曾志雄,魏鑫鈺,呂恩利,劉妍華,易子騏,郭嘉明
集中通風(fēng)式分娩母豬舍溫濕度數(shù)值模擬與試驗(yàn)驗(yàn)證
曾志雄1,魏鑫鈺1,呂恩利1,劉妍華2,易子騏1,郭嘉明1※
(1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642;2. 華南農(nóng)業(yè)大學(xué)工程基礎(chǔ)教學(xué)與訓(xùn)練中心,廣州 510642)
為研究集中通風(fēng)式豬舍溫濕度場(chǎng)的分布規(guī)律,利用計(jì)算流體力學(xué)技術(shù),對(duì)云南省某規(guī)模豬場(chǎng)的地溝進(jìn)風(fēng)、中央排風(fēng)式分娩母豬舍進(jìn)行溫濕度場(chǎng)耦合模擬研究,并通過試驗(yàn)進(jìn)行驗(yàn)證。本研究采用四面體非結(jié)構(gòu)網(wǎng)格進(jìn)行網(wǎng)格劃分,運(yùn)用重整化群RNG湍流模型進(jìn)行穩(wěn)態(tài)模擬,通過實(shí)測(cè)值與模擬值的對(duì)比,對(duì)模型進(jìn)行驗(yàn)證。研究結(jié)果表明,溫度模擬值與實(shí)測(cè)值最大差值不超過4 ℃,平均相對(duì)誤差為6.5%;相對(duì)濕度模擬值與實(shí)測(cè)值最大差值不超過10%RH,平均相對(duì)誤差為7.3%,驗(yàn)證了模型的準(zhǔn)確性。溫度、相對(duì)濕度和風(fēng)速在垂直高度上的分布差異較大,溫度隨著垂直高度的增加而增加,且溫度梯度逐漸增大;相對(duì)濕度隨著垂直高度的增加而減??;而風(fēng)速則隨著垂直高度的增加而逐漸減小。本研究揭示了集中通風(fēng)式分娩母豬舍的溫濕度場(chǎng)分布規(guī)律,并為分娩舍溫濕度場(chǎng)的優(yōu)化提供參考。
數(shù)值模擬;豬舍;溫度;濕度;分布特性
豬對(duì)生育環(huán)境的要求較高,溫度、相對(duì)濕度、氣流速度、氨氣濃度、二氧化碳濃度和通風(fēng)量對(duì)其產(chǎn)生影響,其中溫度和相對(duì)濕度的影響最大[1-2]。Zhao等[3]的調(diào)查結(jié)果表明華南地區(qū)夏季高溫多濕,母豬的淘汰率較高,且在7月達(dá)到峰值。Myer等[4]則發(fā)現(xiàn)濕熱環(huán)境將減少豬的進(jìn)食量。Xiong等[5]總結(jié)了相對(duì)濕度對(duì)動(dòng)物健康的影響,不適宜的濕度將增加動(dòng)物的疾病感染率。目前,豬舍多采用濕簾風(fēng)機(jī)的方式,維持夏季舍內(nèi)的溫度與濕度,并取得了較好的效果[6-8]。且國內(nèi)外有不少學(xué)者針對(duì)濕簾的厚度、材料和風(fēng)速等,對(duì)豬舍內(nèi)溫度場(chǎng)分布的優(yōu)化研究作出了重要貢獻(xiàn)[9-11]。
國內(nèi)外多采用試驗(yàn)測(cè)試、數(shù)值模擬等方法開展豬舍溫濕度場(chǎng)的研究。試驗(yàn)方法是研究豬舍內(nèi)部環(huán)境(溫度、濕度、通風(fēng)速率、氨氣濃度等)的主要方法[12-16]。然而,試驗(yàn)方法具有測(cè)量點(diǎn)有限、測(cè)量誤差、環(huán)境不可控和不穩(wěn)定等缺點(diǎn)[17]。盡管使用比例模型和風(fēng)洞試驗(yàn)可以較好地解決內(nèi)部空氣流動(dòng)的問題[18-19],但仍需花費(fèi)大量的時(shí)間和成本。計(jì)算流體力學(xué)(computational fluid dynamics, CFD)具有縮短時(shí)間周期、節(jié)省研究成本等優(yōu)點(diǎn),目前已廣泛應(yīng)用于農(nóng)業(yè)各領(lǐng)域[20-26],彌補(bǔ)了傳統(tǒng)試驗(yàn)方法的缺陷。林加勇等[27]采用標(biāo)準(zhǔn)湍流模型研究了公豬舍的舍內(nèi)環(huán)境分布規(guī)律,研究結(jié)果顯示風(fēng)速場(chǎng)模擬值與實(shí)測(cè)值相對(duì)誤差范圍在0.25%~30.8%。Sun等[28-29]分別采用二維和三維CFD模型模擬豬舍內(nèi)的氣流和氨氣濃度分布,并比較了不同湍流模型對(duì)結(jié)果的影響,結(jié)果表明2種模型的模擬值與試驗(yàn)值差異不顯著,且湍流模型比層流模型的模擬值更接近試驗(yàn)值。王小超等[30]利用標(biāo)準(zhǔn)模型對(duì)空載豬舍溫度場(chǎng)和氣流場(chǎng)進(jìn)行數(shù)值模擬,研究結(jié)果表明模擬值比試驗(yàn)值高,且不同的送風(fēng)角度對(duì)溫度場(chǎng)和氣流場(chǎng)的分布均有影響,且在45°時(shí)舍內(nèi)的溫度場(chǎng)和氣流場(chǎng)分布較均勻。
目前,國內(nèi)外學(xué)者對(duì)集中通風(fēng)式豬舍建立溫濕度場(chǎng)耦合模型的報(bào)道較少。謝秋菊等[31]利用Matlab Simulink建立了模擬北方夏季密閉豬舍環(huán)境溫濕度的模型,結(jié)果表明豬舍內(nèi)溫度、濕度模擬與實(shí)測(cè)值變化趨勢(shì)一致,溫度最大誤差為2.4 ℃,最大相對(duì)誤差為9.2%,舍內(nèi)相對(duì)濕度最大誤差為13.34%,最大相對(duì)誤差為49.66%。
