朱芷葳,侯淑寧,郝慶玲,景炅婕,呂麗華,李鵬飛
牛卵泡AGTR2序列結(jié)構(gòu)及表達(dá)特性分析
朱芷葳1,侯淑寧1,郝慶玲1,景炅婕2,呂麗華2,李鵬飛1
(1山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,山西太谷 030801;2山西農(nóng)業(yè)大學(xué)動物科技學(xué)院,山西太谷 030801)
【】研究牛卵泡發(fā)育過程中關(guān)鍵調(diào)控蛋白CART的候選受體AGTR2的分子特征和立體結(jié)構(gòu),并結(jié)合AGTR2在不同生理狀態(tài)牛卵泡的表達(dá)特性分析其功能。同期發(fā)情處理后,經(jīng)B超聲波連續(xù)監(jiān)測(每12 h 一次)采集牛雙側(cè)卵巢,分離優(yōu)勢卵泡(dominant follicles, DF)和從屬卵泡(subordinate follicles, SF);其中3頭牛DF和SF分別分離顆粒細(xì)胞(granulosa cells, GCs),抽提總RNA后,經(jīng)反轉(zhuǎn)錄、引物特異性擴增、膠回收及測序,獲得AGTR2基因全CDS區(qū);生物信息學(xué)方法對其序列結(jié)構(gòu)、親緣關(guān)系及立體結(jié)構(gòu)進行分析;設(shè)計2和內(nèi)參基因0 qRT-PCR引物,分析2在牛DF和SF的差異表達(dá)情況;另1頭牛DF和SF經(jīng)4%多聚甲醛固定后,設(shè)定陽性、陰性對照組和試驗組,應(yīng)用免疫組織化學(xué)技術(shù)對AGTR2進行表達(dá)和定位分析。2 CDS區(qū)全長1 089 bp,編碼362個氨基酸;牛卵泡AGTR2氨基酸序列與NCBI數(shù)據(jù)庫獲得的其他24種動物對應(yīng)的氨基酸序列BLAST分析表明,該序列與印度水牛序列相似性最高(99.4%),與其他動物序列相似性為92.0%—98.9%;立體結(jié)構(gòu)和功能域分析表明,AGTR2立體結(jié)構(gòu)中包含有7個橫跨細(xì)胞膜的平行的α螺旋結(jié)構(gòu),符合G蛋白偶聯(lián)受體(G-protein-coupled receptors, GPCRs)的典型特征;qRT-PCR分析結(jié)果表明2 mRNA在DF的表達(dá)量極顯著高于SF(<0.01),且差異表達(dá)倍數(shù)達(dá)7.47倍;免疫組織化學(xué)分析結(jié)果表明AGTR2在牛DF和SF顆粒層、膜層細(xì)胞均有表達(dá),特異性顯色強度表明AGTR2在SF膜層細(xì)胞表達(dá)量高于DF。AGTR2屬于G蛋白偶聯(lián)受體,符合神經(jīng)肽CART受體的基本特征;本試驗為進一步研究AGTR2在牛卵泡發(fā)育過程中調(diào)控信號通路和激素分泌的機理奠定基礎(chǔ),同時,對后期鑒定CART的受體、深入闡明CART調(diào)控牛卵泡發(fā)育的作用機理具有重要意義。
牛;卵泡發(fā)育;CART;G蛋白偶聯(lián)受體;AGTR2
