OR遠大于DNAR和DNIR,即:保持良好缺氧條件并提供充足外碳源,反硝化過程無N2O積累。其中,DN2OR受NaCl影響最為明顯,NaCl濃度增加可導致反硝化過程中N2O的積累(圖5);內源反硝化過程,僅存在N2O時,E-DN2OR遠大于E-DNAR和E-DNIR,表明無鹽條件下,內源反硝化過程N2OR積累的主要原因可能是多種電子共存時,不同電子受體之間存在電子競爭,而Nos競爭電子能力較弱,從而導致N2O的積累;鹽度增加,E-DN2OR活性系數(shù)降至5.32±0.12%,遠小于E-DNAR(13.79±1.12%)和E-DNIR(31.94±2.32%),鹽度對Nos的抑制更大。因此,SBBR系統(tǒng)內,高NaCl濃度條件下,內源反硝化階段中,N2O大量積累并釋放。
表2 NaCl 濃度對微生物活性及活性系數(shù)影響
為保證試驗更接近農(nóng)村污水處理過程,本研究以添加不同NaCl濃度的北方某社區(qū)實際生活污水作為研究對象,確定了NaCl濃度梯度變化對SBBR脫氮性能和N2O釋放影響。與人工配水相比較,實際生活污水成分復雜,系統(tǒng)內培養(yǎng)馴化微生物種類多,更有利于嗜鹽微生物的增殖馴化,且實際農(nóng)村污水處理過程中,無機鹽成分變化復雜,因此,本研究中并未考慮粗鹽中雜質對脫氮系統(tǒng)的影響。同時,以缺氧/好氧運行的SBBR反應器,缺氧階段充分利用原水中碳源進行反硝化過程,且占地面積小,運行費用低,管理方便,適用于分散且處理量小的農(nóng)村生活污水。SBBR生物膜表面異養(yǎng)菌形成了屏障,降低了高NaCl濃度對其內部硝化菌的毒性,經(jīng)馴化后,SBBR脫氮脫氮性能明顯增加。
本研究利用SBBR反應器處理含鹽生活污水,系統(tǒng)分析了反應器初始NaCl濃度對脫氮性能、內源物積累和N2O釋放的影響。研究結果如下:
1)NaCl濃度增加,反應器脫氮性能降低,N2O產(chǎn)率增加。NaCl濃度≤10 g/L,NH4+去除率達95%以上;NaCl濃度為20 g/L, NH4+去除率降至70.6%左右。NaCl濃度由0增大至20 g/L,PHA合成增量由43.6 mg/g 降至28.2 mg/g,Gly合成增量由34.5 mg/g降至22.7 mg/g,SBBR內NO2-積累由1.12 mg/L增至18.87 mg/L,平均N2O產(chǎn)率由4.08 %增至13.60%。
2)不同NaCl濃度下,N2O產(chǎn)生過程不同。低NaCl濃度下,N2O主要產(chǎn)生于AOB好氧反硝化過程;高NaCl濃度下,硝化過程止步于NO2-,高濃度NH4+和NO2-促進了AOB好氧反硝化過程發(fā)生,N2O釋放量增加;SBBR內源反硝化過程中,Nir和Nos之間電子競爭導致高鹽度下N2O還原減弱;同時,高鹽度導致生物聚集性降低,DO擴散能力增強,降低生物膜內部缺氧區(qū)域范圍,抑制了N2O還原過程。
3)SBBR內各含氮物質轉化速率總體趨勢是隨NaCl濃度增加而降低。各NaCl濃度下,N2O還原速率的活性系數(shù)均小于NO3-和NO2-還原速率活性系數(shù),Nos活性受NaCl濃度抑制更強,高NaCl更易導致N2O釋放量增加。
[1] 段增強,段婧婧,耿晨光,等. 園林地慢速滲濾系統(tǒng)處理農(nóng)村分散式生活污水[J]. 農(nóng)業(yè)工程學報,2013,28(23):192-199.
