葉志偉?冼穎欣?陳宗蘭?林倍思?徐芬?姚斌
【摘要】目的 探討艾塞那肽治療肥胖癥的機(jī)制及其相互關(guān)系。方法 選擇15只雄性C57BL/6小鼠隨機(jī)分為對照組、高脂飲食肥胖模型組(模型組)和高脂飲食肥胖模型艾塞那肽治療組(治療組)。在實(shí)驗(yàn)第16周記錄各組小鼠攝食量、體質(zhì)量、體脂量,測量空腹血糖,進(jìn)行腹腔內(nèi)葡萄糖耐量試驗(yàn)(GTT)和胰島素耐量試驗(yàn)(ITT)。測量后處死小鼠,收集小鼠血清、脂肪組織檢測胰島素信號通路分子、炎癥和氧化應(yīng)激指標(biāo)。結(jié)果 肥胖指標(biāo)方面,模型組小鼠的進(jìn)食量、體脂量、體脂百分比均高于對照組(P均< 0.017),治療組進(jìn)食量少于模型組(P < 0.017)。糖代謝方面,模型組小鼠的空腹血糖、GTT及ITT血糖曲線下面積均高于對照組(P < 0.017),治療組小鼠的空腹血糖、GTT及ITT血糖曲線下面積均較模型組有所下降但與模型組比較差異無統(tǒng)計(jì)學(xué)意義(P均> 0.017)。胰島素信號通路分子檢測中,模型組IRS1磷酸化比例(p-IRS1/IRS1)低于對照組(P < 0.017),治療組p-IRS1/IRS1較模型組回升(P < 0.017)。在炎癥和氧化應(yīng)激指標(biāo)方面,模型組的血清IL-6水平高于對照組(P < 0.017),治療組的HIF-1α mRNA相對表達(dá)量較模型組下降(P < 0.017)。3組動(dòng)物模型合并計(jì)算,血清IL-6水平(r = 0.702,P = 0.011)和脂肪組織IL-6 mRNA相對表達(dá)量(r = 0.590,P = 0.043)均與體脂百分比呈正相關(guān)。血清IL-6水平還與進(jìn)食量(r = 0.670,P = 0.017)、脂肪量(r = 0.680,P = 0.015)和空腹血糖(r = 0.780,P = 0.003)呈正相關(guān)。脂肪組織IL-6與eNOS mRNA相對表達(dá)量呈正相關(guān)(r = 0.627,P = 0.029)。脂肪組織的HIF-1α相對表達(dá)量與ITT血糖曲線下面積(r = 0.643,P = 0.024)呈正相關(guān),與p-IRS1(r = -0.820,P = 0.046)和p-IRS1/IRS1(r = -0.846,P = 0.034)呈負(fù)相關(guān)。結(jié)論 艾塞那肽可改善肥胖小鼠模型的肥胖指標(biāo)和相關(guān)的糖代謝異常,這種療效可能是通過抗炎和抗氧化應(yīng)激實(shí)現(xiàn)的。
【關(guān)鍵詞】艾塞那肽;肥胖;炎癥;氧化應(yīng)激
Study of mechanism of exenatide in the treatment of obesity Ye Zhiwei, Xian Yingxin, Chen Zonglan, Lin Beisi, Xu Fen, Yao Bin. Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
Corresponding author, Yao Bin, E-mail: yaobin1910@ 126. com
【Abstract】Objective To explore the specific mechanism of exenatide in treating obesity and investigate its relationship. Methods Fifteen male C57BL/6 mice were randomly divided into the normal control group, obesity model group (induced by high-fat diet) and exenatide treatment group (treated by exenatide after high-fat diet). At the 16th week of the experiment, the food intake, body weight, weight of body fat, and fasting blood glucose of the mice in each group were recorded, and intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed. Subsequently, the mice were sacrificed, and the adipose tissue and serum of the mice were collected to detect the insulin signaling pahway molecules and