【研究意義】牛屬于單胎動物,發(fā)情期通常僅有一個成熟卵泡排卵,卵巢上其他卵泡最終不能發(fā)育為排卵卵泡而走向閉鎖。因此,優(yōu)良種畜卵母細(xì)胞來源嚴(yán)重制約著胚胎工程技術(shù)的廣泛應(yīng)用??煽ㄒ?苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(cocaine and amphetamine regulated transcript peptide,CART)是下丘腦分泌的神經(jīng)肽,其受體為G蛋白偶聯(lián)受體(G-protein-coupled receptors,GPCRs)家族。課題組合作研究發(fā)現(xiàn),在牛卵泡發(fā)育中CART是一個重要的卵泡發(fā)育調(diào)節(jié)因子[1-3],并通過免疫共沉淀、蛋白分子建模和分子對接對CART的受體展開篩選,將血管緊張素Ⅱ受體-2型(angiotensin II receptor,type 2,AGTR2)作為CART的候選受體[4]。本研究通過牛卵泡序列測定預(yù)測蛋白功能域,并對優(yōu)勢卵泡(dominant follicles,DF)和從屬卵泡(subordinate follicles,SF)AGTR2表達(dá)模式進行分析,為后期CART受體的鑒定奠定基礎(chǔ)?!厩叭搜芯窟M展】牛卵泡發(fā)育過程中,當(dāng)卵泡波中形成了具有排卵潛力的卵泡時,在黃體素(luteinizing hormone,LH)的刺激下釋放卵子,其他卵泡則喪失排卵能力[5-6]。在排卵期前,卵泡類固醇物質(zhì)雄激素、雌激素和孕酮,在促性腺激素和調(diào)節(jié)因子的作用下,共同刺激牛卵泡顆粒細(xì)胞(granulosa cells,GCs)分泌前列腺素,誘導(dǎo)卵泡排卵[7-9]。AGTR2屬于細(xì)胞膜GPCRs,在細(xì)胞信號轉(zhuǎn)導(dǎo)和激素調(diào)控方面具有重要作用[10]。研究表明,腎臟AGTR2對心血管和交感神經(jīng)調(diào)節(jié)、水和電解質(zhì)平衡以及激素分泌具有調(diào)控作用[11-12];AGTR2作為血管緊張素系統(tǒng)關(guān)鍵的一類生物活性肽,對刺激牛排卵前的卵泡發(fā)育[13]、兔卵巢正常發(fā)育和卵泡形成[14-15]具有重要調(diào)控作用?!颈狙芯壳腥朦c】牛卵泡發(fā)育中卵泡優(yōu)勢化標(biāo)志著排卵卵泡即將形成,該階段發(fā)育卵泡分化為兩類具有顯著生理特征的DF和SF,其中DF具有發(fā)育為排卵卵泡的潛力,而SF則趨向閉鎖。本研究以牛DF和SF作為研究對象,對CART的候選受體AGTR2結(jié)構(gòu)功能域和表達(dá)模式進行研究,具有可靠的理論依據(jù)?!緮M解決的關(guān)鍵問題】試驗中運用序列測定、結(jié)構(gòu)預(yù)測、表達(dá)和定位探討性研究AGTR2在牛卵泡發(fā)育中的調(diào)控作用,也為進一步鑒定CART的受體提供依據(jù)。
繁峙縣天河牧業(yè)肉牛養(yǎng)殖場選擇4頭12月齡健康的正常發(fā)情的海福特母牛,氯前列腺醇(寧波二廠)同期發(fā)情處理(2018年11月),B超聲波監(jiān)測并記錄卵泡生長情況,出現(xiàn)優(yōu)勢化卵泡(1個卵泡的直徑增長率顯著高于其他卵泡,此時DF直徑約8 mm左右)后,屠宰并采集雙側(cè)卵巢置于滅菌的DPBS中,帶回實驗室處理。分離最大卵泡(DF)和其他卵泡(SF),用于序列測定和qRT-PCR試驗的DF和SF(n=3)分別置于滅菌DPBS平皿中分離GCs,-80℃保存?zhèn)溆?;用于免疫組化試驗的DF和SF(n=1)置于4%的多聚甲醛溶液中固定備用。
1.2.1 總RNA提取與RT-PCR反應(yīng) Trizol法提取卵泡GCs總RNA,電泳和濃度測定合格后進行總RNA反轉(zhuǎn)錄,建立10 μL反應(yīng)體系:5×Prime ScriptTMBuffer 2 μL,Prime ScriptTMRT Enzyme Mix1 0.5 μL,Oligo dT Primer 25 pmol,隨機引物50 pmol,Total RNA 1 μL,DEPC水定容至10 μL?;靹蚝笾糜赑CR儀器中,反應(yīng)條件為37℃ 15 min,85℃ 5 s。