本研究通過建立集中通風(fēng)式分娩母豬舍的CFD模型,對(duì)分娩母豬舍的溫濕度場(chǎng)進(jìn)行模擬,揭示舍內(nèi)氣流組織及其分布規(guī)律,對(duì)豬舍的結(jié)構(gòu)及溫濕度場(chǎng)優(yōu)化具有一定的參考意義。
試驗(yàn)豬舍位于云南省沾益市(25°91″N,103°73″E)。該豬場(chǎng)占地面積33.6 hm2,總建筑面積為8.7 hm2。設(shè)計(jì)生產(chǎn)規(guī)模為年出欄商品仔豬18萬頭,種豬7萬頭。該舍共有4條生產(chǎn)線,每條生產(chǎn)線均實(shí)現(xiàn)了全套化配種、懷孕、分娩等生產(chǎn)作業(yè)過程。豬舍采用集中通風(fēng)式設(shè)計(jì),豬舍建筑全部封閉,具有自動(dòng)化的環(huán)控系統(tǒng)、刮糞系統(tǒng)、送料系統(tǒng)等作業(yè)設(shè)備。
測(cè)試的分娩舍整體尺寸為長(zhǎng)32.6 m、寬5.8 m、高2.8 m,為東西走向,舍內(nèi)空間完全密閉(圖1a)。分娩舍單元設(shè)置成2列,每列18頭母豬,舍內(nèi)中間有1條走道。該舍降溫采用地溝進(jìn)風(fēng)、中央排風(fēng)的負(fù)壓濕簾通風(fēng)系統(tǒng)。通風(fēng)系統(tǒng)利用山墻的大功率風(fēng)機(jī)進(jìn)行抽風(fēng),舍外的新鮮空氣先流經(jīng)濕簾和卷簾,隨之從地溝的進(jìn)風(fēng)管道進(jìn)入豬頭區(qū)域,最后經(jīng)中央排風(fēng)口的無動(dòng)力風(fēng)機(jī)排出。中央排風(fēng)口采用重量輕、可測(cè)空氣流量的無動(dòng)力風(fēng)機(jī),其直徑為0.8 m。母豬被限定在長(zhǎng)0.6 m、寬2.1 m、高0.8 m的限位欄內(nèi),仔豬匍匐或站立在電熱毯上,電熱毯的尺寸為長(zhǎng)1 m、寬0.8 m。每個(gè)豬欄的尺寸為1.8 m、寬2.4 m、高0.5 m。中間過道的寬度為1 m。圖1為該分娩舍的示意圖。
圖1 分娩舍布局
現(xiàn)場(chǎng)測(cè)量時(shí)間為2018年8月17日下午。當(dāng)日豬舍舍外氣溫為17~24 ℃,相對(duì)濕度為56%~93%,為西南地區(qū)夏季典型氣候水平。該分娩舍單元共有母豬36頭,仔豬396頭,仔豬豬齡為8~14 d。本試驗(yàn)采用熱線式風(fēng)速儀(德國德圖集團(tuán),型號(hào)testo 425,量程為0~20 m/s,精度為0.03 m/s+5%測(cè)量值)和溫濕度計(jì)(中國臺(tái)灣群特股份有限公司,型號(hào)CENTER 310,溫度測(cè)量范圍:?20~60 ℃,相對(duì)濕度測(cè)量范圍:0~100%)檢測(cè)豬舍內(nèi)外環(huán)境中的風(fēng)速、溫度和相對(duì)濕度。熱成像儀(美國菲力爾公司,型號(hào)FLIR T400,熱靈敏度<0.045 ℃,測(cè)量范圍:?20~120 ℃)則用于測(cè)量圍護(hù)結(jié)構(gòu)的內(nèi)表面溫度,以及母豬與仔豬體表的溫度。
測(cè)量點(diǎn)的分布如圖2所示,作為后續(xù)模擬驗(yàn)證條件。采用無線多源多節(jié)點(diǎn)監(jiān)測(cè)系統(tǒng)[32-33],該系統(tǒng)由多個(gè)監(jiān)測(cè)傳感器節(jié)點(diǎn)以及1個(gè)主節(jié)點(diǎn)組成。監(jiān)測(cè)傳感器節(jié)點(diǎn)為溫濕一體傳感器,高度()分別為90、50和35 cm。=90 cm的無線傳感器置于豬頭部上方側(cè)邊區(qū)域,監(jiān)測(cè)母豬頭部上方的溫度,每列間隔布置8個(gè)。=50 cm的傳感器置于豬欄擋板中間位置,每列間隔布置8個(gè),監(jiān)測(cè)仔豬群上方的溫度。=35 cm的傳感器置于過道的豬尾部欄擋板上,監(jiān)測(cè)豬欄尾部溫度。同時(shí),在舍外和濕簾后分別布置2個(gè)無線傳感器節(jié)點(diǎn)。
為評(píng)價(jià)舍內(nèi)溫濕度場(chǎng)的分布狀況,引入不均勻系數(shù)作為其評(píng)價(jià)指標(biāo)[34]。絕對(duì)均勻度可用下式表示:
式中t為第個(gè)測(cè)點(diǎn)的溫度,℃;t為個(gè)測(cè)點(diǎn)的平均溫度,℃。
注:圖中0~15號(hào)節(jié)點(diǎn)高度90cm;16~33號(hào)節(jié)點(diǎn)高度為50cm;34~41號(hào)節(jié)點(diǎn)高度為35 cm;42、43號(hào)節(jié)點(diǎn)在濕簾后,高度35cm;44、45號(hào)節(jié)點(diǎn)在室外、濕簾前,高度100cm。
Note: Height of node 0-15 is 90 cm;height of node 16-33 is 50 cm; height of node 34-41 is 30 cm;height of node 42,43is 35 cm,behind the wet curtain; height of node 44,45is 100 cm, outdoor and in front of wet curtain.
