周 品,徐 和,陳鵬宇,陸 芬
隨機(jī)需求環(huán)境下聯(lián)產(chǎn)品系統(tǒng)價(jià)格與產(chǎn)量決策研究
周 品1,徐 和1,陳鵬宇2,陸 芬1
(1.華中科技大學(xué)管理學(xué)院,湖北 武漢 430074;2.華中師范大學(xué)信息管理學(xué)院,湖北 武漢 430079)
基于固定比例生產(chǎn)技術(shù)和多產(chǎn)品隨機(jī)需求的情形,研究了聯(lián)產(chǎn)品制造商的兩階段產(chǎn)量和價(jià)格聯(lián)合優(yōu)化模型。通過(guò)反向倒推的優(yōu)化求解,得到了聯(lián)產(chǎn)品制造商的最優(yōu)產(chǎn)量和價(jià)格決策以及變化規(guī)律。同時(shí)研究了需求服從均勻分布時(shí),需求波動(dòng)對(duì)均衡的影響。研究結(jié)果表明,在訂貨成本較低和一種產(chǎn)品的需求波動(dòng)性較大時(shí),當(dāng)另外一種產(chǎn)品的波動(dòng)增大,則該產(chǎn)品的最優(yōu)訂貨量增大,同時(shí)價(jià)格下降。借助數(shù)值仿真,分析了價(jià)格敏感度和產(chǎn)出比例對(duì)最優(yōu)決策和利潤(rùn)的影響。結(jié)果表明,在給定一種產(chǎn)品的價(jià)格敏感度時(shí),另外一種的價(jià)格敏感度越大,那么該產(chǎn)品的價(jià)格就越低,制造商的訂貨量就下降。當(dāng)一種產(chǎn)品的產(chǎn)出比例固定時(shí),另一種產(chǎn)品的產(chǎn)出比例上升時(shí),則該產(chǎn)品的價(jià)格下降,制造商的訂貨量下降,總利潤(rùn)上升。
隨機(jī)需求;聯(lián)產(chǎn)品系統(tǒng);定價(jià)策略
聯(lián)產(chǎn)品生產(chǎn)系統(tǒng)特指在同一生產(chǎn)過(guò)程中,對(duì)同一原材料進(jìn)行加工并同時(shí)生成多種產(chǎn)品的生產(chǎn)系統(tǒng)。該種系統(tǒng)廣泛應(yīng)用于農(nóng)產(chǎn)品加工和工業(yè)制造等行業(yè)。在可可加工業(yè),可可豆可通過(guò)清洗、烘烤和研磨等工序生成可可漿,再通過(guò)壓榨和銑削加工最終生成可可油和可可粉。在制糖業(yè),甘蔗可通過(guò)研磨得到甘蔗汁,然后加熱提取白糖,剩下的結(jié)晶糖顆粒將加工成動(dòng)物飼料。在面粉加工業(yè),小麥通過(guò)研磨和過(guò)濾之后可得到面粉和麥麩,而麥麩又將會(huì)被加工成動(dòng)物飼料[1]。在肉類(lèi)加工行業(yè),對(duì)牛肉進(jìn)行加工處理可同時(shí)生成優(yōu)質(zhì)牛肉及普通牛肉[2]。在半導(dǎo)體制造行業(yè),對(duì)晶片進(jìn)行加工處理可同時(shí)生成不同等級(jí)的芯片[3]。在化工行業(yè),對(duì)磷礦進(jìn)行開(kāi)采和加工可同時(shí)生成磷肥和磷石膏建材[4]。在石油精煉行業(yè),對(duì)原油進(jìn)行加工處理可同時(shí)生成輕油和重油[5]。在傳統(tǒng)生產(chǎn)系統(tǒng)中,一種原材料(生產(chǎn)能力)僅生成一種產(chǎn)品。廠商可根據(jù)需求特征確定各種產(chǎn)品的生產(chǎn)量(即各種原材料的投入量);與之對(duì)應(yīng),聯(lián)產(chǎn)品系統(tǒng)通過(guò)對(duì)同一原材料加工處理按照固定比例生產(chǎn)多產(chǎn)品。因此廠商在考慮同一原材料(生產(chǎn)能力)的投入量時(shí),需綜合考慮各終端市場(chǎng)的需求特征并綜合考慮同一生產(chǎn)過(guò)程的生產(chǎn)成本做出相應(yīng)決策。鑒于聯(lián)產(chǎn)品系統(tǒng)的這種特殊生產(chǎn)特征及廣泛應(yīng)用和當(dāng)前缺乏針對(duì)聯(lián)產(chǎn)品系統(tǒng)產(chǎn)量管理研究的現(xiàn)狀,本文討論在各產(chǎn)品市場(chǎng)需求受價(jià)格影響且隨機(jī)的環(huán)境下,聯(lián)產(chǎn)品系統(tǒng)的最優(yōu)價(jià)格和產(chǎn)量決策。借助數(shù)值實(shí)驗(yàn),本文探討了價(jià)格敏感度和各產(chǎn)品的產(chǎn)出比例對(duì)最優(yōu)決策的影響并闡述相關(guān)的管理啟示。
