国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

VEGF及其靶向藥物的研究進(jìn)展

2020-08-18 09:50石煥英陳海飛李群益施孝金
上海醫(yī)藥 2020年15期
關(guān)鍵詞:靶向治療腫瘤

石煥英 陳海飛 李群益 施孝金

摘 要 腫瘤的生長(zhǎng)轉(zhuǎn)移和新血管的生成密切相關(guān),許多調(diào)節(jié)血管生成的細(xì)胞因子參與血管的生成,而在腫瘤血管生成中起關(guān)鍵作用的是血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor, VEGF)及其信號(hào)通路。阻斷該通路的任何環(huán)節(jié)都會(huì)有效抑制腫瘤血管的生成,進(jìn)而抑制腫瘤的生長(zhǎng)和轉(zhuǎn)移?;赩EGF的調(diào)控特點(diǎn),很多以VEGF及其受體VEGFR為靶點(diǎn)的抗腫瘤血管生成藥物已經(jīng)問世。本文主要概述抗VEGF的靶向藥物治療及特點(diǎn)。

關(guān)鍵詞 VEGF 腫瘤 血管生成 抗腫瘤藥物 靶向治療

中圖分類號(hào):R979.19 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2020)15-0004-04

Advances in VEGF and its targeted drugs*

SHI Huanying1**, CHEN Haifei1, LI Qunyi1,2, SHI Xiaojin1,2***(1. Department of Pharmacy, North Hospital of Huashan Hospital, Fudan University, Shanghai 201907, China; 2. Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China)

ABSTRACT Tumor growth and metastasis depend on angiogenesis that is taken part in by lots of cytokines, and vascular endothelial growth factor (VEGF) and its signaling pathway play a key role in tumor-associated angiogenesis. Blocking any step in this pathway can effectively inhibit the tumor-associated angiogenesis and thereby inhibit the growth and metastasis of tumor. Many anti-tumor angiogenesis drugs targeting VEGF and its receptor VEGFR have been marketed based on the characteristics of VEGF regulation. The anti-VEGF targeted drug therapy and its characteristics are mainly summarized in this article.

KEY WORDS VEGF; tumor; angiogenesis; anti-tumor drugs; targeted therapy

腫瘤微環(huán)境在腫瘤的起源、生長(zhǎng)和轉(zhuǎn)移中起關(guān)鍵作用[1]。1971年Folkman發(fā)現(xiàn)血管生成在腫瘤生長(zhǎng)過程中具有關(guān)鍵作用,提出腫瘤的生長(zhǎng)、轉(zhuǎn)移依賴血管以及抑制腫瘤血管生成作為腫瘤治療的理念[2]。血管生成的過程比較復(fù)雜,是指從已有的毛細(xì)血管或毛細(xì)血管后靜脈發(fā)展而形成新的血管,是腫瘤生長(zhǎng)和轉(zhuǎn)移的基礎(chǔ)[3]。血管生成包括以下過程:血管通透性增加,基底膜被蛋白水解酶降解,內(nèi)皮細(xì)胞通過增殖和遷移形成新生血管芽,最終導(dǎo)致新生血管的成熟[4]。新血管的生成不會(huì)出現(xiàn)在腫瘤生長(zhǎng)的初期,而當(dāng)腫瘤的體積大于1~2 mm3后,腫瘤維持生存轉(zhuǎn)移及吸收營(yíng)養(yǎng)物質(zhì)則取決于新生血管[2]。因此,血管生成的研究已成熱點(diǎn)。血管形成主要由血管生成因子和血管生成抑制物調(diào)控,過程比較復(fù)雜[5],二者在正常生理情況下處于平衡狀態(tài),而在一些病理狀況下,過表達(dá)的血管生成因子會(huì)打破這種平衡狀態(tài),從而生成異常血管。血管形成由多種血管生成的細(xì)胞因子參與調(diào)控,其中最關(guān)鍵的促血管生成因子是血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF)。為有效抑制腫瘤血管生成,促進(jìn)腫瘤血管退化脫落,可阻斷VEGF途徑中任何環(huán)節(jié),最終達(dá)到抗腫瘤作用。因此,VEGF及其受體VEGFR為靶點(diǎn)的大分子抗腫瘤藥物為近幾年研究的熱點(diǎn)。

