李 倩 李貴陽(yáng) 李 杰 莫照蘭,
利用mini-Tn10轉(zhuǎn)座子文庫(kù)篩選鰻弧菌M3表型發(fā)生變化的基因
李 倩1李貴陽(yáng)2李 杰2莫照蘭1,2①
(1. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院 上海 201306;2. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海水養(yǎng)殖病害防治重點(diǎn)實(shí)驗(yàn)室 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室 青島 266071)
為了尋找影響鰻弧菌()表型變化的基因,本研究使用轉(zhuǎn)座子mini-Tn10 (pLOF/Kana)構(gòu)建了鰻弧菌M3突變株文庫(kù),篩選影響表型變化的菌株及相關(guān)基因,證明這些表型變化的突變子與毒力存在一定的相關(guān)性。對(duì)M3突變文庫(kù)的1152突變子進(jìn)行篩選,獲得泳動(dòng)能力改變的突變子1個(gè)(編號(hào)為6G_1),酪蛋白酶活性發(fā)生改變的突變子3個(gè)(編號(hào)為5A_11、7B_12和7E_12),明膠酶活性發(fā)生改變的突變子1個(gè)(編號(hào)為7H_1),以及菌膜形成能力發(fā)生顯著變化的突變子3個(gè)(編號(hào)為5E_2、6A_2和6E_12)。對(duì)轉(zhuǎn)座子插入位點(diǎn)進(jìn)一步分析顯示,一個(gè)磷酸二酯酶相關(guān)基因突變引起泳動(dòng)能力增強(qiáng)(<0.05),、和突變引起酪蛋白酶活性顯著減弱(<0.05),突變引起明膠蛋白酶活性顯著減弱(<0.05),和的突變引起菌膜形成能力明顯減弱(<0.05)。對(duì)這些表型變化的突變子進(jìn)行毒力感染,發(fā)現(xiàn)野生型M3是6G_1突變子的半數(shù)致死劑量(Lethal dose 50%,LD50)的2.04倍,該突變子毒力相對(duì)增強(qiáng)。5A_11、7B_12和7E_12的突變子LD50分別為野生型M3的2.96、3.25和3.36倍。7H_1的LD50是野生型M3的1.25倍,5E_2、6A_2和6E_12的LD50分別為野生型M3的3.34、4.08和1.84倍,這些突變子毒力相對(duì)減弱。本研究結(jié)果為進(jìn)一步闡明鰻弧菌的發(fā)病機(jī)制提供了理論基礎(chǔ)。
鰻弧菌;mini-Tn10轉(zhuǎn)座子;突變文庫(kù);表型;基因
鰻弧菌()廣泛存在于大洋、河口等環(huán)境,也是多種海洋生物的正常菌群之一,一些致病性菌株可感染多種魚(yú)類(lèi),引起出血性敗血癥(Austin, 2007; 丁山等, 2018)。鰻弧菌致病包括粘附、侵襲、體內(nèi)增殖、產(chǎn)生毒素等一系列過(guò)程,而這些過(guò)程又與細(xì)菌產(chǎn)生的各種致病因子有關(guān)(Frans, 2011)。已知的致病因子包括外膜蛋白、鞭毛、蛋白酶、脂多糖和溶血素等(Norqvist, 1990; Austin, 1995; Hirono, 1996; Milton, 1996)。鞭毛參與鰻弧菌的運(yùn)動(dòng),當(dāng)細(xì)菌失去運(yùn)動(dòng)能力或運(yùn)動(dòng)能力下降時(shí),其感染宿主細(xì)胞的能力明顯減弱(Ormonde, 2000)。很多胞外蛋白酶是病原菌的主要致病因子,它們可以水解組織細(xì)胞,增強(qiáng)其通透性,產(chǎn)生細(xì)胞毒性,最終造成組織損傷等(Naka, 2011)。鰻弧菌的金屬蛋白酶基因發(fā)生突變時(shí),其對(duì)宿主紅細(xì)胞的溶血活性下降、毒力減弱(Mo, 2010)。Stewart等(2001)研究表明,幾乎所有的細(xì)菌都可以形成菌膜,為細(xì)菌提供物理和化學(xué)屏障,營(yíng)造一種相對(duì)穩(wěn)定的狀態(tài)。菌膜使鰻弧菌能夠?qū)ο緞?、抗生素等不利環(huán)境具有一定的耐受力,使其保持持續(xù)感染和耐藥性(Hall-Stoodley, 2004; Lindell, 2012)。一些基因參與調(diào)控鰻弧菌菌膜和毒力的形成,如能夠抑制胞外蛋白的產(chǎn)生、調(diào)控菌膜的形成,進(jìn)而參與細(xì)菌毒力和耐藥性的調(diào)控(Croxatto, 2002)。可見(jiàn),鰻弧菌在運(yùn)動(dòng)、胞外蛋白酶產(chǎn)生、菌膜形成等表型方面的變化與細(xì)菌的致病性相關(guān)。
轉(zhuǎn)座子mini-Tn10是一種微型轉(zhuǎn)座子,已被廣泛應(yīng)用于多種細(xì)菌基因的功能研究,如用于鑒定炭疽桿菌()未知的調(diào)控因子及代謝途徑研究(Wilson, 2007),用于鑒定影響蘇云金桿菌()細(xì)菌素產(chǎn)生的基因(Kamoun, 2009)。為找到影響鰻弧菌表型變化的基因,本研究使用轉(zhuǎn)座子mini-Tn10 (pLOF/Kana)構(gòu)建鰻弧菌M3突變菌株文庫(kù),篩選影響表型變化的菌株及相關(guān)基因,為進(jìn)一步研究鰻弧菌的致病機(jī)理提供基礎(chǔ)。