圖2 分娩舍傳感器節(jié)點(diǎn)布置示意圖
Fig.2 Schematic diagram of sensor layout in delivery house
2.1.1 質(zhì)量守恒方程
任何流動(dòng)問題都滿足質(zhì)量守恒定律,即:?jiǎn)挝粫r(shí)間內(nèi)流體微元體中質(zhì)量的增加等于同一時(shí)間間隔內(nèi)流入該微元體的凈質(zhì)量。
2.1.2 動(dòng)量守恒方程
動(dòng)量守恒定律即:微元體中流體動(dòng)量對(duì)時(shí)間的變化率等于外界作用在該微元體上的各種力之和。
2.1.3 能量守恒方程
2.1.4 組分傳輸方程
為研究舍內(nèi)濕度場(chǎng)的分布規(guī)律,引入基于組分質(zhì)量分?jǐn)?shù)的輸運(yùn)方程[35]。其方程為
式中Y為組分的質(zhì)量分?jǐn)?shù),本研究即為水蒸氣的質(zhì)量分?jǐn)?shù),通過試驗(yàn)測(cè)得進(jìn)口的相對(duì)濕度為99%,轉(zhuǎn)換成質(zhì)量分?jǐn)?shù)的數(shù)值為0.014 788;S為水蒸氣質(zhì)量源項(xiàng),kg/(m3·s)。
為提高計(jì)算效率,節(jié)約計(jì)算機(jī)模擬時(shí)間,采用SolidWorks建立分娩母豬舍物理模型(圖3),并簡(jiǎn)化限位欄、漏糞地板、母豬和仔豬等結(jié)構(gòu),將母豬和仔豬假設(shè)為與實(shí)際等三維尺寸的長(zhǎng)方體[27]。采用ICEM CFD將模型離散成四面體非結(jié)構(gòu)網(wǎng)格(圖4),并對(duì)壁面、仔豬與母豬進(jìn)行局部加密。所劃分的網(wǎng)格單元數(shù)2 695 341,節(jié)點(diǎn)數(shù)為1 612 356,整體的網(wǎng)格數(shù)量為1 690 897。
圖3 豬舍模型圖
圖4 網(wǎng)格模型
為簡(jiǎn)化模型,提高仿真效率,對(duì)模型進(jìn)行如下假設(shè)[36-37]
1)舍內(nèi)氣體為牛頓流體;
2)舍內(nèi)氣體在流動(dòng)過程中不可壓縮且符合Boussinesq假設(shè);
3)水蒸氣在固體壁面不凝結(jié);
4)舍內(nèi)氣密性良好。
在該模擬研究中,由于試驗(yàn)測(cè)試時(shí),豬舍外界溫度較穩(wěn)定,負(fù)壓風(fēng)機(jī)連續(xù)運(yùn)行,故采用穩(wěn)態(tài)模擬[2]。
對(duì)分娩母豬舍模型進(jìn)行雷諾數(shù)求解[37-38],雷諾數(shù)根據(jù)經(jīng)驗(yàn)公式(6)計(jì)算。
式中(雷諾數(shù))為流體力學(xué)中表征黏性影響的相似準(zhǔn)則數(shù);為流體密度,取1.225 kg/m3;為速度,取1.445 m/s;為特征直徑,取0.3 m;為動(dòng)力粘度系數(shù),取17.9×10-6Pa·s。求得雷諾數(shù)約為29 667,為高湍流狀態(tài),故選擇湍流模型。
Seo等[17,26]和Lee等[39]發(fā)現(xiàn)重整化群RNG湍流模型能有效表達(dá)畜禽舍內(nèi)流場(chǎng)分布,故本研究選擇精度較高的重整化群RNG湍流模型開展了數(shù)值模擬。
舍內(nèi)進(jìn)氣口設(shè)置為速度入口,共計(jì)36個(gè)速度入口。出口邊界條件設(shè)置為壓力出口。固體壁面為無滑移的壁面,熱邊界條件設(shè)置為溫度。考慮到豬只的產(chǎn)熱最終作用于體溫的維持,故將豬只設(shè)置為恒溫體,表面溫度由熱成像儀獲得,忽略豬只的呼吸熱。舍內(nèi)空間較大,豬只表面對(duì)氣流的影響較小,故將其表面設(shè)置為光滑壁面。
風(fēng)機(jī)出口設(shè)為壓力出口,其他邊界條件設(shè)置如表1所示。
表1 邊界條件設(shè)置
圖5a為各測(cè)點(diǎn)實(shí)測(cè)溫度與模擬溫度對(duì)比圖。其中,溫度模擬值與實(shí)測(cè)值最大差值不超過4 ℃,相對(duì)誤差為0.44%~17.04%,平均相對(duì)誤差為6.5%。圖5b為各測(cè)點(diǎn)相對(duì)濕度實(shí)測(cè)值與模擬值對(duì)比圖。其中,相對(duì)濕度模擬值與實(shí)測(cè)值最大差值不超過10%RH,相對(duì)誤差為0%~13.9%,平均相對(duì)誤差為7.3%,相比于謝秋菊等[31]的濕度相對(duì)誤差為49.66%的結(jié)果更準(zhǔn)確。通過式(1)可得,豬舍的溫度場(chǎng)均勻性系數(shù)為1.29,相對(duì)濕度場(chǎng)均勻性系數(shù)為1.51,溫度場(chǎng)均勻性比濕度場(chǎng)好。從對(duì)比結(jié)果可以發(fā)現(xiàn),溫度模擬值相對(duì)于實(shí)測(cè)值整體上偏小,而相對(duì)濕度模擬值相對(duì)于實(shí)測(cè)值整體偏大,可能是因?yàn)槟M過程中未考慮豬只的呼吸熱,從而造成溫度的模擬結(jié)果偏小。同時(shí)由于溫度模擬值比實(shí)測(cè)值偏低,導(dǎo)致相同質(zhì)量的水蒸氣在表示為相對(duì)濕度時(shí)數(shù)值會(huì)偏大。計(jì)算結(jié)果的相對(duì)誤差在合理的范圍內(nèi),模擬結(jié)果較可靠,可準(zhǔn)確揭示豬舍內(nèi)的溫濕度場(chǎng)分布情況。