1.2.2 引物的設(shè)計與合成 根據(jù)Genbank上登錄牛2 mRNA(XM_002699453.4)基因組預(yù)測序列,Primer 5.0設(shè)計特異性引物,交由Takara公司合成,引物序列見表1。
表1 試驗中引物序列
F. 上游引物;R. 下游引物 F. Sense primers; R. Antisense primers
1.2.3 全CDS區(qū)擴增 擴增體系為:12.5 μL 2×Es TaqMasterMix(Cwbio),上下游PCR引物各0.5 μL,2 μL cDNA(稀釋10×),9.5 μL ddH2O定容至25 μL。擴增程序:95℃預(yù)變性2 min;95℃變性30 s,62℃退火30 s,73℃延伸1 min,30循環(huán);73℃延伸10 min。1%瓊脂糖電泳檢測后膠回收試盒純化PCR產(chǎn)物,送交Takara公司測序。
1.2.4 生物信息學(xué)分析 測序結(jié)果CDS區(qū)分析應(yīng)用ORF finder;NCBI在線BLAST 對24種動物核苷酸和氨基酸序列比對分析;3D結(jié)構(gòu)和結(jié)構(gòu)域用 Conserved Domain Search Services(CD Search)(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)分析。
1.2.5 qRT-PCR檢測 依據(jù)qRT-PCR試驗要求,數(shù)據(jù)檢測設(shè)定生物樣本重復(fù)(n=3)、技術(shù)重復(fù)(n=3)和內(nèi)參基因0(表1)校正。按照標(biāo)準(zhǔn)曲線和目的基因擴增條件進行qRT-PCR反應(yīng),反應(yīng)體系:10 μL SYBR? Green premix Ex TaqTMⅡ,0.4 μL ROX Reference Dye Ⅱ(Takara),上下游引物各0.8 μL(AGTR2-R-F和AGTR2-R-R,表1),2 μL cDNA,ddH2O定容至20 μL。反應(yīng)條件:95℃變性15 s,60℃1 min,45個循環(huán)。
1.2.6 免疫組化技術(shù)檢測 參照李鵬飛等[3]的試驗方法,固定24 h后脫色脫水包埋,連續(xù)切片厚度5 μm;二甲苯脫蠟后3% H2O2阻斷;5% BSA封閉30 min,滴加100倍稀釋兔抗AGTR2多抗(ab19134,Abcam),4℃孵育12 h;滴加二抗顯色20 min;蘇木精復(fù)染25 s后脫水透明并樹膠封片。其中陽性對照組由PBS替代一抗;陰性對照組中,兔抗AGTR2一抗與10 μg·mL-1AGTR2活性肽(ab157871,Abcam)4℃預(yù)孵育 12 h后替代一抗。
采用ΔΔCT法計算2 mRNA相對表達(dá)量,基因相對表達(dá)水平= 2–ΔΔCT。結(jié)果采用均值±SE表示,經(jīng)0表達(dá)量校正,以基因在DF的表達(dá)量作為對照組[16],SPSS(V 18.0)進行t檢驗分析。
PCR擴增后,經(jīng)凝膠電泳檢測,可見大小為1 100 bp左右的條帶,與2預(yù)期結(jié)果1 089 bp大小相符;同時可見電泳結(jié)果中有非特異性條帶存在,但不影響目的條帶的分離純化(圖1)。
M.DNA Marker;T. AGTR2目的產(chǎn)物 M. DNA Marker; T. Target product of AGTR2