Duan Zengqiang, Duan Jingjing, Geng Chenguang, et al. Garden slow percolation system for processing rural distributed wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 28(23): 192-199. (in Chinese with English abstract)
[2] Dubber D, Gray N F. The effect of anoxia and anaerobia on ciliate community in biological nutrient removal systems using laboratory-scale sequencing batch reactors (SBRs)[J]. Water Research, 2011, 45(6): 2213-2226.
[3] 潘碌亭,謝欣遷,王九成,等. 脫氮除磷生物濾池填料制備及其對農(nóng)村生活污水的處理效果[J]. 農(nóng)業(yè)工程學報,2017,33(9):230-236.
Pan Luting, Xie Xinqian, Wang Jiucheng, et al. Preparation of denitrification and dephosphorization biological fillers and its effect on treatment of rural domestic sewage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 230-236. (in Chinese with English abstract)
[4] Tsuneda S, Mikami M, Kimochi Y. et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater[J]. Journal of Hazardous Materials, 2005, 119(1/2/3): 93-98
[5] 王淑瑩,唐冰,葉柳,等. NaCl鹽度對活性污泥系統(tǒng)脫氮性能的影響[J]. 北京工業(yè)大學學報,2008,34(6):631-635.
Wang Shuying, Tang Bing, Ye Liu, et al. Influence of NaCl salinity on nitrogen removal of activated sludge system[J]. Journal of Beijing University of Technology, 2008, 34(6): 631-635. (in Chinese with English abstract)
[6] Sabba F, Terada A, Wells G, et al. Nitrous oxide emissions from biofilm processes for wastewater treatment[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9815-9829.
[7] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide: The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.
[8] Denman K L, Brasseur G, Chidthaisong A, et al. In Climate Change 2007: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013: 501-588.
[9] Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17): 4093-4103.
[10] Law Y, Ye L, Pan Y, et al.Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1593): 1265-1277.
[11] Yang Q, Liu X H, Peng C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: Main sources and control method[J]. Environmental Science & Technology, 2009, 43(24): 9400-9406.
[12] Chen X,Yuan Z G,Ni B J. Nitrite accumulation inside sludge flocs significantly influencing nitrous oxide production by ammonium-oxidizing bacteria[J]. Water Research, 2018, 143(15): 99-108.
[13] Zhao J, Feng L, Yang G, et alDevelopment of simultaneous nitrification-denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification[J]. Bioresource Technology, 2017, 243: 800-809.
[14] 鞏有奎,任麗芳,彭永臻. 不同 DO下SBBR亞硝酸型同步脫氮及N2O釋放特性[J]. 化工學報,2019,70(4):1550-1558.
Gong Youkui, Ren Lifang Peng Yongzhen. Characterics of simultaneous nitrification and denitrification via nitrite and N2O emissionin in SBBR under different DO concentrations[J]. CIESC Journal, 2019, 70(4): 1550-1558. (in Chinese with English abstract)
[15] APHA(American Public Health Association). Standard Methods for the Examination of Water and Wastewater[M]. Baltimore: Port City Press, 1998.
[16] 鞏有奎,王淑瑩,王莎莎,等. 碳氮比對短程反硝化過程中N2O產(chǎn)生的影響[J]. 化工學報,2011,62(7):2049-2054.
Gong Youkui, Wang Shuying, Wang Shasha, et al. Effect of C/N ratio on N2O accumulation and reduction during nitrite denitrification process[J]. CIESC Journal, 2011, 62(7): 2049-2054. (in Chinese with English abstract)
[17] Oehmen A, Keller-Lehmann B, Zeng R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromato- graphy for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136.
[18] Zeng R J, Van Loosdrecht M C M, Yuan Z G, et al. Metabolic model for glycogen-accumulating organisms in anaerobic /aerobic activated sludge systems[J].Biotechnology and Bioengineering, 2003, 81(1): 92-105.
[19] Zhao L, She Z, Jin C, et al. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress[J]. Bioprocess and Biosystems Engineering, 2016, 39(9): 1375-1389.
[20] Chen M X, Wang W C, Feng Y, et al. Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02[J]. Bioresource Technology, 2014, 167: 456-461.
[21] Chen G H, Wong M T, Okabe S, et al. Dynamic response of nitrifying activated sludge batch culture to increased chloride concentration[J]. Water Research, 2003, 37(13): 3125-3135.