鰻弧菌M3(AmpR)由本實(shí)驗(yàn)室保存,用胰大豆蛋白胨培養(yǎng)基(TSA和TSB)培養(yǎng),培養(yǎng)條件為28℃,靜置或150 r/min搖床培養(yǎng)。
大腸桿菌()CC118 (pLOF/Kana, KanaR, AmpR)和大腸桿菌SM10(KanaR)由集美大學(xué)鄢慶枇教授惠贈(zèng),用含卡那霉素(Kana) 100 μg/ml的LB液體培養(yǎng)基培養(yǎng),培養(yǎng)條件為37℃、靜置或150 r/min搖床培養(yǎng)。
斑馬魚(yú)(),體長(zhǎng)為3~4 cm,購(gòu)于青島市南山花鳥(niǎo)蟲(chóng)魚(yú)市場(chǎng)。實(shí)驗(yàn)前暫養(yǎng)于15 L水族箱中1周,正常換水、喂食,養(yǎng)殖水溫為22℃。
TCBS固體培養(yǎng)基(含Kana 600 μg/ml)用于篩選帶有Kana抗性的鰻弧菌突變子。
突變文庫(kù)的構(gòu)建參照Herrero等(1990)方法并適當(dāng)改進(jìn)。供體菌SM10 (pLOF/ Kana)在LB [氨芐青霉素(Amp),50 μg/ml;Kana,100 μg/ml]培養(yǎng)基中37℃震蕩培養(yǎng)過(guò)夜,受體菌(鰻弧菌) M3在TSB培養(yǎng)基中28℃震蕩培養(yǎng)過(guò)夜。分別離心,收集供體菌和受體菌,用新鮮培養(yǎng)基洗滌,并重懸菌體,供體菌與受體菌按1∶4的比例混合均勻,用0.22 μm的微孔濾膜過(guò)濾混合菌液,取出濾膜置于TSA平板上,28℃培養(yǎng)4 h后,用1 ml TSB培養(yǎng)基洗脫濾膜上的細(xì)菌,取50 μl涂布TCBS+Kana平板,28℃培養(yǎng)24 h。從TCBS+Kana平板上挑取單菌落,–80℃保存于96孔板中。
對(duì)鰻弧菌轉(zhuǎn)座子突變文庫(kù)進(jìn)行泳動(dòng)、酪蛋白酶活性、明膠酶活性、菌膜形成能力等表型檢測(cè)。具體方法:將鰻弧菌M3及其突變文庫(kù)菌株在TSB過(guò)夜培養(yǎng),調(diào)節(jié)菌液為OD540 nm=0.5,取2 μl菌液分別點(diǎn)種于含0.35%瓊脂、含1%酪蛋白、含1%明膠的TSA平板上,每組設(shè)3個(gè)重復(fù)。28℃靜置培養(yǎng)24 h后,分別測(cè)量平板上細(xì)菌的泳動(dòng)圈直徑(Schaber, 2004)、酪蛋白酶產(chǎn)生直徑(Wilhelm, 2007)、明膠酶產(chǎn)生直徑(Zhou, 2013)。
應(yīng)用結(jié)晶紫染色法檢測(cè)突變菌株菌膜形成能力(Lazarevic, 2005)。取OD540 nm為0.5的菌液150 μl加入96孔板中,以TSB作為空白對(duì)照。在28℃靜置培養(yǎng)24 h,用磷酸鹽緩沖液(PBS, 濃度0.2 mol/L, pH 7.0)洗滌5次后,用包音氏固定液(Bouin’s stationary liquid)固定,37℃下靜置培養(yǎng)1 h,用PBS緩沖液清洗除去殘留物,置于37℃恒溫培養(yǎng)箱完全干燥后,加入結(jié)晶紫染色、蒸餾水清洗,加入乙醇溶解吸附結(jié)晶紫,然后,測(cè)定其在OD595 nm的吸光度。
根據(jù)Lee等(2008)的方法確定轉(zhuǎn)座子插入突變子的數(shù)量,具體步驟:鰻弧菌M3基因?yàn)閱慰截惢颍x取其作為內(nèi)參基因,基因?yàn)檗D(zhuǎn)座子特有,選取其為目的基因,根據(jù)引物rpoB-for/rev、neo-for/rev(表1)擴(kuò)增和片段。連接片段和片段,構(gòu)建重組載體質(zhì)粒,根據(jù)該質(zhì)粒計(jì)算DNA拷貝數(shù),并以該重組質(zhì)粒為模板,rpoB- SYBR-for/rev、neoR-SYBR-for/rev為引物,制作標(biāo)準(zhǔn)曲線(xiàn),得到擴(kuò)增效率值(E和E),再以突變子DNA為模板,進(jìn)行相對(duì)定量PCR,得到ΔC和ΔC,由公式計(jì)算轉(zhuǎn)座子插入個(gè)數(shù)。
式中,ΔC為擴(kuò)增基因時(shí),突變子株DNA為模板的C與重組質(zhì)粒為模板的C差值。ΔC為擴(kuò)增基因時(shí),突變子株DNA為模板的C與重組質(zhì)粒為模板的C差值。
根據(jù)Xie等(2011)的方法適當(dāng)改進(jìn),確定轉(zhuǎn)座子插入基因,具體步驟:根據(jù)轉(zhuǎn)座子mini-Tn10中基因序列進(jìn)行特異性引物設(shè)計(jì),具體引物序列見(jiàn)表1。對(duì)篩選出的8株菌株進(jìn)行基因步移(Genome walking)擴(kuò)增。以8株突變子菌株基因組DNA為模板,使用外引物neo-Rrev-0a和M3-1-1進(jìn)行第1輪PCR;取適量的第1輪PCR產(chǎn)物反應(yīng)液稀釋50倍后,使用內(nèi)引物neoR-rev-1a和M3-1進(jìn)行第2輪PCR;取適量的第2輪PCR產(chǎn)物反應(yīng)液稀釋50倍后,使用內(nèi)引物neoR-rev-b1和M3-1進(jìn)行第3輪PCR反應(yīng)。PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測(cè),確認(rèn)目的條帶后,經(jīng)1.5%瓊脂糖凝膠電泳,切膠回收目的片段、連接至載體,送上海派森諾生物技術(shù)有限公司測(cè)序,測(cè)序結(jié)果與已公布的M3基因組信息在NCBI上進(jìn)行比對(duì)。