1 VEGF/VEGFR的結(jié)構(gòu)與生物學(xué)功能

VEGF是一種強(qiáng)烈的促血管生成因子,由VEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E和胎盤生長(zhǎng)因子(placental growth factor, PIGF)構(gòu)成。一般將VEGF-A代表VEGF。VEGF-A是一種糖蛋白,其分子量為34-64KD,在內(nèi)皮細(xì)胞、巨噬細(xì)胞、淋巴細(xì)胞等眾多細(xì)胞中表達(dá)。VEGF-A是腫瘤血管發(fā)生過程中最關(guān)鍵的血管生成促進(jìn)因子,其可使靜止的內(nèi)皮細(xì)胞活化,促進(jìn)細(xì)胞增殖和遷移,并使血管通透性增加。PIGF會(huì)和VEGF-A一起完成以上功能。但目前尚不清楚VEGF-B的功能,小鼠會(huì)由于缺少VEGF-B導(dǎo)致心臟傳導(dǎo)異常,但不影響生存。神經(jīng)纖毛蛋白(neuropilins, NRP)是VEGF的復(fù)合受體。人類腫瘤細(xì)胞可產(chǎn)生VEGF-B,進(jìn)一步激活VEHGR1與NRP-1[6]。淋巴管的生成受VEGF-C和VEGF-D調(diào)節(jié)。VEGF-E可促進(jìn)血管內(nèi)皮細(xì)胞萌發(fā)、分裂、趨化性及血管生成,在脊椎動(dòng)物中表達(dá),在哺乳動(dòng)物里不存在,只與VEGFR2結(jié)合[6-7]。

分泌VEGF的腫瘤組織同時(shí)也會(huì)表達(dá)VEGFR。以VEGFR為靶點(diǎn)的抗腫瘤藥物較細(xì)胞毒性藥物的特異性與針對(duì)性更強(qiáng),是因?yàn)橹饕稍鲋车膬?nèi)皮細(xì)胞表達(dá)VEGFR。VEGFR分為VEGFR1、VEGFR2、VEGFR3、NRP-1和NRP-2等5個(gè)亞型,只有前3個(gè)亞型是酪氨酸蛋白激酶。VEGFR1比VEGFR-2與VEGF的結(jié)合能力更強(qiáng),是VEGF的高親和力受體,可與VEGF-A、VEGF-B、PIGF結(jié)合,通過抑制VEGFR-2的結(jié)合進(jìn)而抑制內(nèi)皮細(xì)胞的增殖。VEFGR1不能被VEGF刺激而發(fā)生酪氨酸磷酸化,但在血細(xì)胞生成過程中至關(guān)重要,能使單核細(xì)胞與骨髓衍生細(xì)胞聚集而生成腫瘤脈管系統(tǒng)[8]。表達(dá)在血管與淋巴管內(nèi)皮細(xì)胞里的VEGFR2,通過結(jié)合VEGF-A、VEGF-C、VEGF-D來調(diào)節(jié)血管內(nèi)皮細(xì)胞的通透性,促使細(xì)胞進(jìn)行有絲分裂及趨化作用,進(jìn)而生成新生血管。VEGFR2和VEGF結(jié)合,發(fā)生磷酸化,影響下游基因表達(dá),最終誘導(dǎo)內(nèi)源性腫瘤血管生成與血管通透性增加。淋巴內(nèi)皮細(xì)胞的增殖、遷移與VEGFR3相關(guān),VEGFR3與VEGF-C、VEGF-D結(jié)合,調(diào)控腫瘤的淋巴轉(zhuǎn)移,但其在正常生理狀態(tài)下只表達(dá)在淋巴管內(nèi)皮細(xì)胞上[9]。NRP是軸突生長(zhǎng)錐指導(dǎo)分子信號(hào)素的受體。NRP1與NRP2是VEGFR的復(fù)合受體,表達(dá)于軸索末端、內(nèi)皮細(xì)胞和部分腫瘤細(xì)胞里,可增加VEGFRs的蛋白磷酸化程度來增強(qiáng)VEGF通路的信號(hào)[10]。