圖5 各測(cè)點(diǎn)實(shí)測(cè)值與模擬值對(duì)比
3.2.1 溫度場(chǎng)
圖6a為截取的豬舍縱截面()分別為=5.5 m、=12.7 m、=18.1 m、=22.7 m(風(fēng)機(jī)所在截面)、=28.9 m的5個(gè)平面內(nèi)的溫度分布圖。其中,各截面上在水平位置上隨著高度的增加,溫度逐漸升高,且以過道中線為對(duì)稱軸,各縱截面的溫度分布呈現(xiàn)出明顯的對(duì)稱性,說明舍內(nèi)溫度在過道兩側(cè)的分布較為一致,驗(yàn)證了該舍采用的負(fù)壓濕簾通風(fēng)系統(tǒng)中將進(jìn)風(fēng)口對(duì)稱布置的科學(xué)性。在靠近門口、遠(yuǎn)離風(fēng)機(jī)的=5.5 m和=12.7 m 兩個(gè)縱截面內(nèi),溫度的波動(dòng)相對(duì)較小,范圍主要分布在20~24 ℃。在較靠近風(fēng)機(jī)的=18.1 m和=28.9 m 兩個(gè)縱截面內(nèi),溫度波動(dòng)較大,且底部溫度較低,但隨著高度的增加,溫度梯度增大(圖6c),頂部溫度約為27 ℃,一部分原因是由于靠近風(fēng)機(jī)的頂部區(qū)域存在氣流死區(qū),導(dǎo)致部分區(qū)域與頂部換熱之后造成局部溫度較高;另一部分原因則是由于舍內(nèi)頂部的熱負(fù)荷較大,熱量主要從天花板傳入分娩舍內(nèi)部,因此使用具有良好隔熱效果的保溫材料對(duì)維持舍內(nèi)溫度場(chǎng)的均勻性具有良好效果。在風(fēng)機(jī)所在截面的=22.7 m內(nèi),溫度分布與遠(yuǎn)離風(fēng)機(jī)的縱截面類似,在該截面的中部區(qū)域(過道),較高區(qū)域的溫度較低,原因是該區(qū)域內(nèi)存在較大的氣流速度,四周的新風(fēng)經(jīng)過短暫的換熱后被吹出舍外,使得該區(qū)域的溫度較低。整體而言,舍內(nèi)溫度在縱截面的分布較均勻,主要分布范圍為21~25℃。
圖6b為截取的豬舍橫截面()分別為=0.2 m、=2.7 m(風(fēng)機(jī)所在截面)、=5.6 m的3個(gè)平面內(nèi)的溫度分布圖。如圖6b 三個(gè)位置的橫截面所示,在過道兩側(cè)的平面內(nèi),溫度在水平高度上具有明顯的分布梯度,而在過道平面內(nèi),溫度在水平高度上分布較均勻,主要保持在23~24 ℃,出風(fēng)口的出風(fēng)溫度為24 ℃左右。豬群所在區(qū)域,溫度基本維持在22~23 ℃。從圖中可以看到,吹向豬只頭部區(qū)域的新風(fēng)溫度為20 ℃,對(duì)豬只換熱后擴(kuò)散到周圍空氣中,因此不會(huì)出現(xiàn)仔豬直接吹冷風(fēng)的現(xiàn)象,且電熱毯為仔豬提供了及時(shí)的取暖。
圖6 溫度場(chǎng)分布
3.2.2 濕度場(chǎng)
圖7a為截取的豬舍縱截面()分別為=5.5 m、=12.7 m、=18.1 m、=23.5m(靠近風(fēng)機(jī)截面)、=28.9 m的5個(gè)平面內(nèi)的相對(duì)濕度分布圖。各截面相對(duì)濕度隨著高度的增加而逐漸降低。底部的進(jìn)風(fēng)口區(qū)域的相對(duì)濕度在90%以上,越靠近中間過道,相對(duì)濕度有降低的趨勢(shì),但降幅不明顯,過道處的相對(duì)濕度在80%以上。在仔豬與母豬所處的位置高度內(nèi),相對(duì)濕度的分布大部分在80%以上。觀察各截面與風(fēng)機(jī)的距離關(guān)系可以發(fā)現(xiàn),越遠(yuǎn)離風(fēng)機(jī)的截面,相對(duì)濕度變化越大,范圍波動(dòng)更明顯;而越靠近風(fēng)機(jī)的截面內(nèi)相對(duì)濕度值波動(dòng)較小,可能是因?yàn)樵诳拷L(fēng)機(jī)的截面內(nèi)風(fēng)速較大,水蒸氣迅速地被帶出舍外。同時(shí)出風(fēng)口處的氣溫較低,相對(duì)濕度的變化更小。各截面的相對(duì)濕度分布與溫度類似,同樣以過道中線為對(duì)稱軸,具有明顯的對(duì)稱性。
圖7b為截取的豬舍橫截面分別為=0.2 m、=2.7 m(風(fēng)機(jī)所在截面)、=5.6 m的3個(gè)平面內(nèi)的相對(duì)濕度分布圖。與溫度分布規(guī)律相反,各截面內(nèi)相對(duì)濕度隨著高度的增加而逐漸降低,原因是由于水汽的沉積導(dǎo)致舍內(nèi)濕度分布呈現(xiàn)“下高上低”的現(xiàn)象,整體分布范圍主要在80%~100%。由于進(jìn)風(fēng)口進(jìn)入的新風(fēng)相對(duì)濕度較高,母豬需要承受較高的空氣濕度,同時(shí),仔豬也由于濕度的擴(kuò)散會(huì)受到空氣濕度過高的影響,這是夏季南方地區(qū)采用負(fù)壓濕簾通風(fēng)系統(tǒng)對(duì)舍內(nèi)降溫必然導(dǎo)致的進(jìn)風(fēng)濕度較高的問題,如何對(duì)進(jìn)風(fēng)水汽進(jìn)行有效除濕,并保證送風(fēng)濕度在合理范圍,是目前對(duì)畜禽舍內(nèi)環(huán)境調(diào)控的重點(diǎn)與難點(diǎn)。
3.2.3 速度場(chǎng)