measure the indexes of inflammation and oxidative stress. Results In terms of the obsesity indexes, the food intake, weight and percentage of body fat in the obesity model group were significantly higher compared with those in the control group (all P < 0.017), and the food intake in the treatment group was considerably less than that in the model group (P < 0.017). In the model group, the area under the ROC curve of fasting blood glucose, GTT and ITT was remarkably larger than that in the control group (all P < 0.017). Regarding the glucose metabolism, the area under the ROC curve of fasting blood glucose, GTT and ITT in the treatment group was slightly smaller than that in the model group with no statistical significance (all P > 0.017). In the model group, the percentage of IRS1 phosphorylation was significantly lower than that in the control group (P < 0.017). In the treatment group, the percentage of IRS1 phosphorylation was significantly higher than that in the model group (P < 0.017). The IL-6 level in the model group was significantly higher than that in the control group (P < 0.017). In the treatment group, the relative expression level of HIF-1α mRNA was significantly down-regulated compared with that in the model group (P < 0.017). For all the animals in three groups, the serum IL-6 levels (r = 0.702, P = 0.011) and the relative expression levels of IL-6 mRNA in the fat tissues (r = 0.590, P = 0.043) were positively correlated with the percentage of body fat. The serum IL-6 level was positively associated with the food intake (r = 0.670, P = 0.017), weight of body fat (r = 0.680, P = 0.015) and fasting blood glucose (r = 0.780, P = 0.003). The IL-6 level in the fat tissues was positively correlated with the relative expression level of eNOS mRNA (r = 0.627, P = 0.029). The relative expression level of HIF-1α in the fat tissues was positively associated with the area under ROC curve of ITT (r = 0.643, P = 0.024), whereas negatively correlated with p-IRS1 (r = -0.820, P = 0.046) and the percentage of IRS1 phosphorylation (r = -0.846, P = 0.034). Conclusion Exenatide can improve the obesity indexes and glucose metabolism abnormality probably via the mechanism of anti-inflammation and anti-oxidation.