表1 本實(shí)驗(yàn)所用引物
Tab.1 Primers used in this study
利用斑馬魚(yú)作為實(shí)驗(yàn)動(dòng)物,檢測(cè)突變子的毒力變化,根據(jù)楊茂成(1990)的方法,鰻弧菌野生型M3及8株突變菌株作為感染組,無(wú)菌生理鹽水作為對(duì)照組,設(shè)置細(xì)菌濃度梯度為108、107、106和105CFU/ml,TSA平板檢測(cè)活菌數(shù)。每個(gè)梯度10尾魚(yú),每尾魚(yú)注射10 μl菌液,進(jìn)行肌肉注射攻毒,記錄感染后斑馬魚(yú)的死亡情況,采用改進(jìn)的寇氏法計(jì)算細(xì)菌對(duì)斑馬魚(yú)的半數(shù)致死量(Lethal dose 50%, LD50)。
細(xì)菌的泳動(dòng)圈直徑、酪蛋白酶產(chǎn)生直徑、明膠酶產(chǎn)生直徑和成膜能力的吸光度采用平均值±標(biāo)準(zhǔn)差(Mean±SD)表示,并使用SPSS軟件對(duì)這些數(shù)據(jù)進(jìn)行單因素方差分析(One-way ANOVA)。
利用mini Tn10轉(zhuǎn)座子構(gòu)建鰻弧菌M3的突變文庫(kù),得到1152株突變子。對(duì)突變子進(jìn)行泳動(dòng)、酪蛋白酶活性、明膠酶活性、菌膜形成能力的檢測(cè),發(fā)現(xiàn)與野生型M3相比,突變子株6G_1的泳動(dòng)能力明顯增強(qiáng)(<0.05)(圖1),5A_11、7B_12、7E_12的酪蛋白酶活性顯著減弱(<0.05)(圖2),7H_1的明膠酶活性顯著減弱(<0.05)(圖3),5E_2、6A_2、6E_12的菌膜形成能力顯著減弱(<0.05)(圖4)。
選取篩選的8株菌,利用實(shí)時(shí)PCR相對(duì)定量標(biāo)準(zhǔn)曲線(xiàn)法和ΔC法確定了轉(zhuǎn)座子插入個(gè)數(shù)(表2)。通過(guò)基因步移擴(kuò)增法獲得轉(zhuǎn)座子插入位點(diǎn),將得到的序列與M3全基因組序列進(jìn)行比對(duì),得到插入基因在M3基因組上的位置信息和編碼蛋白信息(圖5,表3)。、、、位于M3染色體Ⅰ上,1個(gè)磷酸二酯酶相關(guān)基因和位于染色體Ⅱ上。其中,磷酸二酯酶相關(guān)基因影響M3的運(yùn)動(dòng)能力,、、影響M3酪蛋白酶產(chǎn)生,影響M3明膠蛋白酶產(chǎn)生,和影響M3的菌膜形成能力。
圖1 鰻弧菌M3轉(zhuǎn)座子文庫(kù)突變子泳動(dòng)能力檢測(cè)
不同字母表示組間差異顯著(<0.05),下同
Data with different letters are significantly different among different groups (<0.05), the same as below
圖2 鰻弧菌M3轉(zhuǎn)座子文庫(kù)突變子酪蛋白酶活性檢測(cè)
圖3 鰻弧菌M3轉(zhuǎn)座子文庫(kù)突變子明膠酶酶活性檢測(cè)
圖4 鰻弧菌M3轉(zhuǎn)座子文庫(kù)突變子菌膜形成能力檢測(cè)
表2 目的基因和內(nèi)參基因的擴(kuò)增效率及ΔC值
Tab.2 Amplification efficiency and ΔCt of target gene neoR and reference gene rpoB
肌肉注射攻毒實(shí)驗(yàn)結(jié)果見(jiàn)表4。由表4可知,突變子6G_1的LD50為5.439×104CFU/尾,野生型M3是該突變子的2.04倍,突變子5A_11、7B_12和7E_12的LD50分別為3.29×105、3.734×105、和3.734×105CFU/尾,分別為野生型M3的2.96、3.25和3.36倍。7H_1的LD50為1.374×105CFU/尾,是野生型M3的1.25倍,5E_2、6A_2和6E_12的LD50分別為3.716×105、4.453×105和2.052×105CFU/尾,分別為野生型M3的3.34、4.08和1.84倍。
圖5 轉(zhuǎn)座子插入位點(diǎn)及基因
表3 轉(zhuǎn)座子插入位點(diǎn)信息
Tab.3 Information of transposon insertion site