測序結(jié)果顯示,牛卵泡CDS區(qū)全長1 089 bp,編碼362個氨基酸;HMMTOP v2.0分析表明,AGTR2蛋白序列中存在7個跨膜區(qū)段(圖2,下劃線部分),分別位于45—68、77—101、118—139、160—179、210—233、258—282和297—321區(qū)段,符合GPCRs的結(jié)構(gòu)特征。
將牛卵泡全CDS區(qū)序列翻譯為氨基酸序列,經(jīng)NCBI數(shù)據(jù)庫搜索獲得其他24種動物對應(yīng)的氨基酸序列,BLAST分析軟件對序列進行比對。結(jié)果表明,該序列與印度水牛序列相似性最高(99.4%),與其他動物序列相似性為92.0%—98.9%,表明AGTR2在物種進化過程中保守性較強(圖3)。
*:終止子;下劃線:跨膜區(qū)段 *: Terminator; Underscore: Transmembrane section
基于不同動物(包括偶蹄類、奇蹄類、鯨魚、靈長類、食肉類和嚙齒類)AGTR2氨基酸序列聚類分析,應(yīng)用遺傳距離鄰近法系統(tǒng)發(fā)育分析(圖4)表明,牛與印度水牛()遺傳距離最近,與野豬()遺傳距離最遠(yuǎn)。
由PDB數(shù)據(jù)庫和CDD數(shù)據(jù)庫預(yù)測AGTR2立體結(jié)構(gòu)和功能結(jié)構(gòu)域(圖5),結(jié)果顯示:氨基酸序列45—321之間共形成7個平行排列的螺旋結(jié)構(gòu)(圖5-A),并7次橫跨胞膜;功能域分析也進一步表明7次跨膜結(jié)構(gòu)(7tm)對AGTR2功能的決定作用,是典型的GPCRs(圖5-B)。
圖3 多物種氨基酸序列比對
圖4 AGTR2氨基酸序列構(gòu)建系統(tǒng)發(fā)生樹
qRT-PCR分析結(jié)果見圖6,由圖可見2 mRNA在DF的表達(dá)量極顯著高于SF(<0.01),且差異表達(dá)倍數(shù)達(dá)7.47倍。
免疫組化分析結(jié)果顯示:AGTR2在牛DF和SF顆粒層(GC)和膜層(TC)細(xì)胞均有表達(dá)(圖7-B,E),在DF陽性和陰性對照組(圖7-A,C)、SF陽性和陰性對照組(圖7-D,F(xiàn))中均無特異性顯色反應(yīng);從顯色強度上可看出SF膜層AGTR2表達(dá)量高于DF。
圖5 AGTR2立體結(jié)構(gòu)和功能域預(yù)測
**表示在顯著水平0.01的結(jié)果
動物卵泡生長發(fā)育的整個過程受到各種內(nèi)分泌激素和卵泡內(nèi)生長因子的調(diào)控,為了進一步厘清有腔卵泡生長發(fā)育的內(nèi)分泌調(diào)控機制,近年來課題組一直致力于篩選和識別參與卵泡生長發(fā)育的局部調(diào)控分子。該研究經(jīng)RT-PCR技術(shù)獲得牛卵泡2全CDS區(qū),經(jīng)生物信息學(xué)分析表明,牛卵泡AGTR2屬于GPCRs,蛋白分子結(jié)構(gòu)中存在7tm結(jié)構(gòu)域。GPCRs屬于一類膜受體的統(tǒng)稱,其特點是空間結(jié)構(gòu)中均有七個跨膜α螺旋,該結(jié)構(gòu)域?qū)⑹荏w蛋白分割為膜內(nèi)C端、膜外N端、3個膜內(nèi)Loop環(huán)和3個膜外Loop環(huán);同時,在肽鏈C端和膜內(nèi)Loop環(huán)上均有G蛋白結(jié)合位點[17]。由于GPCRs的空間結(jié)構(gòu)在細(xì)胞膜內(nèi)外都有較長的Loop環(huán)存在,因此,造成其立體結(jié)構(gòu)的穩(wěn)定性很差,通過X-射線衍射法獲得其晶體結(jié)構(gòu)時,必須通過剪切和修飾使其結(jié)構(gòu)的穩(wěn)定性提高。在應(yīng)用型研究方面,通常GPCRs作為許多藥物設(shè)計的靶點來發(fā)揮藥物的功效,使得GPCRs具有廣泛的應(yīng)用前景[18]。