[22] Castro-Barros C M, Rodrguez-Caballer O A, Volcke E, et al. Effect of nitrite on the N2O and NO production on the nitrification of low-strength ammonium wastewater[J]Chemical Engineering Journal, 2016, 287: 269-276.
[23] Yu R, Chandran K. Strategies of19718 to counter low dissolved oxygen and high nitrite concentrations [J]. BMC Microbiology, 2010, 10: 70-80.
[24] Zhou Y, Pijuan M, Zeng R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying- enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42(22): 8260-8265.
[25] Lu H J, Chandran K, Stensel D. Microbial ecology of denitrification in biological wastewater treatment[J]Water Research, 2014, 64: 237-254.
[26] Zhao W, Wang Y, Lin X, et al. Identification of the salinity effect on N2O production pathway during nitrification: using stepwise inhibition and15N isotope labeling methods[J]Chemical Engineering Journal, 2014, 253: 418-426.
[27] He H, Yang C, Zeng G, et al. Influence of salinity on microorganisms in activated sludge processes: A review[J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527.
[28] Obruca S, Sedlacek P, Koller M, et al. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications[J]. Biotechnology Advances, 2018, 36(3): 856-870.
[29] Palmeiro S T, Frav A, Rey M N, et al. Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture[J]. Journal of Hazardous Materials, 2016, 306: 332-339.
[30] 鄒高龍,李小明,李啟武,等. 鹽度變化對 SBBR 和SBR 中含氨氮廢水的處理影響[J]. 環(huán)境科學,2009,30(9):2603-2608.
Zou Gaolong, Li Xiaoming, Li Qiwu, et al. Effects of salinity variation on the treatment wastewater containing ammonia in the SBBR and SBR[J]. Environmental Science, 2009, 30(9): 2603-2608. (in Chinese with English abstract)
[31] Pan Y T, Ni B J, Lu H J, et al. Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment[J]. Water Research, 2015, 71: 21-31.
[32] Gong Y K, Peng Y Z, Yang Q, et al. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate[J]. Journal of Hazardous Materials, 2012, 227/228: 453-460.
[33] Zhao W,Wang Y,Liu S, et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J]. Chemical Engineering Journal, 2013, 215-216(15): 252-260.
[34] Passanha P, Kedia G, Dinsdaler M, et al. The use of NaCl addition for the improvement of polyhydroxy-alkanoate production by[J]. Bioresource Technology, 2014, 163: 287-294.
[35] Ng H, Yong S L, Ng W J. Effects of sodium chloride on the performance of a sequencing batch reactor[J]. Journal of Environmental Engineering, 2005, 131(11): 1557-1564.
[36] Pan Y T, Ni B J, Yuan Z G. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification[J]. Environmental Science & Technology, 2013, 47(19): 11083-11091.
[37] 季業(yè),溫沁雪,郝亞茹,等. 鹽度對模擬餐廚垃圾發(fā)酵液產(chǎn)聚羥基脂肪酸酯工藝的影響[J/OL]. 環(huán)境工程學報. 2019-06-03 [2019-08-207]. http://kns.cnki.net/kcms/detail/ 11.5591.X.20190601.1228.016. html
Ji Ye, Wen Qinxue, Hao Yaru, et al. Influence of salinity on polyhydroxyalkanoate production using simulated food waste fermentation liquid[J/OL]. Chinese Journal of Environmental Engineering, 2019-06-03 [2019-08-207]. http://kns.cnki.net/ kcms/detail/11.5591.X.20190601. 1228.016.html.(in Chinese with English abstract)
[38] Reid E, Liu X, Judd S. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science, 2006, 283: 164-171.