本研究與傳統(tǒng)多產(chǎn)品系統(tǒng)生產(chǎn)決策和聯(lián)產(chǎn)品系統(tǒng)生產(chǎn)決策兩個(gè)領(lǐng)域密切相關(guān)。在傳統(tǒng)多產(chǎn)品系統(tǒng)生產(chǎn)決策方面,學(xué)者們進(jìn)行了大量的研究。其中,Palar[6]分析了在可替代隨機(jī)需求下,雙寡頭的均衡產(chǎn)量決策。Lippman and McCardle[7]和Cachon[8]對(duì)Palar[6]進(jìn)行延伸,討論了在不同分配規(guī)則下的多產(chǎn)品產(chǎn)量決策。Ozer et al.[9]通過(guò)數(shù)學(xué)規(guī)劃的方法研究了有VaR約束的多產(chǎn)品系統(tǒng)問(wèn)題。Bernsteinet al.[10]在分散式供應(yīng)鏈結(jié)構(gòu)下,分析了競(jìng)爭(zhēng)零售商面臨需求不確定時(shí)的均衡產(chǎn)量決策。Li et al.[11]分析了存在過(guò)度自信行為環(huán)境下,競(jìng)爭(zhēng)企業(yè)的均衡產(chǎn)量決策。但上述研究探討傳統(tǒng)多產(chǎn)品系統(tǒng)的產(chǎn)量決策,而本文章探討在聯(lián)產(chǎn)品系統(tǒng)(同一原料的投入量受到各產(chǎn)出品需求共同影響)中,面臨受價(jià)格影響的隨機(jī)需求時(shí),企業(yè)的最優(yōu)價(jià)格和生產(chǎn)量的聯(lián)合決策。
在研究聯(lián)產(chǎn)品系統(tǒng)生產(chǎn)策略的文獻(xiàn)中,Bitran and Dasu[12]和Bitran et al.[13]分析了確定需求隨機(jī)產(chǎn)出率條件下多周期的聯(lián)產(chǎn)品生產(chǎn)問(wèn)題,并提出有效的啟發(fā)式算法。Gerchak et al.[14]得出確定需求隨機(jī)產(chǎn)出率條件下單周期聯(lián)產(chǎn)品系統(tǒng)的最優(yōu)生產(chǎn)和替代決策。Hsu and Bassok[15]和Rao et al.[16]分析了單周期隨機(jī)產(chǎn)出隨機(jī)需求環(huán)境下聯(lián)產(chǎn)品系統(tǒng)最優(yōu)產(chǎn)量。但上述文獻(xiàn)僅考慮聯(lián)產(chǎn)品系統(tǒng)的產(chǎn)量決策。與之對(duì)應(yīng),部分學(xué)者則考察了聯(lián)產(chǎn)品系統(tǒng)聯(lián)合決策。其中,Tomlin, Wang[3]分析了單周期條件下聯(lián)產(chǎn)品系統(tǒng)在隨機(jī)產(chǎn)出率和隨機(jī)需求環(huán)境中最優(yōu)生產(chǎn)、向下替代和價(jià)格決策。Boyabatli et al.[2]研究了在面臨隨機(jī)需求和隨機(jī)原材料價(jià)格時(shí),聯(lián)產(chǎn)品系統(tǒng)的最優(yōu)原材料購(gòu)買(mǎi)、加工生產(chǎn)及價(jià)格策略。在單周期條件下,Dong et al.[5]分析了在面對(duì)隨機(jī)原材料價(jià)格和隨機(jī)銷(xiāo)售價(jià)格時(shí),聯(lián)產(chǎn)品系統(tǒng)的最優(yōu)生產(chǎn)和轉(zhuǎn)換策略,并討論了轉(zhuǎn)換柔性的重要性。Boyabatl?[1]分析了聯(lián)產(chǎn)品系統(tǒng)在隨機(jī)需求和單周期條件下的最優(yōu)產(chǎn)量和技術(shù)選擇策略。