A、B、C分別為優(yōu)勢卵泡陽性對照組、試驗組和陰性對照組;D、E、F分別為從屬卵泡陽性對照組、試驗組和陰性對照組;GC:顆粒細(xì)胞;TC:膜細(xì)胞;比例尺20 μm
蛋白質(zhì)磷酸化修飾參與細(xì)胞增殖、發(fā)育、分化、信號轉(zhuǎn)導(dǎo)以及神經(jīng)調(diào)控等生命活動,如CDKs(Ser/Thr激酶)通過激活周期蛋白并形成復(fù)合物,參與細(xì)胞周期調(diào)控[19],細(xì)胞內(nèi)NADPH 氧化酶和電子傳遞鏈相關(guān)蛋白均存在磷酸化調(diào)控過程[20]。對AGTR2氨基酸序列結(jié)構(gòu)分析表明,AGTR2蛋白分子中包含有5個O-糖基化、5個N-糖基化位點和41個磷酸化位點,這些蛋白修飾位點的存在使得AGTR2在成熟過程中,結(jié)構(gòu)更復(fù)雜、調(diào)控更精確、作用更專一、功能更完善。
AGTR2分子從立體結(jié)構(gòu)上看,由胞外N端和胞內(nèi)C端組成,為細(xì)胞識別和信號轉(zhuǎn)導(dǎo)功能的發(fā)揮提供了分子基礎(chǔ)。胞外區(qū)域結(jié)合細(xì)胞外信號分子,胞內(nèi)區(qū)域招募并結(jié)合下游信號分子如G蛋白和第二信使等,下游信號分子主要通過cAMP信號通路和磷脂酰肌醇信號通路參與調(diào)節(jié)體內(nèi)多項生理活動[21]。目前,AGTR2的生物學(xué)功能還不是很清楚,研究的方向主要集中在:AGTR2可能對心臟、血管起保護作用[22-23]、可能與大腦發(fā)育和認(rèn)知功能有關(guān)[24],AGTR2也可能對AGTRl起負(fù)調(diào)控作用,參與抑制細(xì)胞生長、促進細(xì)胞凋亡的生物學(xué)過程[25-26]。研究表明,嚙齒類動物AGTR2僅在有腔卵泡顆粒細(xì)胞層表達(dá),對GCs雌激素的分泌有抑制作用[27-28];然而,SCHAUSER等發(fā)現(xiàn)AGTR2僅在牛卵泡膜細(xì)胞層表達(dá)[29],這與本研究免疫組化結(jié)果不符。AGTR2對牛卵泡發(fā)育的作用機理仍不清楚,在閉鎖卵泡,AGTR2 mRNA表達(dá)量5倍高于正常發(fā)育卵泡,這表明AGTR2對卵泡發(fā)育具有重要作用[30]。本研究表明,2 mRNA在DF表達(dá)量極顯著高于SF(<0.01),試驗中通過B超聲波監(jiān)測采集的DF和SF,是發(fā)情期開始4—5 d,屬于第一卵泡發(fā)育波;而母牛發(fā)情周期僅在最后一個卵泡波DF排卵,因此,推測AGTR2在第一卵泡波DF閉鎖中發(fā)揮重要調(diào)控作用,對其影響卵泡發(fā)育的作用機理有待于進一步深入研究。
牛卵泡血管緊張素Ⅱ受體-2型屬于G蛋白偶聯(lián)受體家族,在牛卵泡發(fā)育過程中,血管緊張素Ⅱ受體-2型可能通過調(diào)控顆粒細(xì)胞雌激素的分泌,參與卵泡的優(yōu)勢化或閉鎖。
[1] SMITH G W, SEN A, FOLGER J K, IRELAND J J. Putative role of CARTPT in dominant follicle selection in cattle., 2010, 67(Suppl):105-117.