圖8a為截取的豬舍縱截面()分別為=5.5 m、=12.7 m、=18.1 m、=22.7 m(風(fēng)機(jī)所在截面)、=28.9 m的5個(gè)平面內(nèi)的氣流速度分布圖。其中,在風(fēng)機(jī)遠(yuǎn)墻一側(cè),由于縱深較長(zhǎng),導(dǎo)致氣流速度的匯集作用更明顯,因此隨著縱截面離風(fēng)機(jī)距離的減小,出現(xiàn)截面內(nèi)風(fēng)速變化相對(duì)劇烈的情況;在此側(cè)離風(fēng)機(jī)較遠(yuǎn)的=5.5 m截面,氣流速度的變化范圍主要在0~0.2 m/s,而在較靠近風(fēng)機(jī)的=18.1 m截面內(nèi)氣流速度保持在0.2~0.5 m/s。而在風(fēng)機(jī)近墻一側(cè),=39.5 m的截面內(nèi)氣流速度變化較小,與截面=5.5 m類似,該截面內(nèi)主要是在底部存在較小的氣流速度,隨著高度的增加氣流速度逐漸減小,在豬只高度以上的氣流速度大部分為0。在=22.7 m截面內(nèi),氣流速度有明顯的分區(qū)現(xiàn)象,氣流主要匯集在靠近出口處,氣流在該縱截面下方的速度較小,可能是由于氣流方向主要是以水平截面為主,在縱截面上的較低位置氣流速度并不大。但在接近風(fēng)機(jī)出口高度0.2 m的位置,氣流速度急劇增加。氣流速度與溫濕度類似,也存在著較為明顯的對(duì)稱分布特性。整體而言,舍內(nèi)縱截面風(fēng)速能滿足國標(biāo)要求,即使是在風(fēng)速較大的進(jìn)風(fēng)口位置,風(fēng)速維持在0.4 m/s以下,結(jié)合水平截面與縱截面的氣流分布來看,舍內(nèi)豬只高度以下不存在氣流死區(qū)。同時(shí),越靠近風(fēng)機(jī)的豬只需要承受更大的縱向氣流,但是氣流速度在國標(biāo)規(guī)定值以下,說明了該時(shí)刻的舍內(nèi)風(fēng)速能保證豬只的正常需求。
圖8b為截取的豬舍橫截面()分別為=0.2 m、=2.7 m(風(fēng)機(jī)所在截面)、=5.6 m的3個(gè)平面內(nèi)的氣流速度分布圖。從過道兩側(cè)截面可以發(fā)現(xiàn),在豬只旁邊會(huì)存在一個(gè)小的射流,射流方向指向風(fēng)機(jī)方位,說明負(fù)壓通風(fēng)的效果顯著,對(duì)舍內(nèi)的氣流風(fēng)向起到了較強(qiáng)牽引作用。在靠風(fēng)機(jī)較遠(yuǎn)一側(cè),負(fù)壓抽風(fēng)的影響范圍比靠風(fēng)機(jī)較近的一側(cè)影響更大,因此離風(fēng)機(jī)較遠(yuǎn)側(cè)的豬只會(huì)受到較大氣流速度的影響。為減少風(fēng)機(jī)遠(yuǎn)側(cè)氣流速度較大的影響,有必要針對(duì)不同位置設(shè)計(jì)不同結(jié)構(gòu)的風(fēng)口,以改善舍內(nèi)豬只生活的舒適性。除了風(fēng)機(jī)下部以及進(jìn)風(fēng)口位置會(huì)存在較大氣流,在整個(gè)豬舍的其它大部分位置氣流都在0.4 m/s以下,在貼近出風(fēng)口附近的下部,風(fēng)速也較小,說明了此種地溝進(jìn)風(fēng)、中央排風(fēng)的負(fù)壓濕簾通風(fēng)方式能較好的滿足舍內(nèi)通風(fēng)情況,該舍對(duì)于縱向長(zhǎng)度的選擇、風(fēng)機(jī)的安裝位置、進(jìn)風(fēng)速度的設(shè)定都較為合理。
圖8 速度場(chǎng)分布
通過建立地溝進(jìn)風(fēng)、中央排風(fēng)式分娩母豬舍的CFD模型,對(duì)分娩舍的溫濕度場(chǎng)進(jìn)行耦合模擬,主要得出以下結(jié)論:
1)采用該模型模擬分娩舍的溫濕度場(chǎng),溫度模擬值與實(shí)測(cè)值最大差值不超過4 ℃,相對(duì)誤差為0.44%~17.04%,平均相對(duì)誤差為6.5%。相對(duì)濕度模擬值與實(shí)測(cè)值最大差值不超過10%RH,且相對(duì)誤差為0%~13.9%,平均相對(duì)誤差為7.3%。模擬溫度值相對(duì)于實(shí)測(cè)值整體上偏小,而相對(duì)濕度模擬值相對(duì)于實(shí)測(cè)值整體偏大。
2)從溫濕度的空間分布可以看出,溫度隨著垂直高度的增加而增加,且溫度梯度逐漸增大;而相對(duì)濕度則隨著垂直高度的增加而減小。豬舍的溫度場(chǎng)均勻性系數(shù)為1.29,相對(duì)濕度場(chǎng)均勻性系數(shù)為1.51,溫度場(chǎng)均勻性比濕度場(chǎng)的較好。風(fēng)機(jī)的距離可以影響相對(duì)濕度在空間上的分布,距離風(fēng)機(jī)越遠(yuǎn),相對(duì)濕度變化越大,波動(dòng)更明顯。
3)從速度場(chǎng)的空間分布可以看出,隨著垂直高度的增加,風(fēng)速逐漸減小,且在豬只旁產(chǎn)生一個(gè)小的射流,該射流方向指向風(fēng)機(jī)方位,可以看出負(fù)壓通風(fēng)的效果較為顯著。
本研究對(duì)分娩母豬舍進(jìn)行溫濕度場(chǎng)的耦合模擬,得到舍內(nèi)溫濕度場(chǎng)和氣流組織的分布規(guī)律,對(duì)集中通風(fēng)式豬舍的溫濕度場(chǎng)優(yōu)化具有一定的參考意義。
[1]李偉,李保明,施正香,等. 夏季水冷式豬床的降溫效果及其對(duì)母豬躺臥行為的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(11):242-246. Li Wei, Li Baoming, Shi Zhengxiang, et al. Cooling effect of water-cooled cover on lying behavior of sows in summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 242-246. (in Chinese with English abstract)