Lee[17]分析了確定性環(huán)境和單周期條件下聯(lián)產(chǎn)品系統(tǒng)的最優(yōu)生產(chǎn)和定價(jià)策略,并討論了副產(chǎn)品協(xié)同的環(huán)保和成本節(jié)約效果。Chen et al.[18]討論了單周期隨機(jī)需求條件下聯(lián)產(chǎn)品系統(tǒng)的產(chǎn)品線設(shè)計(jì)及定價(jià)問(wèn)題。但上述研究大多數(shù)未考慮產(chǎn)品的定價(jià)決策。與之對(duì)應(yīng),本研究在單周期下,探討各產(chǎn)品需求受價(jià)格影響且隨機(jī)的環(huán)境下,聯(lián)產(chǎn)品系統(tǒng)的最優(yōu)價(jià)格和產(chǎn)量決策;探討價(jià)格敏感度和各產(chǎn)品的產(chǎn)出比例對(duì)最優(yōu)決策的影響。
圖1 聯(lián)產(chǎn)品生產(chǎn)示意圖
Figure 1 Schematic diagram of joint product production
根據(jù)事件發(fā)生的順序,我們將采用逆向優(yōu)化求解的方法。先分析在各產(chǎn)品產(chǎn)量給定條件下,聯(lián)產(chǎn)品制造商的最優(yōu)價(jià)格決策;根據(jù)所得到的價(jià)格響應(yīng)函數(shù),我們將得出聯(lián)產(chǎn)品制造商在第一階段的最優(yōu)原材料投入量決策。
在給定第一階段原材料投入量的前提下,聯(lián)產(chǎn)品制造商第二階段的期望利潤(rùn)函數(shù)可表示為:
不同于Petruzzi et al.[15]的利潤(rùn)函數(shù)形式,我們采用Chen et al.[20][21]等文獻(xiàn)的假設(shè),不能滿足的市場(chǎng)需求在期末將面臨單位懲罰成本。該成本可代表相應(yīng)的緊急生產(chǎn)成本和對(duì)顧客的延遲支付成本。該利潤(rùn)函數(shù)中,第一項(xiàng)為銷(xiāo)售各產(chǎn)品的期望收益;第二項(xiàng)為各產(chǎn)品的殘值收益,第三項(xiàng)為缺貨損失。優(yōu)化(1)式,可以得到以下結(jié)論:
由推論一的結(jié)論可知,在給定制造商在第一階段的訂貨量決策時(shí),最優(yōu)的價(jià)格決策與產(chǎn)量存在反向變動(dòng)的關(guān)系,這與命題一中的結(jié)論類(lèi)似。同時(shí)第二階段的最優(yōu)價(jià)格與均值正相關(guān),即市場(chǎng)容量越大,產(chǎn)品價(jià)格越高。當(dāng)市場(chǎng)需求較小時(shí),需求波動(dòng)性越大,產(chǎn)品的價(jià)格越高;反之,當(dāng)市場(chǎng)需求較大時(shí),需求波動(dòng)性越大,產(chǎn)品的價(jià)格越低。
在此階段,聯(lián)產(chǎn)品制造商需要優(yōu)化最優(yōu)的訂貨量使得期望利潤(rùn)最大。此時(shí)制造商的利潤(rùn)函數(shù)可表示為
其中前三項(xiàng)表示第二階段的期望利潤(rùn),第四項(xiàng)表示產(chǎn)品生產(chǎn)成本,第五項(xiàng)表示訂貨成本。優(yōu)化(3)中的利潤(rùn)函數(shù),可以得到命題二。
唯一確定。
制造商在第一階段的利潤(rùn)函數(shù)是關(guān)于訂貨量的凹函數(shù),故由一階條件(4)式可以確定最優(yōu)的訂貨量。鑒于在一般的需求分布下,分析需求的波動(dòng)性對(duì)最優(yōu)訂貨決策的影響較為復(fù)雜。為了簡(jiǎn)化分析并得到有價(jià)值的管理啟示,我們?cè)诩俣ㄐ枨蠓木鶆蚍植紩r(shí)可得到推論二的結(jié)論。
其中