本研究利用mini-Tn10轉(zhuǎn)座子構(gòu)建了鰻弧菌M3的突變文庫(kù),篩選得到影響細(xì)菌泳動(dòng)、酪蛋白酶活性、明膠酶活性、菌膜形成能力的突變子菌株,通過(guò)基因步移和序列比對(duì),找到影響上述表型的相關(guān)基因。結(jié)果顯示,1個(gè)磷酸二酯酶相關(guān)基因的突變引起泳動(dòng)能力增強(qiáng)(<0.05),毒力相對(duì)增強(qiáng),、、的突變引起酪蛋白酶活性明顯減弱(<0.05),的突變引起明膠蛋白酶活性顯著減弱(<0.05),和的突變引起菌膜形成能力明顯減弱(<0.05)且這些菌株毒力相對(duì)減弱。研究表明,細(xì)菌毒力產(chǎn)生主要包括鐵攝取系統(tǒng)、外膜蛋白、胞外蛋白酶、脂多糖和溶血素等(Weber, 2009; Naka, 2011)。O’Toole等(1996)研究發(fā)現(xiàn),鰻弧菌鞭毛被破壞后,泳動(dòng)能力減弱的菌株毒力較野生型減弱了幾百倍,表明趨化運(yùn)動(dòng)是鞭毛對(duì)鰻弧菌毒力的一種必需功能。Hao等(2013)研究表明,鰻弧菌基因缺失突變株因?yàn)槠涓鞣N表型缺陷和調(diào)控能力喪失,致使鰻弧菌在宿主體內(nèi)存活能力下降,致病力減弱,證實(shí)了表型和毒力存在相關(guān)性。
表4 鰻弧菌M3野生型及其突變子株攻毒實(shí)驗(yàn)結(jié)果
Tab.4 Experimental results of virulence of V. anguillarum M3 wild type and its mutants
磷酸二酯酶(PDES)具有水解細(xì)胞內(nèi)第二信使(環(huán)磷酸腺苷cAMP或環(huán)磷酸鳥(niǎo)苷cGMP)的功能,降解細(xì)胞內(nèi)cAMP或cGMP,從而終結(jié)這些第二信使所傳導(dǎo)的生化作用(田慧等, 2003)。Fahmin等(2017)研究顯示,PDES、二腺苷酸環(huán)化酶(DACS)和c-di-AMP合成酶構(gòu)成環(huán)二腺苷單磷酸(c-di-AMP),PDES和DACS協(xié)同調(diào)節(jié)c-di-AMP的穩(wěn)態(tài),PDES的缺失可導(dǎo)致革蘭氏陽(yáng)性細(xì)菌的細(xì)胞壁發(fā)生改變、鉀離子吸收失調(diào)、c-di-AMP水平改變、細(xì)菌的存活率下降。c-di-AMP在不同的細(xì)菌體內(nèi)具有不同的作用,可以影響生物膜的形成、毒力因子的表達(dá)、運(yùn)動(dòng)性和碳代謝(Corrigan, 2013),但其調(diào)控細(xì)菌表型和毒力的機(jī)制尚不清楚(Pham, 2016; Corrigan, 2013)。本研究中,由于轉(zhuǎn)座子插入,使鰻弧菌的1個(gè)PDES失活,有可能影響了細(xì)菌細(xì)胞壁離子代謝和生物膜形成,而導(dǎo)致細(xì)菌運(yùn)動(dòng)能力改變,具體的影響機(jī)制還需進(jìn)一步探究。
編碼異丙基蘋(píng)果酸異構(gòu)酶,將-異丙基蘋(píng)果酸催化為-異丙基蘋(píng)果酸,為亮氨酸的合成提供前體(Kohlhaw, 2003)。編碼異丙基蘋(píng)果酸脫氫酶,具有N-酰基-L-高絲氨酸內(nèi)酯(AHL)降解酶活性(Ma, 2018)。AHL參加細(xì)菌密度感應(yīng)系統(tǒng)(QS)的調(diào)節(jié),調(diào)控生物膜形成(Parsek, 2000)、蛋白酶活性(Waters, 2005)等。在染色體上,位于和之間,由此推測(cè),的插入失活間接影響了的功能,從而影響鰻弧菌QS的功能,使蛋白酶活性、生物膜形成能力受到影響。
編碼一種細(xì)胞質(zhì)蛋白,與內(nèi)層錨定蛋白R(shí)seA結(jié)合,調(diào)節(jié)膜內(nèi)蛋白水解與蛋白酶活性(Kim, 2010);編碼硫胺素ABC轉(zhuǎn)運(yùn)ATP結(jié)合蛋白,參與細(xì)菌的能量代謝,該基因的缺失不僅使細(xì)菌整體的能量代謝下降,還使細(xì)菌的生長(zhǎng)減慢,細(xì)菌生物膜合成所需的蛋白、胞外多糖等合成能力減弱(Huang, 2014)。編碼一種胞漿蛋白,參與亞精胺和腐胺的轉(zhuǎn)運(yùn)(Shah, 2008)。因此,這些基因的缺失可能導(dǎo)致鰻弧菌多種蛋白或蛋白酶合成能力、轉(zhuǎn)運(yùn)能力下降,間接影響蛋白酶的活性。這些基因?qū)Φ鞍酌富钚缘挠绊憴C(jī)制有待闡明。
編碼乙酰乳酸合酶,催化2-乙酰乳酸的合成,參與三羧酸循環(huán)(Zhao, 2013);編碼 2-甲基異檸檬酸裂解酶,促進(jìn)2-甲基異檸檬酸酯催化丙酮酸和琥珀酸酯的形成,參與碳源合成(Hubstenberger, 2015),說(shuō)明和與ATP合成相關(guān)。因此,猜測(cè)這2個(gè)參與能量合成的基因間接影響鰻弧菌菌膜的形成,它們對(duì)菌膜形成的影響機(jī)制有待闡明。
總之,本研究通過(guò)轉(zhuǎn)座子文庫(kù),鑒定出8個(gè)與鰻弧菌運(yùn)動(dòng)、胞外蛋白酶活性、菌膜形成有關(guān)的基因。由于轉(zhuǎn)座子的插入突變可能會(huì)引發(fā)極性效應(yīng),使得插入位點(diǎn)的下游基因受到影響。因此,后期還需要通過(guò)基因敲除、基因回補(bǔ)實(shí)驗(yàn)來(lái)確證它們與表型變化的關(guān)系,在此基礎(chǔ)上研究基因的功能及作用機(jī)制。