2 VEGF/VEGFR靶向抗腫瘤血管生成藥物的研究進(jìn)展

血管生成與腫瘤的生長(zhǎng)和成功轉(zhuǎn)移密切相關(guān),此過程復(fù)雜且連續(xù),每一步驟都很獨(dú)立。傳統(tǒng)藥物較難作用于腫瘤細(xì)胞,主要是由于腫瘤血管結(jié)構(gòu)不規(guī)則,組織淋巴回流受阻,且腫瘤細(xì)胞易發(fā)生突變具有耐藥性;目前腫瘤血管內(nèi)皮細(xì)胞被認(rèn)為是理想的治療靶點(diǎn),在于其遺傳上的統(tǒng)一性和穩(wěn)定性的特點(diǎn),且會(huì)直接接觸血液中藥物,不易對(duì)藥物產(chǎn)生耐藥性[11]。VEGF介導(dǎo)的血管生成被發(fā)現(xiàn)廣泛存在于乳腺癌、結(jié)腸癌、胃癌、肝癌、膀胱癌和前列腺癌等惡性腫瘤中[12]。以VEGF介導(dǎo)的血管生成為靶點(diǎn),已成為目前治療腫瘤的重要策略之一[13-14]。

2.1 Bevacizumab(貝伐單抗)

2004年,第一個(gè)抗腫瘤血管生成藥物問世,Bevacizumab(商品名:Avastin)經(jīng)FDA批準(zhǔn)在美國(guó)上市,目前可用于非小細(xì)胞肺癌、轉(zhuǎn)移性結(jié)直腸癌、轉(zhuǎn)移性腎癌等多種實(shí)體瘤,且可聯(lián)合化療藥物使用,是治療轉(zhuǎn)移性結(jié)直腸癌的一線藥物。可與人VEGF-A的所有亞型結(jié)合的Bevacizumab是一種鼠VEGF單克隆抗體,特點(diǎn)是93%人源化,其通過阻斷VEGF/VEGFR信號(hào)途徑,抑制腫瘤血管生成,從而抑制腫瘤生長(zhǎng)[8,15]。Bevacizumab通過將畸形的腫瘤血管正?;?,使化療藥物作用于腫瘤組織。

Bevacizumab在腫瘤臨床治療上也存在很大的局限性。臨床試驗(yàn)發(fā)現(xiàn)在卵巢癌、惡性膠質(zhì)瘤、轉(zhuǎn)移性乳腺癌和轉(zhuǎn)移性黑色素瘤等眾多實(shí)體瘤中,Bevacizumab只改善某些實(shí)體瘤患者的無進(jìn)展生存期(progression free survival, PFS),不能改善總生存期(overall survival, OS),且偶爾會(huì)發(fā)生致命的副作用,因此不能用于治療這些癌癥[16-20]。另外,某些meta分析結(jié)果證實(shí),與單獨(dú)化療相比,Bevacizumab導(dǎo)致的致死性不良事件概率更大,且會(huì)增加眼疾患者的風(fēng)險(xiǎn)[21-22]。