由推論二的結(jié)論可知,隨著均值的增大(即產(chǎn)品的期望需求增大)時(shí),最優(yōu)的訂貨量增大。這是由于當(dāng)市場(chǎng)需求變大時(shí),制造商為了獲取更多的利潤(rùn),傾向于增加訂貨量。當(dāng)訂貨成本較低時(shí),產(chǎn)品2的需求波動(dòng)性較大時(shí),產(chǎn)品1的波動(dòng)增大,最優(yōu)的訂貨量增大,產(chǎn)品1的價(jià)格下降;相反當(dāng)產(chǎn)品2的需求波動(dòng)性較小時(shí),產(chǎn)品1的波動(dòng)性增大,最優(yōu)的訂貨量減小,產(chǎn)品1的價(jià)格上升。同理,當(dāng)給定產(chǎn)品1的需求波動(dòng)性時(shí),產(chǎn)品2的波動(dòng)性變化有類(lèi)似的結(jié)論。這主要是由于制造商的訂貨成本較低時(shí),兩個(gè)產(chǎn)品的需求波動(dòng)性變大帶來(lái)的訂貨量的集聚效應(yīng)占優(yōu)訂貨量的成本效應(yīng)。
當(dāng)訂貨成本較高時(shí),當(dāng)產(chǎn)品產(chǎn)品2的需求波動(dòng)性較小時(shí),產(chǎn)品1的波動(dòng)增大,最優(yōu)的訂貨量增大,產(chǎn)品1的價(jià)格下降;相反當(dāng)產(chǎn)品2的需求波動(dòng)性較大時(shí),產(chǎn)品1的波動(dòng)性增大,最優(yōu)的訂貨量減小,產(chǎn)品1的價(jià)格上升。同理,當(dāng)給定產(chǎn)品1的需求波動(dòng)性時(shí),產(chǎn)品2的波動(dòng)性變化有類(lèi)似的結(jié)論。這主要是由于隨著訂貨成本的上升,兩個(gè)產(chǎn)品的訂貨量的成本效應(yīng)占優(yōu)兩個(gè)產(chǎn)品需求波動(dòng)變大帶來(lái)的集聚效應(yīng)。
表1 價(jià)格敏感系數(shù)對(duì)制造商的影響
由表1可以看到,在給定產(chǎn)品1的價(jià)格敏感度時(shí),產(chǎn)品2的價(jià)格敏感度越大,產(chǎn)品2的價(jià)格越低,制造商的訂貨量就下降。同時(shí)產(chǎn)品1的價(jià)格增大,制造商的總體利潤(rùn)下降。這主要是由于產(chǎn)品1的價(jià)格增加效應(yīng)占優(yōu)于產(chǎn)品2的價(jià)格敏感度變大帶來(lái)的價(jià)格減少效應(yīng),最終使得總體利潤(rùn)下降。同理,在給定產(chǎn)品2的價(jià)格敏感度時(shí),產(chǎn)品1的價(jià)格敏感度越大,產(chǎn)品1的價(jià)格下降,制造商的訂貨量就下降。同時(shí)產(chǎn)品2的價(jià)格增大,制造商的總體利潤(rùn)下降。這主要是由于產(chǎn)品2的價(jià)格上升效應(yīng)占優(yōu)于產(chǎn)品1的價(jià)格敏感度變大帶來(lái)的價(jià)格下降效應(yīng),最終使得總體利潤(rùn)下降。
從表1還可以看到,當(dāng)兩個(gè)產(chǎn)品的價(jià)格敏感度都較低時(shí),制造商的訂貨量較高,利潤(rùn)較大;當(dāng)兩個(gè)產(chǎn)品的價(jià)格敏感度都較高時(shí),制造商的訂貨量較低,利潤(rùn)較低;當(dāng)產(chǎn)品1的價(jià)格敏感度較低而產(chǎn)品2的價(jià)格敏感度較高時(shí),產(chǎn)品1的價(jià)格較低,產(chǎn)品2的價(jià)格較低;當(dāng)產(chǎn)品1的價(jià)格敏感度較高而產(chǎn)品2的價(jià)格敏感度較低時(shí),產(chǎn)品1的價(jià)格較高,產(chǎn)品2的價(jià)格較高。在實(shí)際中,聯(lián)產(chǎn)品制造商在決定最初的訂貨量決策時(shí)就需要考慮產(chǎn)品價(jià)格敏感度變化所帶來(lái)的遞減效應(yīng)和價(jià)格增加效應(yīng),以最大化自身的期望利潤(rùn)。
表2 產(chǎn)出比例對(duì)制造商的影響
從表2可以看到,當(dāng)產(chǎn)品1的產(chǎn)出比例固定時(shí),產(chǎn)品2的產(chǎn)出比例上升時(shí),產(chǎn)品1的價(jià)格上升,產(chǎn)品2的價(jià)格下降,制造商的訂貨量下降,總利潤(rùn)上升。這是由于隨著分配在產(chǎn)品2上的原材料增加,產(chǎn)品的供應(yīng)量上升,產(chǎn)品價(jià)格就會(huì)下降。同理,當(dāng)產(chǎn)品2的產(chǎn)出比例固定時(shí),有類(lèi)似的結(jié)論。