Austin B, Alsina M, Austin DA,. Identification and typing of: A comparison of different methods. Systematic and Applied Microbiology, 1995, 18(2): 285– 302
Austin B, Austin D. Characteristics of the pathogens: Gram- negative bacteria. In: Bacterial fish pathogens. Springer Praxis Books. Springer, Dordrecht, 2007
Corrigan RM, Campeotto I, Jeganathan T,. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): 9084–9089
Croxatto A, Chalker VJ, Lauritz J,. VanT, a homologue ofLuxR, regulates serine, metalloprotease, pigment, and biofilm production in. Journal of Bacteriology, 2002, 184(6): 1617–1629
Ding S, Li SF, Li J,Long-term protection effect oftrivalent inactivated vaccine. Progress in Fishery Sciences, 2018, 39(5): 137–142 [丁山, 李淑芳, 李杰, 等. 鰻弧菌三價(jià)滅活疫苗的長(zhǎng)期免疫保護(hù)效果. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(5): 137–142]
Fahmin T, Port GC, Cho KH. c-di-AMP: An essential molecule in the signaling pathways that regulate the viability and virulence of gram-positive bacteria. Genes (Basel), 2017, 8(8): 197
Frans I, Michiels CW, Bossier P,.as a fish pathogen: Virulence factors, diagnosis and prevention. Journal of Fish Diseases, 2011, 34(9): 643–661
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2004, 2: 95–108
Hao B, Mo ZL, Xiao P,. Role of alternative sigma factor 54 (RpoN) fromM3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Applied Microbiology and Biotechnology, 2013, 97(6): 2575–2585
Herrero M, de Lorenzo V, Timmis KN. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. Journal of Bacteriology, 1990, 172(11): 6557–6567
Hirono I, Masuda T, Aoki T. Cloning and detection of the hemolysin gene of. Microbial Pathogenesis, 1996, 21(3): 173–182
Huang H, Tao YX. A small molecule agonistas a novel pharmacoperone for intracellularly retained melanocortin-4 receptor mutants. International Journal of Biological Sciences, 2014, 10(8): 817–24
Hubstenberger A, Cameron C, Noble SL,. Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. Journal of Cell Biology, 2015, 211(3): 703–716
Kamoun F, Fguira IB, Tounsi A,. Generation of mini-Tn10 transposon insertion mutant library offor the investigation of genes required for its bacteriocin production. FEMS Microbiology Letters, 2009, 294(2): 141–149
Kim DY, Kwon E, Choi JK,. Structural basis for the negative regulation of bacterial stress response by RseB. Protein Science, 2010, 19(6): 1258–1263