【Key words】Exenatide;Obesity;Inflammation;Oxidative stress
肥胖是指由于體內(nèi)脂肪的體積和(或)脂肪細(xì)胞數(shù)量的增加導(dǎo)致的體質(zhì)量增加,或體脂占體質(zhì)量的百分比異常增高,并在某些局部過多沉積脂肪[1]。肥胖是糖尿病、心血管疾病及其他代謝性疾病和腫瘤的潛在危險(xiǎn)因素[2]。同時(shí),近二十年,我國肥胖的患病率逐漸增長,肥胖發(fā)病出現(xiàn)低齡化表現(xiàn),嚴(yán)重危害我國人民的健康。肥胖的發(fā)病機(jī)制復(fù)雜,越來越多的臨床和基礎(chǔ)研究證據(jù)提示肥胖是一種慢性炎癥,并與氧化應(yīng)激相關(guān)[3-4]。艾塞那肽是一種胰高血糖素樣肽1 (GLP-1)受體激動(dòng)劑。在2型糖尿病患者的治療中,GLP-1受體激動(dòng)劑在控制血糖的同時(shí)可以降低患者體質(zhì)量,而抗炎和抗氧化是GLP-1受體激動(dòng)劑發(fā)揮療效的重要機(jī)
制[5-6]。與其他GLP-1受體激動(dòng)劑類似,在心血管系統(tǒng)、神經(jīng)系統(tǒng)等領(lǐng)域的多個(gè)研究中已初步發(fā)現(xiàn)艾塞那肽可能有抗炎和抗氧化的作用[7-8]。由此可見,肥胖發(fā)病過程涉及炎癥和氧化應(yīng)激機(jī)制,而艾塞那肽具有減重作用和抗炎、抗氧化功能。但目前對艾塞那肽治療肥胖的研究有限,對其療效中的抗炎和抗氧化機(jī)制尚未闡明。為此,本研究擬探討艾塞那肽通過抗炎和抗氧化治療肥胖癥的具體機(jī)制及這些機(jī)制間的相互關(guān)系,現(xiàn)報(bào)告如下。
材料與方法
一、動(dòng)物飼養(yǎng)和分組
本研究的動(dòng)物實(shí)驗(yàn)研究方案得到中山大學(xué)實(shí)驗(yàn)動(dòng)物管理與使用委員會的批準(zhǔn)。研究采用7周齡的雄性C57BL/6小鼠(購自南京大學(xué)模式動(dòng)物研究所),體質(zhì)量為19 ~ 22 g。飼養(yǎng)于屏障環(huán)境內(nèi),自由進(jìn)食和飲水。15只雄性C57BL/6小鼠隨機(jī)分為3組:①對照組,以標(biāo)準(zhǔn)食物(脂肪含量4.0%)飼養(yǎng)16周;②模型組,以高脂食物(脂肪含量34.9%)飼養(yǎng)12周后,以生理鹽水腹腔內(nèi)注射4周;③治療組,以高脂食物(脂肪含量34.9%)飼養(yǎng)12周后,以艾塞那肽生理鹽水腹腔內(nèi)注射(每日24 nmol/kg)治療4周。
二、動(dòng)物模型評估
在實(shí)驗(yàn)第16周記錄各組小鼠攝食量、體質(zhì)量、體脂量,測量空腹血糖,并進(jìn)行腹腔內(nèi)糖耐量試驗(yàn)(GTT)和腹腔內(nèi)胰島素耐量試驗(yàn)(ITT)。其中攝食量的計(jì)算方法如下:放入飼料時(shí)稱重,每次更換飼料時(shí)再稱量剩余量,兩者之差為攝入飼料質(zhì)量,換算為攝入能量值。并測量小鼠體質(zhì)量、計(jì)算攝入飼料所花費(fèi)的時(shí)間。得到小鼠單位體質(zhì)量(kg)在單位時(shí)間(h)內(nèi)攝入的能量值(kcal)。體脂量測量按照動(dòng)物體脂定量分析儀的操作說明書對活體清醒的小鼠進(jìn)行全身脂肪、瘦肉組織、游離水及全身含水量的分析。體脂百分比(%)即全身脂肪重量與體質(zhì)量的比值。GTT:小鼠禁食過夜后經(jīng)腹腔內(nèi)注射葡萄糖(2 g/kg),并檢測0、30、60、90、120 min的尾靜脈血糖水平。ITT試驗(yàn):小鼠禁食6 h后經(jīng)腹腔注射重組人胰島素(0.65 U/kg),并測量0、30、60、90、120 min的尾靜脈血糖水平。記錄各時(shí)間點(diǎn)血糖值,連線得到血糖曲線,曲線下面積= (血糖0 min+血糖120 min+ 血糖30 min×2+血糖60 min×2+血糖90 min×2)×15。血糖檢測完成后予異氟烷充分麻醉小鼠,以皮膚捏夾反應(yīng)及腳趾刺激反應(yīng)等確保小鼠已經(jīng)到達(dá)深度麻醉,摘除小鼠眼球取血后立即處死小鼠并收集小鼠附睪旁脂肪組織。
三、血清學(xué)檢測
采用MENDO-75K kit (Millipore)檢測血清IL-6水平,所有步驟均嚴(yán)格按照試劑盒說明書進(jìn)行操作。
四、實(shí)時(shí)定量PCR