[2] Lü L, JIMENEZ-KRASSEL F, SEN A, BETTEGOWDA A, MONDAL M, FOLGER J K, LEE K B, IRELAND J J, SMITH G W. Evidence supporting a role for CARTPT in control of granulosa cell estradiol production associated with dominant follicle selection in cattle.2009, 81(3):580-586.
[3] 李鵬飛, 畢錫麟, 王鍇, 景炅婕, 呂麗華. CART在不同發(fā)育階段牛卵泡顆粒細(xì)胞中的表達(dá)和定位. 中國農(nóng)業(yè)科學(xué), 2016, 49(12): 2389-2396.
LI P F, BI X L, WANG K, JING J J, Lü L H. Research on the expression and localization of CART in bovine granulosa cells at different developmental stages., 2016, 49(12):2389-2396. (in Chinese)
[4] 李鵬飛. 牛卵泡可卡因-苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(CART)受體的篩選[D]. 太谷:山西農(nóng)業(yè)大學(xué), 2014.
LI P F. Screening of cocaine-and amphetamine-regulated transcript peptide (CART) receptor of cattle follicle [D]. Taigu: Shanxi Agricultural University, 2014.(in Chinese)
[5] DISKIN M G, MACKEY D R, ROCHE J F, SREENAN J M. Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle., 2003, 78(3/4):345-370.
[6] GINTHER O J, WILTBANK M C, FRICKE P M, GIBBONS J R, KOT K. Selection of the dominant follicle in cattle., 1996, 55(6):1187-1194.
[7] KOMAR C M, BERNDTSON A K, EVANS A C, FORTUNE J E. Decline in circulating estradiol during the periovulatory period is correlated with decreases in estradiol and androgen, and in messenger RNA for p450 aromatase and p450 17alpha-hydroxylase, in bovine preovulatory follicles., 2001, 64(6): 1797-1805.
[8] BRIDGES P J, FORTUNE J E. Regulation, action and transport of prostaglandins during the periovulatory period in cattle., 2007, 263(1/2):1-9.
[9] BRIDGES P J, KOMAR C M, FORTUNE J E. Gonadotropin-induced expression of messenger ribonucleic acid for cyclooxygenase-2 and production of prostaglandins E and F2alpha in bovine preovulatory follicles are regulated by the progesterone receptor., 2006, 147(10):4713-4722.
[10] SIQUEIRA L C, DOS SANTOS J T, FERREIRA R, SOUZA DOS SANTOS R, DOS REIS A M, OLIVEIRA J F, FORTUNE J E, GON?ALVES P B. Preovulatory changes in the angiotensin II system in bovine follicles., 2013, 25(3):539-546.
[11] PAUL M, POYAN MEHR A, KREUTZ R. Physiology of local renin-angiotensin systems., 2006, 86(3): 747-803.
[12] DE GASPARO M, CATT K J, INAGAMI T, WRIGHT J W, UNGER T. International union of pharmacology. XXIII. The angiotensin II receptors., 2000, 52(3):415-472.
[13] ACOSTA T J, BERISHA B, OZAWA T, SATO K, SCHAMS D, MIYAMOTO A. Evidence for a local endothelin-angiotensin-atrial natriuretic peptide system in bovine mature follicles in vitro: effects on steroid hormones and prostaglandin secretion., 1999, 61(6):1419-1425.