2.2 VEGF-Trap

商品名為Zahrap的VEGF-Trap,也稱為Aflibercept,是一種重組融合蛋白,由Genentech公司基于“trap”平臺(tái)研發(fā)而成,2012年8月被批準(zhǔn)上市,VEGF-Trap可結(jié)合所有類型的VEGF,免疫原性較低,其抑制腫瘤生長(zhǎng)和轉(zhuǎn)移的機(jī)制為:阻斷血管內(nèi)皮信號(hào)通路的信號(hào)轉(zhuǎn)導(dǎo),使腫瘤血管基因表達(dá)量減少,腫瘤血管密度下降[23-25]。VEGF-Trap單獨(dú)或聯(lián)合化療用于轉(zhuǎn)移性結(jié)直腸癌、轉(zhuǎn)移性胰腺癌、轉(zhuǎn)移性非小細(xì)胞肺癌時(shí)療效較好[26]。在治療轉(zhuǎn)移性結(jié)直腸癌時(shí)發(fā)現(xiàn),與單獨(dú)使用FOLFIRI相比,VEGF-Trap聯(lián)合FOLFIRI方案治療可使患者的PFS和OS明顯延長(zhǎng),因此,已經(jīng)接受過奧沙利鉑方案化療的轉(zhuǎn)移性結(jié)腸癌患者,可再次接受VEGF-Trap聯(lián)合FOLFIRI方案的治療,此項(xiàng)方案已被美國(guó)FDA批準(zhǔn)[27]。另外,VEGF-Trap與多西他賽聯(lián)合使用治療非小細(xì)胞肺癌時(shí),不能明顯改變OS,但與未聯(lián)合使用VEGF-Trap相比,可明顯改善PFS和應(yīng)答率(response rate, RR)[28]。

與Bevacizumab相比,VEGF-Trap與VEGF-A親和力更高,能結(jié)合PlGF與VEGF-B,而Bevacizumab不能結(jié)合二者,VEGF-Trap可強(qiáng)力抑制VEGFR1與VEGFR2的活化以及VEGF-A介導(dǎo)的鈣動(dòng)員與內(nèi)皮細(xì)胞遷移[29]。目前有兩種VEGF-Trap,一是Aflibercept(阿柏西普),由Regeneron與拜耳聯(lián)合開發(fā);二是conbercept(康柏西普),由國(guó)內(nèi)康弘藥業(yè)開發(fā)。由于阿柏西普可以高效地抑制腫瘤且有很好的患者耐受性,被普遍用于治療各種實(shí)體瘤[30]。與一般抗VEGF治療一樣,阿柏西普治療也具有副作用,比如腹瀉、高血壓、蛋白尿、中性粒細(xì)胞減少等發(fā)生的頻率增加[31]。另外,阿柏西普的臨床使用會(huì)提高出血、感染、胃腸毒性等致死性不良事件發(fā)生的頻率。而康柏西普與阿柏西普一樣,與VEGF-A所有亞型以及PlGF與VEGF-B親和力較高,具有明顯的抗血管生成活性[32]。另外,人臍靜脈內(nèi)皮細(xì)胞的遷移以及其血管空腔的形成可被康柏西普抑制,康柏西普能誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞的細(xì)胞凋亡以及抑制視網(wǎng)膜血管新生[33]。

2.3 抗VEGFR抗體

與VEGF相比,VEGFR具有數(shù)量少及易飽和的特點(diǎn),要想有效抑制VEGF信號(hào)轉(zhuǎn)導(dǎo)途徑,可通過抑制VEGFR實(shí)現(xiàn)[34],因此以VEGFR為靶點(diǎn)的藥物會(huì)更有效。完全人源化的VEGFR2抗體Ramucirumab與VEGFR2的胞外域特異性結(jié)合,使VEGFR2相關(guān)的信號(hào)通路被阻斷,于2014年經(jīng)美國(guó)FDA批準(zhǔn)上市,晚期胃癌或食管胃交界腺癌可用Ramucirumab治療。乳腺癌、非小細(xì)胞肺癌及二線治療轉(zhuǎn)移性結(jié)腸癌可用Ramucirumab聯(lián)合化療治療,但仍處于Ⅲ期臨床試驗(yàn)階段。重組人VEGFRl單克隆抗體IMC-18F1能使VEGF-A、VEGF-B、PIGF與VEGFR-1的結(jié)合被阻斷,進(jìn)而抑制其生物學(xué)活性。另外,IMC-18F1具有抗血管增生、抗增殖活性以及增強(qiáng)細(xì)胞毒化療藥的抗腫瘤活性的功能[35]。