通過實(shí)時(shí)定量PCR檢測模板DNA的濃度,以了解組織內(nèi)mRNA表達(dá)情況:首先應(yīng)用Trizol總RNA抽提試劑(Invitrogen)收集脂肪組織的mRNA,隨后使用Prime Script RT Reagent Kit(Takara)將mRNA逆轉(zhuǎn)錄為模板DNA,最后應(yīng)用Light Cycler? 480 SYBR Green Master (Roche)進(jìn)行實(shí)時(shí)定量PCR實(shí)驗(yàn)。所有步驟按照試劑盒說明書進(jìn)行操作。實(shí)驗(yàn)中使用的IL-6、缺氧誘導(dǎo)因子-1α(HIF-1α)和內(nèi)皮型一氧化氮合酶(eNOS)的引物序列見表1。所有實(shí)時(shí)定量PCR的產(chǎn)物使用鼠源性β-actin作為內(nèi)參計(jì)算標(biāo)準(zhǔn)值(對照組數(shù)值等于1)。mRNA表達(dá)的倍數(shù)變化使用2-ΔΔCT方法計(jì)算。
五、蛋白免疫印跡
從脂肪組織(約50 mg)和細(xì)胞裂解物中提取總蛋白,然后通過10% SDS-PAGE分離。用特異性一抗進(jìn)行免疫印跡。所有免疫印跡信號強(qiáng)度使用β-actin作為內(nèi)參計(jì)算標(biāo)準(zhǔn)值(對照組數(shù)值等于1)。本研究使用的特異性一抗包括:胰島素受體-β(IR-β, Cell Signaling Technology)、胰島素受體底物-1(IRS1,Santa Cruz)、磷酸化IRS1(p-IRS1,Cell Signaling Technology)、磷酸肌醇-3-激酶(PI3K,Cell Signaling)和β-actin(Cell Signaling Technology)。計(jì)算IRS1磷酸化比例(p-IRS1/IRS1)。
六、統(tǒng)計(jì)學(xué)處理
所有統(tǒng)計(jì)分析采用SPSS 22.0進(jìn)行。正態(tài)分布的計(jì)量資料采用描述,多組定量資料比較用單因素方差分析,兩兩比較采用t檢驗(yàn)并用Bonferroni 法校正檢驗(yàn)水準(zhǔn)(α' = α/3)。各種指標(biāo)的相關(guān)性采用Pearson相關(guān)分析。α= 0.05。
結(jié)果
一、對照組、模型組和治療組小鼠的肥胖指標(biāo)比較
3組小鼠的進(jìn)食量、體脂量、體脂百分比比較差異均有統(tǒng)計(jì)學(xué)意義(P均< 0.05),其中模型組的進(jìn)食量、體脂量、體脂百分比均高于對照組(P均< 0.017),治療組進(jìn)食量少于模型組(P < 0.017)。3組小鼠體質(zhì)量比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.05),見表2。
二、對照組、模型組和治療組小鼠的空腹血糖、GTT和ITT血糖曲線下面積比較
3組小鼠的空腹血糖水平比較差異有統(tǒng)計(jì)學(xué)意義(F = 28.626,P < 0.001),模型組小鼠的空腹血糖高于對照組(P < 0.017),治療組小鼠的空腹血糖水平較模型組有所下降但與模型組比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.017),見圖1A。
3組小鼠的GTT血糖曲線下面積比較差異有統(tǒng)計(jì)學(xué)意義(F = 11.445,P = 0.002),模型組的GTT血糖曲線下面積高于對照組(P < 0.017),治療組GTT血糖曲線下面積比模型組有所下降但組間比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.017),見圖1B。
3組小鼠的ITT血糖曲線下面積比較差異有統(tǒng)計(jì)學(xué)意義(F = 9.695,P = 0.003),模型組的ITT血糖曲線下面積高于對照組(P < 0.017),治療組ITT血糖曲線下面積比模型組下降但組間比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.017),見圖1C。
三、對照組、模型組和治療組小鼠的胰島素信號通路相關(guān)分子水平及其磷酸化程度比較
3組小鼠的p-IRS1/IRS1比較差異有統(tǒng)計(jì)學(xué)意義(F = 10.867,P = 0.010),模型組p-IRS1/IRS1低于對照組(P < 0.017),治療組p-IRS1/IRS1較模型組回升(P < 0.017)。3組小鼠的IR-β、p-IRS1、IRS1和PI3K水平比較差異均無統(tǒng)計(jì)學(xué)意義(P均> 0.05),見圖2。
四、對照組、模型組和治療組小鼠的炎癥和氧化應(yīng)激指標(biāo)比較