Kohlhaw GB. Leucine biosynthesis in fungi: Entering metabolism through the back door. Microbiology and Molecular Biology Reviews, 2003, 67(1): 1–15
Lazarevic V, Soldo B, Médico N,.-phosphoglucomutase is required for normal cell morphology and biofilm formation. Applied and Environmental Microbiology, 2005, 71(1): 39–45
Lee C, Lee S, Shin SG,. Real-time PCR determination of rRNA gene copy number: Absolute and relative quantification assays with. Applied Microbiology and Biotechnology, 2008, 78(2): 371–376
Lindell K, Fahlgren A, Hjerde E,. Lipopolysaccharide O-antigen prevents phagocytosis ofby rainbow trout () skin epithelial cells. PLoS One, 2012, 7(5): e37678
Ma H, Wang X, Zhang Y,. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresource Technology, 2018, 247: 116–124
Milton DL, O'Toole R, H?rstedt P,. Flagellin A is essential for the virulence of. Journal of Bacteriology, 1996, 178(5): 1310–1319
Mo ZL, Guo DS, Mao YX,. Identification and characterization of thegene encoding a new metalloprotease. Chinese Journal of Oceanology and Limnology, 2010, 28(1): 55–61
Naka H, Crosa JH. Genetic determinants of virulence in the marine fish pathogen. Fish Pathology, 2011, 46(1): 1–10
Norqvist A, Norrman B, Wolf-Watz H. Identification and characterization of a zinc metalloprotease associated with invasion by the fish pathogen. Infection and Immunity, 1990, 58(11): 3731–3736
Ormonde P, H?rstedt P, O'Toole R,. Role of motility in adherence to and invasion of a fish cell line by. Journal of Bacteriology, 2000, 182(8): 2326– 2328
O'Toole R, Milton DL, Wolf-Watz H. Chemotactic motility is required for invasion of the host by the fish pathogen. Molecular Microbiology, 1996, 19(3): 625– 637
Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: A signaling mechanism involved in associations with higher organisms. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(16): 8789–8793
Pham TH, Liang ZX, Marcellin E,. Replenishing the cyclic-di-AMP pool: Regulation of diadenylate cyclase activity in bacteria. Current Genetics, 2016, 62(4): 731–738
Schaber JA, Carty NL, McDonald NA,. Analysis of quorum sensing-deficient clinical isolates of. Journal of Medical Microbiology, 2004, 53(Pt 9): 841–853
Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Molecular Microbiology, 2008, 68(1): 4–16
Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. The LANCET, 2001, 358(9276): 135–138
Tian H, Zhang Q, Zhu JS. New phosphodiesterase and its new function. Chinese Journal of Clinical Pharmacology, 2003, 19(6): 458–460 [田慧, 張奇, 朱景申. 新的磷酸二酯酶及其功能. 中國(guó)臨床藥理學(xué)雜志, 2003, 19(6): 458–460]
Waters CM, Bassler BL. Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 2005, 21: 319–346
Weber B, Hasic M, Chen C,. Type Ⅵ secretion modulates quorum sensing and stress response in. Environmental Microbiology, 2009, 11(12): 3018–3028
Wilhelm S, Gdynia A, Tielen P,. The autotransporter esterase EstA ofis required for rhamnolipid production, cell motility, and biofilm formation. Journal of Bacteriology, 2007, 189(18): 6695–6703
Wilson AC, Perego M, Hoch JA. New transposon delivery plasmids for insertional mutagenesis in. Journal of Microbiological Methods, 2007, 71(3): 332–335
Xie C, Zhang B, Wang D,. Molecular cloning and characterization of an achene-seed-specific promoter from motherwort (Houtt). Biotechnology Letters, 2011, 33(1): 167–172
Yang MC. Veterinary statistics. Beijing: China Prospect Press, 1990 [楊茂成. 獸醫(yī)統(tǒng)計(jì)學(xué). 北京: 中國(guó)展望出版社, 1990]
Zhao Y, Niu C, Wen X,. The minimum activation peptide fromcan activate the catalytic subunit of AHAS from different species. Chembiochem, 2013, 14(6): 746–752
Zhou MY, Wang GL, Li D,. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica. PLoS One, 2013, 8(11): e79668
Construction of A mini-Tn10 Transposon Library to Identify Genes Associated with Several Phenotypes ofM3
LI Qian1, LI Guiyang2, LI Jie2, MO Zhaolan1,2①
(1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 2. Yellow SeaFisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao),Qingdao 266071)
The phenotypic characteristics ofare related to the pathogenicity of the bacteria, such as swimming motion, ability of membrane formation, and extracellular protease production. To identify the genes affecting phenotypic changes in, this study used transposon mini-Tn10 (pLOF/Kana) to construct a library ofM3 mutant strains and to screen the strains and related genes that affect phenotypic changes. It is proved that there is a certain correlation between mutants causing these phenotypic changes and the virulence. Mutations of 1152 strains of M3 mutant library were screened, and mutant strains with