[2]汪開英,李開泰,李王林娟,等. 保育舍冬季濕熱環(huán)境與顆粒物CFD模擬研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):270-278.
Wang Kaiying, Li Kaitai, Li Wanglinjuan, et al. CFD simulation of indoor hygrothermal environment and particle matter of weaned pig building[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 270-278. (in Chinese with English abstract)
[3]Zhao Yunxiang, Liu Xiaohong, Mo Delin, et al. Analysis of reasons for sow culling and seasonal effects on reproductive disorders in southern China[J]. Animal Reproduction Science, 2015, 159: 191-197.
[4]Myer R, Bucklin R. In?uence of hot-humid environment on growth performance and reproduction of swine[J]. 2018. http://edis.ifas.u?.edu/AN107.
[5]Xiong Yan, Meng Qingshi, Gao Jie, et al. Effects of relative humidity on animal health and welfare[J]. Journal of Integrative Agriculture, 2017, 16(8): 1653-1658.
[6]Suriyasomboon A, Lundeheimd N, Kunavongkrit A. Effectof temperature and humidity on sperm production in Durocboars under different housing systems in Thailand[J]. Livestock Production Science, 2004, 89(1): 19-31.
[7]Chiang S H, Hsia L C. The effect of wet pad and forced ventilation house on the reproductive performance of boar[J]. Asian Australasian Journal of Animal Sciences, 2005, 18(1): 96-101.
[8]賀城,牛智有,廖娜. 基于CFX的豬舍縱向與橫向通風(fēng)流場(chǎng)模擬[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,28(5):641-644.
He Cheng, Niu Zhiyou, Liao Na. Vertical and horizontal wind field simulation of pigsty based on CFX[J]. Journal of Huazhong Agricultural University, 2009, 28(5): 641-644. (in Chinese with English abstract)
[9]Wang Chaoyuan, Cao Wei, Li Baoming, et al. A fuzzy mathematical method to evaluate the suitability of an evaporative pad cooling system for poultry houses in China[J]. Biosystems Engineering, 2008, 101(3): 370-375.
[10]Xuan Y M, Xiao F, Niu X F, et al. Research and applicationof evaporative cooling in China: A review (I)–research[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3535-3546.
[11]Da?tekin M, Karaca C, Yildiz Y, et al. The effects of air velocity on the performance of pad evaporative cooling systems[J]. African Journal of Agricultural Research, 2011, 6(7): 1813-1822.
[12]Guo H, Dehod W, Agnew J, et al. Daytime odor emission variations from various swinebarns[J]. Transactions of the ASABE, 2007, 50(4): 1365-1372.