從表2還可以看到,當(dāng)兩個(gè)產(chǎn)品的產(chǎn)出比例都較低時(shí),此時(shí)的訂貨量較高,利潤(rùn)較低;當(dāng)兩個(gè)產(chǎn)品的產(chǎn)出比例都較高時(shí),此時(shí)的訂貨量較低,利潤(rùn)較高;當(dāng)產(chǎn)品1的產(chǎn)出比例較高而產(chǎn)品2的分配比例較低時(shí),此時(shí)產(chǎn)品1的價(jià)格較低而產(chǎn)品2的價(jià)格較高;當(dāng)產(chǎn)品1的產(chǎn)出比例較低而產(chǎn)品2的產(chǎn)出比例較高時(shí),此時(shí)產(chǎn)品1的價(jià)格較高而產(chǎn)品2的價(jià)格較低。這表明聯(lián)產(chǎn)品制造商需要考慮合理的產(chǎn)品產(chǎn)出比例,同時(shí)盡可能的充分利用原材料實(shí)現(xiàn)整體利潤(rùn)的最大化。
本文分析了隨機(jī)需求環(huán)境下,聯(lián)產(chǎn)品制造商采用固定比例生產(chǎn)技術(shù)進(jìn)行生產(chǎn)時(shí)的兩階段優(yōu)化模型。通過(guò)反向倒推的優(yōu)化求解方法,得出了制造商的最優(yōu)訂貨量和最優(yōu)價(jià)格決策及變化規(guī)律。并分析了需求服從均勻分布時(shí),波動(dòng)性對(duì)均衡的影響。通過(guò)數(shù)值分析,研究了價(jià)格敏感度以及產(chǎn)出比例對(duì)于最優(yōu)產(chǎn)量、價(jià)格和利潤(rùn)的影響。
需要指出的是,本文僅分析了產(chǎn)出比例固定時(shí)的最優(yōu)訂貨策略。現(xiàn)實(shí)中,生產(chǎn)過(guò)程往往存在著諸多不確定性,因此考慮隨機(jī)產(chǎn)出比例是一個(gè)值得研究的問(wèn)題。此外,本文的兩個(gè)產(chǎn)品市場(chǎng)是獨(dú)立的,即產(chǎn)品之間不存在替代關(guān)系。而在需求不確定的情形下,考慮制造商采用產(chǎn)品替代策略的最優(yōu)決策也是可以擴(kuò)展的方向。在實(shí)際中存在著多個(gè)競(jìng)爭(zhēng)的聯(lián)產(chǎn)品制造商,分析相似產(chǎn)品在市場(chǎng)上競(jìng)爭(zhēng)也是具有現(xiàn)實(shí)意義的問(wèn)題。
[1] Boyabatli O. Supply management in multiproduct firms with fixed proportions technology. Management Science,2015,61(12):3013- 3031.
[2] Boyabatli, O.,Kleindorfer, P. R., Koontz, S. R. Integrating long-term and short-term contracting in beef supply chains. Management Science, 2011,57(10):1771-1787.
[3] Tomlin B, Wang Y. Pricing and operational recourse in coproduction systems. Management Science, 2008,54(3):522-537.
[4] 張勇.《2014中國(guó)循環(huán)經(jīng)濟(jì)年鑒》,冶金工業(yè)出版社,2014:124-125.
Zhang Y. China Circular Economy Yearbook 2014[J]. Beijing: Metallurgical Industry Press, 2014:124-125.
[5] Dong L, Kouvelis P, Wu X. The value of operational flexibility in the presence of input and output price uncertainties with oil refining applications. Management Science, 2014,60(12): 2908-2926.