[14] YOSHIMURA Y, KARUBE M, AOKI H, ODA T, KOYAMA N, NAGAI A, AKIMOTO Y, HIRANO H, NAKAMURA Y. Angiotensin II induces ovulation and oocyte maturation in rabbit ovaries via the AT2 receptor subtype., 1996, 137(4):1204-1211.
[15] KUJI N, SUEOKA K, MIYAZAKI T, TANAKA M, ODA T, KOBAYASHI T, YOSHIMURA Y. Involvement of angiotensin II in the process of gonadotropin-induced ovulation in rabbits., 1996, 55(5):984-991.
[16] 朱芷葳, 郝慶玲, 侯淑寧, 景炅婕, 趙成萍, 呂麗華, 李鵬飛. 牛卵泡TEDDM1表達(dá)特點及其功能分析. 畜牧獸醫(yī)學(xué)報, 2019, 50(6): 1189-1197.
ZHU Z W, HAO Q L, HOU S N, JING J J, ZHAO C P, Lü L H, LI P F. Expression characteristic and function analysis of TEDDM1 in bovine follicle., 2019, 50(6): 1189-1197. (in Chinese)
[17] KATRITCH V, CHEREZOV V, STEVENS R C. Structure-function of the G protein-coupled receptor superfamily., 2013, 53(1):531-556.
[18] HANSON M A, STEVENS R C. Discovery of new GPCR biology: one receptor structure at a time., 2009, 17(1):8-14.
[19] TIAN M, CHEN X, XIONG Q, XIONG J, XIAO C, GE F, YANG F, MIAO W. Phosphoproteomic analysis of protein phosphorylation networks in, a model single-celled organism., 2014, 13(2):503-519.
[20] COLE P A, SHEN K, QIAO Y, WANG D. Protein tyrosine kinases Src and Csk: a tail’s tale., 2003, 7(5):580-585.
[21] AUDET M, BOUVIER M. Restructuring G-protein-coupled receptor activation., 2012, 151(1):14-23.
[22] ICHIHARA S, SENBONMATSU T, PRICE E, ICHIKI T, GAFFNEY F A, INAGAMI T. Targeted deletion of angiotensin Ⅱ type 2 receptor caused cardiac rupture after acute myocardial infarction., 2002, 106(17):2244-2249.
[23] OISHI Y, OZONO R, YANO Y, TERANISHI Y, AKISHITA M, HORIUCHI M, OSHIMA T, KAMBE M. Cardioprotective role of AT2 receptor in postinfarction left ventricular remodeling., 2003, 41(3 Pt 2):814-818.
[24] VERVOORT V S, BEACHEM M A, EDWARDS P S, LADD S, MILLER K E, DE MOLLERAT X, CLARKSON K, DUPONT B, SCHWARTZ C E, STEVENSON R E, BOYD E, SRIVASTAVA A K. AGTR2 mutations in X-linked mental retardation., 2002, 296(5577):2401-2403.
[25] RAKUGI H, OKAMURA A, KAMIDE K, OHISHI M, SASAMURA H, MORISHITA R, HIGAKI J, OGIHARA T. Recognition of tissue-and subtype-specific modulation of angiotensin II receptors using antibodies against AT1 and AT2 receptors., 1997, 20(1):51-55.
[26] 王彤.血管緊張素Ⅱ及其受體在哮喘氣道重塑中的作用及機制探討[D]. 南京: 南京醫(yī)科大學(xué), 2008.
WANG T. Effect of angiotensin Ⅱ and angiotensin Ⅱ receptors on airway remodeling in asthmatic model [D]. Nanjing: Nanjing Medical University, 2008.(in Chinese)
[27] DE GOOYER T E, SKINNER S L, WLODEK M E, KELLY D J, WILKINSON-BERKA J L. Angiotensin II influences ovarian follicle development in the transgenic (mRen-2)27 and Sprague-Dawley rat., 2004, 180(2):311-324.