[13]Huynh T T T, Aarnink A J A, Gerrits W J J, et al. Thermal behavior of growing pigs in response to high temperature and humidity[J]. Applied Animal Behavior Science, 2005, 91: 1-16.
[14]Morsing S, Zhang G, Str?m J S, et al. Air velocity and temperature distribution in a covered creep for piglets[J]. Transactions of the ASABE, 2004, 47(5): 1747-1755.
[15]Myer R O, Bucklin R A. Influence of rearing environment and season on growth performance of growing finishing pigs[J]. Transactions of the ASABE, 2007, 50(2): 615-620.
[16]Wathes C M, Demmers T G M, Teer N, et al. Production responses of weaned pigs after chronic exposure to airborne dust and ammonia[J]. Animal Science, 2004, 78: 87-97.
[17]Seo I H, Lee I B, Moon O K, et al. Modelling of internal environmental conditions in a full-scale commercial pig house containing animals[J]. Biosystems Engineering, 2012, 111(1): 91-106.
[18]Morsing S, Str?m J S, Zhang G, et al. Scale model experiments to determine the effects of internal airflow and floor design on gaseous emissions from animal houses[J]. Biosystems Engineering, 2008, 99(1): 99-104.
[19]Zhang G, Bjerg B, Svidt K, et al. Measurements of isothermal compact ceiling jets generated by rectangular wall inlets[J]. Biosystems Engineering, 2002, 82(4): 463-468.
[20]Fernando R, Bournet P E, Hassouna M, et al. Modelling heat and mass transfer of a broiler house using computational fluid dynamics[J]. Biosystems Engineering, 2015, 136: 25-38.
[21]Kwon K S, Lee I B, Zhang G Q, et al. Computational fluid dynamics analysis of the thermal distribution of animal occupied zones using the jet-drop-distance concept in a mechanically ventilated broiler house[J]. Biosystems Engineering, 2015, 136: 51-68.
[22]Toma’s N, Jim G, Richard F, et al. Optimising the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity[J]. Building and Environment, 2010, 45: 983-995.
[23]Li R, Peter V N, Bjarne B, et al. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality[J]. Computers and Electronics in Agriculture, 2016, 121: 180-190.
[24]Bjarne B, Giovanni C, Lee I B, et al. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling[J]. Biosystems Engineering, 2013, 116(3): 259-275.
[25]Demmers T G M, Burgess, L R, Phillips V R, et al. Assessment of techniques for measuring the ventilation rate, using an experimental building section[J]. Journal of Agricultural Engineering Research, 2000, 76(1): 71-81.
[26]Seo I H, Lee I B, Moon O K, et al. Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations[J]. Biosystems Engineering, 2009, 104(1): 106-117.
[27]林加勇,劉繼軍,孟慶利,等. 公豬舍夏季溫度和流場(chǎng)數(shù)值CFD模擬及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):207—212.
Lin Jiayong, Liu Jijun, Meng Qingli, et al. Numerical CFD simulation and verification of summer indoor temperature and airflow field in boar building[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 207—212. (in Chinese with English abstract)
[28]Sun H, Stowell R R, Keener H M. et al. Two-dimensional computational fluid dynamics modeling of air velocity and ammonia distribution in a high-rise hog building[J]. Transactions of the ASAE. 2002, 45(5): 1559—1568.
[29]Sun H, Keener H, Deng W, et al. Development and validation of 3-D CFD models to simulate airflow and ammonia distribution in a high-rise hog building during summer and winter conditions[J]. Agricultural Engineering International CIGR. 2004, 6.
[30]王小超,陳昭輝,王美芝,等. 冬季豬舍熱回收換氣系統(tǒng)供暖的數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):227-233. Wang Xiaochao, Chen Zhaohui, Wang Meizhi, et al. Numerical simulation of heat supply for heat recovery ventilation system of piggery in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 227-233. (in Chinese with English Abstract)
[31]謝秋菊,倪既勤,包軍,等. 基于能質(zhì)平衡的密閉豬舍內(nèi)小氣候環(huán)境模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):148-156. Xie Qiuju, Ni Qinging, Bao Jun, et al. Simulation and verification of microclimate environment in closed swine house based on energy and mass balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 148-156. (in Chinese with English abstract)
[32]呂恩利,陸華忠,王廣海,等. 一種畜禽養(yǎng)殖環(huán)境參數(shù)多點(diǎn)無線智能監(jiān)控系統(tǒng)及其方法:CN201910281334.3[P]. 2019-04-09.
[33]呂恩利,陸華忠,王廣海,等. 一種環(huán)境多源信息感知和預(yù)警系統(tǒng)及其方法:CN201910281348.5[P]. 2019-04-09.
[34]謝如鶴,唐海洋,陶文博,等. 基于空載溫度場(chǎng)模擬與試驗(yàn)的冷藏車?yán)浒宀贾梅绞絻?yōu)選[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):290—298.Xie Ruhe, Tang Haiyang, Tao Wenbo, et al. Optimization of cold-plate location in refrigerated vehicles based on simulation and test of no-load temperature field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 290-298. (in Chinese with English abstract)
[35]譚升魁,王銳,安瑞冬,等. 基于組分輸運(yùn)模型和RNG-模型的渾水異重流數(shù)學(xué)模型研究及其應(yīng)用[J].四川大學(xué)學(xué)報(bào):工程科學(xué)版,2011,43(S1):48-53. Tan Shengkui, Wang Rui, An Ruidong, et al. Research and application of numerical model of turbidity currents based on species transport model and RNG-model[J]. Journal of Sichuan University: Engineering Science Edition, 2011, 43(Supp.1): 48-53. (in Chinese with English abstract)
[36]程秀花,毛罕平,倪軍. 溫室環(huán)境作物濕熱系統(tǒng) CFD 模型構(gòu)建與預(yù)測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):173-179. Cheng Xiuhua, Mao Hanping, Ni Jun. Numerical prediction and CFD modeling of relative humidity and temperature for greenhouse-crops system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 42(2): 173-179. (in Chinese with English abstract)
[37]劉妍華,曾志雄,郭嘉明,等. 增施CO2氣肥對(duì)溫室流場(chǎng)影響的數(shù)值模擬及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):194-199.