[6] Parlar M. Game theoretic analysis of the substitutable product inventory problem with random demands[J]. Naval Research Logistics, 1988, 35(3):397-409.
[7] Lippman S A, Mccardle K F. The competitive newsboy[J]. Operations Research, 1997, 45(1):54-65.
[8] Cachon G P. Supply chain coordination with contracts[J]. Handbooks in Operations Research & Management Science, 2003, 11(11):227- 339.
[9] ?zler A, Tan B, Karaesmen F. Multi-product newsvendor problem with value-at-risk considerations[J]. International Journal of Production Economics, 2009, 117(2):244-255.
[10] Bernstein F, Federgruen A. Decentralized supply chains with competing retailers under demand uncertainty[J]. Management Science, 2005, 51(1):18-29.
[11] Li M, Petruzzi N C, Zhang J. Overconfident competing newsvendors[J]. Management Science, 2017, 63(8):2637-2646.
[12] Bitran G R, Dasu S. Ordering policies in an environment of stochastic yields and substitutable demands. Operations Research, 1992, 40(5):999 -1017.
[13] Bitran G R, Gilbert S M. Co-production processes with random yields in the semiconductor industry. Operations Research, 1994,42(3): 476-491.
[14] Gerchak Y, Tripathy A, Wang K. Co-production models with random functionality yields. IIE transactions,1996, 28(5):391-403.
[15] Hsu A, Bassok Y. Random yield and random demand in a production system with downward substitution. Operations Research, 1999, 47(2): 277-290.
[16] Rao U S, Swaminathan J M, Zhang J. Multi-product inventory planning with downward substitution, stochastic demand and setup costs.IIE Transactions, 2004,36(1):59-71.
[17] Lee D. Turning waste into by-product. Manufacturing & Service Operations Management, 2012,14(1):115-127.
[18] Chen Y, Tomlin B, Wang Y. Coproduct technologies: Product line design and process innovation. Management Science,2013, 59(12): 2772–2789.