Effects of NaCl concentration on simultaneous nitrification and denitrification process and N2O emission in SBBR
Gong Youkui1,2, Ren Lifang1, Luo Peiyun1, Peng Yongzhen2
(1., 264670,; 2.,100124,)
The sequencing batch biofilm reactor (SBBR) is widely applied in the wastewater treatment due to its strong adaptability to the unstable influent substrate concentrations. The growth environment for microorganisms is different in the outer and inner space of the biofilm, which leads to different microbial community structure in different zones of the system. Salinity is one of the key factors that affect biological nitrogen removal (BNR) performance for domestic wastewater treatment. Higher salinity could also promote the nitrite accumulation. In particular, nitrite accumulation was considered to be a major parameter for affecting the emission of N2O in both nitrification and denitrification stages, and therefore mitigate the environmental benefits of nitrogen removal process. In present study, the feasibility of simultaneous nitrification and denitrification process achievement in a SBBR was evaluated treating domestic wastewater with NaCl addition (0, 5, 10, 15 and 20 g/L) salinity addition. For more detailed insights, the changes of polyhydroxyalkanoate (PHA) and glycogen (Gly) were also analyzed to evaluate the salinity effect on nitrite accumulation and N2O emission.The results showed that with the increase of NaCl concentration, the nitrogen removal efficiency decreased, while the N2O emission ratio increased. The NH4+removal efficiency was more than 95% as the NaCl concentration was no more than 10 g/L. When the NaCl concentration increased to 20 g/L, the average NH4+decreased to 70.6%.As the NaCl increased from 0 to 20 g/L, the increment of PHA and Gly decreased from 43.6 mg/g and 34.5 mg/g to 28.2 mg/g and 22.7 mg/g, respectively, while the NO2-accumulation and the N2O emission ratio increased from 1.12 mg/L and 4.08 % to 18.87 mg/L and 13.60%. The more NaCl was added, the higher the ratio of NO2-to NOx-accomplished. The accumulated NO2-contributed to the occurrence of nitrifier denitrification (ND) by AOB. Most nitrous oxide emission was via ND process with NH4+as electron donor and NO2-as electron acceptor. The higher amount of N2O, formed in the transition zone, could be consumed in deeper regions of the biofilm when the COD was sufficient. In the absence of external carbon source, both PHAand glycogenGlywere used as internal carbon source for the endogenous denitrification. The higher NaCl concentration inhibited the PHA and Gly production, which decreased the internal electron donors for denitrification. The competition for electron between Nir and Nos during the endogenous denitrification process in the deeper region, as well as the nitrifier denitrification of AOB in the transition region, contributed to the high N2O emission, especially in the high NaCl concentration of 15 and 20 g/L. Furthermore, higher NaCl concentration reduced the density of the biofilm, which made it possible for more DO diffusing into the biofilm. It can not be ignored that DO possessed high inhibition on Nos, which attributed to the high N2O emission under high NaCl concentration. The “feast” time increased at a high salinity, revealing the inhibition of microbial activity. High salinity hindered the denitrification rate, and the inhibition degree was dependent on the influent COD/N and terminal electron acceptors. Compared with the nitrate reduction rate (DNAR) and the nitrite reduction rate (DNIR), the nitrous oxide reduction rate (DN2OR) was much more reduced by high salinity. In saline wastewater BNR process, the higher NO2-accumulation, the competion between Nir and Nos, as well as the higher DO concentration in the inner region of the biofilm, led to the increase in N2O yield.
wastewater; nitrogen; salinity; N2O; aerobic denitrification; endogenous denitrification
鞏有奎,任麗芳,羅佩云,彭永臻. NaCl濃度對SBBR同步脫氮及N2O釋放的影響[J]. 農(nóng)業(yè)工程學報,2020,36(3):152-159.doi:10.11975/j.issn.1002-6819.2020.03.019 http://www.tcsae.org
Gong Youkui, Ren Lifang, Luo Peiyun, Peng Yongzhen. Effects of NaCl concentration on simultaneous nitrification and denitrification process and N2O emission in SBBR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 152-159. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.019 http://www.tcsae.org
2019-9-23
2020-01-12
國家自然科學基金項目(51508008);煙職博士科研啟動基金(2018002)
鞏有奎,博士,副教授,主要從事生活污水生物脫氮過程溫室氣體排放控制研究。Email:260943813@qq.com
10.11975/j.issn.1002-6819.2020.03.019
X703.1
A
1002-6819(2020)-03-0152-08