Liu Yanhua, Zeng Zhixiong, Guo Jiaming, et al. Numerical simulation and experimental verification of effect of CO2enrichment on flow field of greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 194-199. (in Chinese with English abstract)
[38]Guo Jiaming, Liu Yanhua, Lü Enli. Numerical simulation of temperature decreases in greenhouses with summer water-sprinkling roof[J]. Energies. 2019, 12: 24-35.
[39]Lee I, Sase S, Sung S. Evaluation of CFD accuracy for the ventilation study of a naturally ventilated broiler house[J]. JARQ, 2007, 41(1): 53-64.
Numerical simulation and experimental verification of temperature and humidity in centralized ventilated delivery pigsty
Zeng Zhixiong1, Wei Xinyu1, Lü Enli1, Liu Yanhua2, Yi Ziqi1, Guo Jiaming1※
(1.,510642,; 2.,,510642,)
High requirements for the environment are needed for pigs in the delivery house. This paper aimed to study the distribution of temperature and humidity in a centralized ventilated delivery house by numerical simulation. Tetrahedral non-structural meshes were used for mesh division, and the RNGturbulence model with high precision was used for steady-state simulation. The results showed that the maximum difference between the simulated temperature and the measured temperature was less than 4 ℃, and the relative error was 0.44% to 17.04%, while the average relative error was 6.5%. The maximum difference between simulated humidity and measured humidity is less than 10%, and the relative error was 0 to 13.9%, while the average relative error was 7.3%. The simulated value of temperature was smaller compared with the measured value, while the simulated value of relative humidity was larger than the tested value. It could be seen from the Z cross-section that in the horizontal position of each section, the temperature gradually increased with the increase of height, and the median line of the aisle was taken as the axis of symmetry. The temperature distribution of each longitudinal section presented an obvious symmetry, indicating that the temperature distribution in the dormitory was consistent on both sides of the aisle. The relative humidity of each section decreases gradually with the increase of height. The relative humidity of the air inlet area at the bottom was above 90%. The closer it was to the middle passage, the relative humidity tends to decrease, but the decrease was not obvious. The relative humidity in the passage was above 80%. The wind speed of the longitudinal section in the shed could meet the requirements of the national standards. Even in the position of the inlet with high wind speed, the wind speed was maintained below 0.4 m/s. According to the airflow distribution of the horizontal section and the longitudinal section, there was no airflow dead zone below the height of the pigs in the shed. At the same time, the closer the pig was to the fan, the greater the longitudinal airflow, but the speed of the airflow was below the national standard. In the plane (X cross-section) on both sides of the aisle, the temperature had an obvious distribution gradient in the horizontal height, while in the plane of the aisle, the temperature was evenly distributed in the horizontal height, mainly maintained at 23-24 ℃, and the air outlet temperature was about 24 ℃. Contrary to the temperature distribution law in the X cross-section, the relative humidity in each section gradually decreased with the increase of height, and the distribution range was mainly between 80% and 100%. From the cross-sections on both sides of the corridor, it could be found that there was a small jet beside the pigs, and the jet direction pointed to the fan bearing, indicating that the effect of negative pressure ventilation was significant, which played a strong drag role on the airflow direction in the shed. On the far side of the fan, the influence range of negative pressure exhaust was greater than that on the near side of the fan. Simulated values had a great agreement with experimental values. The study revealed the temperature and humidity distribution of the delivery house and provided a better reference for the optimization of the temperature and humidity distribution of the delivery house.
numerical simulation; piggery; temperature; humidity; distribution characteristics
曾志雄,魏鑫鈺,呂恩利,劉妍華,易子騏,郭嘉明. 集中通風(fēng)式分娩母豬舍溫濕度數(shù)值模擬與試驗(yàn)驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):210-217.doi:10.11975/j.issn.1002-6819.2020.03.026 http://www.tcsae.org
Zeng Zhixiong, Wei Xinyu, Lü Enli, Liu Yanhua, Yi Ziqi, Guo Jiaming. Numerical simulation and experimental verification of temperature and humidity in centralized ventilated delivery pigsty[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 210-217. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.026 http://www.tcsae.org
2019-11-27
2020-01-08
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0401305-2);國家自然科學(xué)基金項(xiàng)目(31971806和31901736);廣東省普通高校青年創(chuàng)新人才項(xiàng)目(自然科學(xué))(2017GkQNCX010);廣東省畜禽疫病防治研究重點(diǎn)實(shí)驗(yàn)室開放基金(YDWS1904)
曾志雄,博士生,實(shí)驗(yàn)師,主要研究方向?yàn)樾笄莪h(huán)境調(diào)控研究。Email:zhixzeng@scau.edu.cn
郭嘉明,副教授,博士,主要從事設(shè)施農(nóng)業(yè)環(huán)境調(diào)控研究。Email:jmguo@scau.edu.cn
10.11975/j.issn.1002-6819.2020.03.026
S24; S-3
A
1002-6819(2020)-03-0210-08