2.4 酪氨酸激酶抑制劑

對(duì)于VEGF信號(hào)轉(zhuǎn)導(dǎo)途徑,VEGF與VEGF-R的結(jié)合可激活VEGFR的胞內(nèi)酪氨酸蛋白激酶域,啟動(dòng)VEGF信號(hào)的傳導(dǎo),使細(xì)胞增殖與分化得以調(diào)控,因此,酪氨酸激酶抑制劑(tyrosine kinase inhibitor, TKI)是通過阻斷VEGF信號(hào)通路,進(jìn)而抑制血管生成。最初被FDA批準(zhǔn)用于治療腎細(xì)胞癌的3種TKI是sorafenib(索拉非尼)、sunitinib(舒尼替尼)和pazopanib(帕唑帕尼)。近年被FDA批準(zhǔn)用于治療轉(zhuǎn)移性腎細(xì)胞癌的兩種TKI是Tivozanib與Axitinib,與之前的腎細(xì)胞癌藥物sorafenib相比,Tivozanib與Axitinib在PFS與腫瘤反應(yīng)率方面更具優(yōu)勢(shì),其副作用可控,但不會(huì)顯著改善患者的OS。由于Tivozanib會(huì)影響患者的OS,其用于治療腎細(xì)胞癌的批準(zhǔn)已被FDA撤銷[36-37]。目前,cediranib、motesanib、vandetanib與nintedanib等TKI具有更高特異性,可顯著改善腫瘤的RR與患者的PFS,但不能改善OS[38]。另外,有研究發(fā)現(xiàn)[39],VEGF TKI存在貧血、出血、腹瀉、高血壓和粒細(xì)胞減少等多種副作用。

2.5 以VEGF-C/D為靶點(diǎn)的抗腫瘤藥物

在腫瘤的淋巴生成和轉(zhuǎn)移中,VEGF-C和VEGF-D具有關(guān)鍵作用,被視為腫瘤藥物的靶點(diǎn)。目前發(fā)現(xiàn)在眾多小鼠荷瘤實(shí)驗(yàn)中,鼠抗人VEGF-D單克隆抗體可抑制原發(fā)性腫瘤的生長(zhǎng)和局部腫瘤轉(zhuǎn)移。另外,VEGF-C抗體和可溶性VEGFR3受體也可抑制淋巴管生成以及淋巴結(jié)轉(zhuǎn)移。人單克隆抗體片段具有高親和力,由噬菌體展示技術(shù)產(chǎn)生,與VEGF-C結(jié)合后可有效抑制VEGF-C與VEGFR2、VEGFR3的結(jié)合[9]。

3 展望

近年來,腫瘤的發(fā)病率和死亡率逐年攀升,癌癥已成為重要的公共健康問題。VEGF靶向藥物特異性高、不良反應(yīng)小,對(duì)多種惡性腫瘤具有顯著療效,近十幾年間成為抗腫瘤新藥的主流。已經(jīng)開發(fā)的和正在開發(fā)的抗VEGF藥物為腫瘤的治療帶來了曙光。腫瘤血管生成的過程特別復(fù)雜,要求很多的細(xì)胞因子參與其中,要有效地抑制腫瘤血管生成,可通過干擾或阻斷任一途徑實(shí)現(xiàn)。由于VEGF能夠促進(jìn)血管生成,在惡性腫瘤的轉(zhuǎn)移過程中起關(guān)鍵作用,因此,將研發(fā)更多以VEGF為靶點(diǎn)的抗血管生成的靶向藥物,通過與傳統(tǒng)化療聯(lián)合,有望為進(jìn)展期、復(fù)發(fā)難治以及轉(zhuǎn)移的惡性腫瘤提供新的治療方案。在臨床方面,解決腫瘤抗性與毒性作用會(huì)涉及轉(zhuǎn)化醫(yī)學(xué)的多個(gè)方面,既要進(jìn)行腫瘤致病機(jī)制的臨床前研究,也要研發(fā)高親和力與高安全性的藥物,以及不同的用藥方案,如多種單抗、單抗與化藥、單抗與中藥聯(lián)用等。

參考文獻(xiàn)

[1] Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize[J]. J Cell Biochem, 2007, 101(4): 937-949.