[28] KOTANI E, SUGIMOTO M, KAMATA H, FUJII N, SAITOH M, USUKI S, KUBO T, SONG K, MIYAZAKI M, MURAKAMI K, MIYAZAKI H. Biological roles of angiotensin II via its type 2 receptor during rat follicle atresia., 1999, 276(1 Pt 1):E25-E33.
[29] SCHAUSER K H, NIELSEN A H, WINTHER H, DANTZER V, POULSEN K. Localization of the renin-angiotensin system in the bovine ovary: cyclic variation of the angiotensin II receptor expression., 2001, 65(6):1672-1680.
[30] DE GASPARO M, SIRAGY H M. The AT2 receptor: fact, fancy and fantasy., 1999, 81(1/3):11-24.
Sequence Structure and Expression Characteristics Analysis of AGTR2 in Bovine Follicle
ZHU ZhiWei1, HOU ShuNing1, HAO QingLing1, JING JiongJie2, Lü LiHua2, LI PengFei1
(1College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi;2College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi)
【】The aim of study was to identify molecular characteristics and three-dimensional structure of AGTR2 in the bovine follicular development, and the function was analyzed by combining expression characteristics of AGTR2 in different physiological follicles.【】Ovaries in the bovine follicular were observed by B-type ultrasonography (twice a day), removed from cows when DF and SF appeared, and then separated DF and SF; GCs were isolated, total RNA was extracted and detected by RT-PCR, specific primers were amplified and sequenced, and CDS region sequence structure was obtained; the bioinformatics method was used to analyze its sequence structure, relationship and three-dimensional structure; the qRT-PCR primers of2 and reference gene0were designed to analyze differential expression level of2 in DF and SF; DF and SF of another cow were fixed with 4% paraformaldehyde, positive, negative control groups and experimental groups were set, expression level and localization of AGTR2 were analyzed by immunohistochemistry. 【】The results showed that total length of2 CDS region was 1 089 bp, encoding 362 amino acids; BLAST analysis of amino acid sequence of AGTR2 and the corresponding amino acid sequence of other 24 animals obtained by NCBI database indicated that the sequence had the highest similarity with buffalo (99.4%) and 92.0%-98.9% with other animals; The three-dimensional structure and functional domain analysis showed that AGTR2 possessed 7 parallel alpha helical structures across the cell membrane, which was a typical G protein-coupled receptor; the results of qRT-PCR analysis showed that expression level of2 mRNA in DF was significantly higher than SF (<0.01), and the differential expression multiple was up to 7.47 times. The immunohistochemical analysis showed that AGTR2 was expressed in GCs and membrane cells layer of DF and SF, and the specific color intensity showed that expression of AGTR2 in SF membrane cells was higher than DF. 【】AGTR2 belonged to G protein-coupled receptor and conforms to basic characteristics of CART receptor, and the study laid a foundation for further study on mechanism of AGTR2 regulating signal pathway and hormone secretion during bovine follicular development, meanwhile, it was of great significance for identification of CART receptor and in-depth explanation of mechanism of CART regulating bovine follicular development.
bovine;follicular development; CART;G protein-coupled receptor;AGTR2
10.3864/j.issn.0578-1752.2020.07.016
2019-01-28;
2020-01-13
國家自然科學(xué)基金(31873002)、山西省國際科技合作項目(201603D421006)、山西省三晉學(xué)者和人才引進項目、山西省重點研發(fā)計劃項目(201703D221020-1,201803D31062)、山西農(nóng)業(yè)大學(xué)創(chuàng)新基金項目(zdpy201403/201503)、山西農(nóng)業(yè)大學(xué)青年拔尖創(chuàng)新人才支持計劃(TYIT201403)
朱芷葳,E-mail:dental411@163.com。通信作者李鵬飛,E-mail:adamlpf@126.com。通信作者呂麗華,E-mail:lihualvsxau@126.com
(責(zé)任編輯 林鑒非)