[19] Petruzzi N C, Dada M. Pricing and the news vendor problem: a review with extensions[J]. Operations Research, 1999, 47(2):183-194.
[20] Chen X D. Simchi-Levi.Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case. Operations Research,2004,52(6):887–896.
[21] Chen X, Sim M, Simchi-Levi D, et al. Risk aversion in inventory management[J]. Operations Research, 2004, 55(5):828-842.
Co-product’s joint pricing and quantity decisions with stochastic demand and fixed proportion technology
ZHOU Pin1, XU He1, CHEN Pengyu2, LU Fen1
(1.School of Management, Huazhong University of Science and Technology, Wuhan 430074, China; 2.School of Information Management, Central China of Normal University, Wuhan 430079, China)
The co-production system refers to a system that can simultaneously generate multiple products in the same production process, and has a wide range of applications in practice. In the agro-processing industry, sugar cane processing can simultaneously produce edible sugar and animal feed; in the meat processing industry, beef can be processed to produce high-quality beef and ordinary beef at the same time; in the semiconductor processing industry, the wafer can be simultaneously processed into different grades of chips; and in the petroleum refining industry, crude oil is processed to produce both light and heavy oil. In a traditional production system, one raw material (production capacity) yields only one product. The manufacturer can determine the production quantity of each product according to the resource demand characteristics (i.e., the input amounts of various raw materials); likewise, the co-production system yields a plurality of products according to a fixed ratio by processing the same raw material. Therefore, when considering the continued input of the same raw material (capacity), the manufacturer needs to comprehensively consider the demand characteristics of each terminal market and the costs of comparable production processes to make appropriate decisions.
Research on the co-production system has significant practical and theoretical value. From a practical perspective, effective management of the system can not only greatly enhance enterprise profits, but also play an environmental role. From a theoretical perspective, the co-production system creates value through cost sharing, which is significantly different from the production risk-sharing effect. When the demand correlation increases, the effect of capacity sharing is diminished and the effect of cost sharing enhanced. In addition, the profit improvement through flexible pricing strategy and conversion flexibility strategy is greater than the impact of the final product replacement. Although the co-production system has a wide range of applications in various industries, few theoretical studies have been conducted on the system, many of which often overlook random factors that may influence the system.
Based on fixed-scale production technology and multi-product random demand situations, the two-stage production and price joint optimization model of the joint production manufacturer was studied. Through the optimization of reverse pushback, the optimal yield, price decision, and change law of the co-production manufacturer are obtained. At the same time, the influence of fluctuating demand on the equilibrium is observed where the demand obeys the uniform distribution. Through numerical simulation, the influence of price sensitivity and the output ratio on optimal decision-making and profit is analyzed. The study yielded the following interesting conclusions. First, when the order cost is low and the demand fluctuation of Product 2 is large, the fluctuation of Product 1 will decrease, increasing its optimal order quantity and decreasing its price; on the contrary, when the demand fluctuation of Product 2 is less volatile, the increase in the volatility of Product 1 will result in a decrease in its optimal order quantity and an increase in its price. Second, given the price sensitivity of Product 1, the price sensitivity of Product 2 will rise, its price will drop, and its order quantity will decrease; at the same time, if the price of Product 1 is raised, the overall profit of the manufacturer will drop. Third, when the output ratio of Product 1 is fixed and the output ratio of Product 2 is raised, the price of Product 1 rises, and that of Product 2 falls, along with its order quantity; as a result, the total profit is higher.
Stochastic demand; Co-production system; Pricing policy
2017-05-15
2017-12-31
Funded Project: Supported by the National Natural Science Foundation of China (71271092)
F274
A
1004-6062(2020)02-0156-005
10.13587/j.cnki.jieem.2020.02.017
2017-05-15
2017-12-31
國(guó)家自然科學(xué)基金資助項(xiàng)目(71271092)
周品(1991—),男,湖北襄陽(yáng)人;博士研究生;主要研究方向:庫(kù)存管理和供應(yīng)鏈管理。
中文編輯:杜 ??;英文編輯:Boping Yan