[2] Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21): 1182-1186.

[3] Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation[J]. Nature, 2000, 407(6801): 242-248.

[4] Pradeep CR, Sunila ES, Kuttan G. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies[J]. Integr Cancer Ther, 2005, 4(4): 315-321.

[5] Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer[J]. Oncogene, 2003, 22(42): 6549-6556.

[6] Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression[J]. Crit Rev Oncol Hematol, 2007, 62(3): 179-213.

[7] Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies[J]. Genes Cancer, 2011, 2(12): 1097-1105.

[8] Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer[J]. Nat Rev Drug Discov, 2004, 3(5): 391-400.

[9] Rinderknecht M, Villa A, Ballmer-Hofer K, et al. Phagederived fully human monoclonal antibody fragments to human vascular endothelial growth factor-C block its interaction with VEGF receptor-2 and 3[J/OL]. PLoS One, 2010, 5(8): e11941. doi: 10.1371/journal.pone.0011941.

[10] Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action[J]. Neuropeptides, 2012, 46(1): 1-10.

[11] Burke PA, DeNardo SJ. Antiangiogenic agents and their promising potential in combined therapy[J]. Crit Rev Oncol Hematol, 2001, 39(1/2): 155-171.

[12] McMahon G. VEGF receptor signaling in tumor angiogenesis[J]. Oncologist, 2000, 5(Suppl 1): 3-10.

[13] Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity[J]. Nat Rev Cancer, 2008, 8(8): 579-591.

[14] Pieramici DJ, Rabena MD. Anti-VEGF therapy: comparison of current and future agents[J]. Eye (Lond), 2008, 22(10): 1330-1336.

[15] Qu CY, Zheng Y, Zhou M, et al. Value of bevacizumab in treatment of colorectal cancer: a meta-analysis[J]. World J Gastroenterol, 2015, 21(16): 5072-5080.

[16] Hayes DF. Bevacizumab treatment for solid tumors: boon or bust?[J]. JAMA, 2011, 305(5): 506-508.

[17] Kumler I, Christiansen OG, Nielsen DL. A systematic review of bevacizumab efficacy in breast cancer[J]. Cancer Treat Rev, 2014, 40(8): 960-973.

[18] Ye Q, Chen HL. Bevacizumab in the treatment of ovarian cancer: a meta-analysis from four phase III randomized controlled trials[J]. Arch Gynecol Obstet, 2013, 288(3): 655-666.

[19] Ameratunga M, Pavlakis N, Wheeler H, et al. Anti-angiogenic therapy for high-grade glioma[J/OL]. Cochrane Database Syst Rev, 2018, 11(11): CD008218. doi: 10.1002/14651858. CD008218.pub4.

[20] Corrie PG, Marshall A, Dunn JA, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence(AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study[J]. Lancet Oncol, 2014, 15(6): 620-630.

[21] Huang H, Zheng Y, Zhu J, et al. An updated meta-analysis of fatal adverse events caused by bevacizumab therapy in cancer patients[J/OL]. PLoS One, 2014, 9(3): e89960. doi: 10.1371/ journal.pone.0089960.

[22] Wu B, Wu H, Liu X, et al. Ranibizumab versus bevacizumab for ophthalmic diseases related to neovascularisation: a metaanalysis of randomised controlled trials[J/OL]. PLoS One, 2014, 9(7): e101253. doi: 10.1371/journal.pone.0101253.

[23] Byrne AT, Ross L, Holash J, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model[J]. Clin Cancer Res, 2003, 9(15): 5721-5728.

[24] Verheul HM, Hammers H, van Erp K, et al. Vascular endothelial growth factor trap blocks tumor growth, metastasis formation, and vascular leakage in an orthotopic murine renal cell cancer model[J]. Clin Cancer Res, 2007, 13(14): 4201-4208.