significant changes in swimming ability (strain 6G_1), casein enzyme activity (strains 5A_11, 7B_12, and 7E_12), gelatin enzyme activity (strain 7H_1), and biofilm formation ability (strains 5E_2, 6A_2, and 6E_12) were noted. Further analysis revealed that a phosphodiesterase-related gene mutation caused increased swimming capacity (<0.05),,, andmutations caused a significant decrease in caseinase activity (<0.05), andmutations caused a significant decrease in gelatinase activity (<0.05). Moreover, mutations in,andresulted in a significant decrease in the ability to form bacterial membranes (<0.05). Moreover, we observed a virulent infection in these mutant strains, which showed that LD50of wild type M3 was 2.04 times higher than that of 6G_1 and the virulence was relatively increased. Additionally, 5A_11, 7B_12, and 7E_12 LD50were 2.96 times, 3.25 times, and 3.36 times higher than that of wild-type M3, respectively. The LD50with the strain 7H_1 was 1.25 times higher than that of wild M3, and the LD50with the strains 5E_2, 6A_2, and 6E_12 were 3.34, 4.08, and 1.84 times higher than that of wild M3, respectively. These results lay a foundation for further study on the pathogenic mechanism of.
; mini-Tn10 transposon; Mutant library; Phenotype; Gene
MO Zhaolan, E-mail: mozl@ysfri.ac.cn
S917.1
A
2095-9869(2020)05-0019-08
10.19663/j.issn2095-9869.20190426001
http://www.yykxjz.cn/
李倩, 李貴陽(yáng), 李杰, 莫照蘭. 利用mini-Tn10轉(zhuǎn)座子文庫(kù)篩選鰻弧菌M3表型發(fā)生變化的基因. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(5): 160–167
Li Q, Li GY, Li J, Mo ZL. Construction of a mini-Tn10 transposon library to identify genes associated with several phenotypes ofM3. Progress in Fishery Sciences, 2020, 41(5): 160–167
* 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFC0311300)、國(guó)家自然科學(xué)基金——山東省人民政府聯(lián)合基金(U1706205)、中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所基本科研業(yè)務(wù)費(fèi)(20603022017008)和鰲山科技創(chuàng)新計(jì)劃(2015ASKJ02)共同資助[This work was supported by National Key Research and Development Program of China (2018YFC0311300), NFSC-Shandong Joint Fund (U1706205), Central Public-Interest Scientific Institution Basal Research Fund, YSFRI, CAFS (20603022017008), and Aoshan Technology Innovation Program (2015ASKJ02)]. 李 倩,E-mail: 840373607@qq.com
莫照蘭,研究員,E-mail: mozl@ysfri.ac.cn
2019-04-26,
2019-07-02
(編輯 馬璀艷)