[25] Lassoued W, Murphy D, Tsai J, et al. Effect of VEGF and VEGF Trap on vascular endothelial cell signaling in tumors[J]. Cancer Biol Ther, 2010, 10(12): 1326-1333.

[26] Gaya A, Tse V. A preclinical and clinical review of aflibercept for the management of cancer[J]. Cancer Treat Rev, 2012, 38(5): 484-493.

[27] Ciombor KK, Berlin J, Chan E. Aflibercept[J]. Clin Cancer Res, 2013, 19(8): 1920-1925.

[28] Ramlau R, Gorbunova V, Ciuleanu TE, et al. Aflibercept and Docetaxel versus Docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial[J]. J Clin Oncol, 2012, 30(29): 3640-3647.

[29] Papadopoulos N, Martin J, Ruan Q, et al. Binding and neutralization of vascular endothelial growth factor (VEGF)and related ligands by VEGF Trap, ranibizumab and bevacizumab[J]. Angiogenesis, 2012, 15(2): 171-185.

[30] Teng LS, Jin KT, He KF, et al. Clinical applications of VEGFtrap (aflibercept) in cancer treatment[J]. J Chin Med Assoc, 2010, 73(9): 449-456.

[31] Saif MW, Relias V, Syrigos K, et al. Incidence and management of ZIv-aflibercept related toxicities in colorectal cancer[J]. World J Clin Oncol, 2014, 5(5): 1028-1035.

[32] Wang Q, Li T, Wu Z, et al. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo[J/ OL]. PLoS One, 2013, 8(8): e70544. doi: 10.1371/journal. pone.0070544.

[33] Wang F, Bai Y, Yu W, et al. Anti-angiogenic effect of KH902 on retinal neovascularization[J]. Graefes Arch Clin Exp Ophthalmol, 2013, 251(9): 2131-2139.

[34] Zhu Z, Witte L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor[J]. Invest New Drugs, 1999, 17(3): 195-212.

[35] Wu Y, Zhong Z, Huber J, et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer[J]. Clin Cancer Res, 2006, 12(21): 6573-6584.

[36] Akaza H, Fukuyama T. Axitinib for the treatment of advanced renal cell carcinoma[J]. Expert Opin Pharmacother, 2014, 15(2): 283-297.

[37] Mehta A, Sonpavde G, Escudier B. Tivozanib for the treatment of renal cell carcinoma: results and implications of the TIVO-1 trial[J]. Future Oncol, 2014, 10(11): 1819-1826.

[38] Huang Y, Carbone DP. Mechanisms of and strategies for overcoming resistance to anti-vascular endothelial growth factor therapy in non-small cell lung cancer[J]. Biochim Biophys Acta, 2015, 1855(2): 193-201.

[39] Funakoshi T, Latif A, Galsky MD. Safety and efficacy of addition of VEGFR and EGFR-family oral small-molecule tyrosine kinase inhibitors to cytotoxic chemotherapy in solid cancers: a systematic review and meta-analysis of randomized controlled trials[J]. Cancer Treat Rev, 2014, 40(5): 636-647.

猜你喜歡
靶向治療腫瘤
與腫瘤“和平相處”——帶瘤生存
“靶向治療”結(jié)合中醫(yī)調(diào)整
靶向治療對(duì)復(fù)發(fā)性耐藥性卵巢癌的治療價(jià)值分析
非小細(xì)胞肺癌靶向治療的護(hù)理分析
ceRNA與腫瘤
腫瘤相關(guān)巨噬細(xì)胞抗腫瘤靶點(diǎn)探究
床旁無導(dǎo)航穿刺確診巨大上縱隔腫瘤1例
腫瘤標(biāo)志物在消化系統(tǒng)腫瘤早期診斷中的應(yīng)用
《腫瘤預(yù)防與治療》2015年征訂啟事
UHRF1與腫瘤