3組小鼠的血清IL-6水平比較差異有統(tǒng)計(jì)學(xué)意義(F = 10.988,P = 0.004),模型組的血清IL-6水平高于對照組(P < 0.017),治療組的血清IL-6水平略低于模型組但組間比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.017)。各組脂肪組織內(nèi)IL-6 mRNA相對表達(dá)量也呈類似趨勢,但組間比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.05)。3組小鼠脂肪組織HIF-1α mRNA相對表達(dá)量比較差異有統(tǒng)計(jì)學(xué)意義(F = 5.405,P = 0.029),模型組HIF-1α mRNA相對表達(dá)量升高但與對照組比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.017),治療組的HIF-1α mRNA相對表達(dá)量較模型組下降(P < 0.017)。脂肪組織的eNOS水平在不同組別小鼠中存在與HIF-1α類似趨勢,但3組比較差異無統(tǒng)計(jì)學(xué)意義(P > 0.05),見圖3。
五、3組小鼠動(dòng)物模型肥胖、糖代謝指標(biāo)和炎癥、氧化應(yīng)激指標(biāo)的相關(guān)性分析
3組動(dòng)物模型合并計(jì)算,血清IL-6水平(r = 0.702,P = 0.011)和脂肪組織IL-6 mRNA相對表達(dá)量(r = 0.590,P = 0.043)均與體脂百分比呈正相關(guān)。血清IL-6水平還與進(jìn)食量(r = 0.670,P = 0.017)、脂肪量(r = 0.680,P = 0.015)和空腹血糖(r = 0.780,P = 0.003)呈正相關(guān)。脂肪組織IL-6與脂肪組織eNOS mRNA相對表達(dá)量呈正相關(guān)(r = 0.627,P = 0.029)。脂肪組織的HIF-1α相對表達(dá)量與ITT血糖曲線下面積(r = 0.643,P = 0.024)呈正相關(guān),與p-IRS1(r = -0.820,P = 0.046)和p-IRS1/IRS1(r = -0.846,P = 0.034)呈負(fù)相關(guān)。
討論
艾塞那肽是一種GLP-1受體激動(dòng)劑,臨床上主要用于2型糖尿病的治療,除了可調(diào)節(jié)血糖和胰島素功能外,還能減輕患者體質(zhì)量。有基礎(chǔ)研究顯示,艾塞那肽可能還具有抗炎和抗氧化的功效。因此,從機(jī)制上推測,對于發(fā)病機(jī)制中同樣涉及炎癥和氧化的肥胖患者,艾塞那肽可能有效。本研究成功建立了飲食誘導(dǎo)的小鼠肥胖模型,該模型出現(xiàn)了肥胖、糖代謝異常、胰島素作用異常,并伴有炎癥和氧化應(yīng)激活化。與模型組小鼠相比,經(jīng)艾塞那肽干預(yù)的治療組小鼠攝食量減少、IRS1磷酸化比例回升,其氧化應(yīng)激標(biāo)志物HIF-1α mRNA相對表達(dá)量下降,結(jié)果提示艾塞那肽通過抗炎和抗氧化發(fā)揮減重和調(diào)節(jié)糖代謝的作用,從而治療肥胖癥。
IL-6是一種與肥胖相關(guān)的重要促炎癥細(xì)胞因子,研究顯示肥胖患者的血清IL-6升高,并且可以預(yù)測肥胖所致的2型糖尿病的發(fā)生。IL-6在肥胖患者中對炎癥的調(diào)節(jié)是全身性的,肥胖患者唾液中的IL-6比非肥胖者明顯增加,其牙齦炎嚴(yán)重程度加重[9]。此外,與IL-6相關(guān)的單核苷酸多態(tài)性基因 rs2069845致病性變異增加肥胖發(fā)生的風(fēng)險(xiǎn)[10]。基礎(chǔ)研究證實(shí),IL-6在肥胖的發(fā)病機(jī)制中具有刺激M2極化和局部脂肪組織巨噬細(xì)胞增殖的效應(yīng)[11]。本研究中,模型組小鼠血清IL-6水平高于對照組,治療組較模型組有所下降,并且IL-6與肥胖、糖代謝指標(biāo)相關(guān)。再次證實(shí)肥胖可以活化炎癥應(yīng)答,并提示艾塞那肽有助于緩解肥胖導(dǎo)致的炎癥活化。
氧化應(yīng)激與炎癥密切相關(guān),同時(shí)也參與肥胖的發(fā)病機(jī)制。HIF-1α和eNOS是氧化應(yīng)激的重要生物學(xué)標(biāo)志物。HIF-1α可通過抑制棕色脂肪組織生熱作用、調(diào)節(jié)胰島素抵抗等多種途徑導(dǎo)致肥胖和糖尿病[12]。eNOS也可通過氧化應(yīng)激、內(nèi)皮功能紊亂等誘導(dǎo)肥胖和胰島素抵抗[13]。本研究中,治療組HIF-1α mRNA相對表達(dá)量低于模型組,并且HIF-1α與ITT血糖曲線下面積相關(guān),表明肥胖動(dòng)物模型存在氧化應(yīng)激異常,這種氧化應(yīng)激可以被艾塞那肽部分緩解。
值得關(guān)注的是,本研究中的炎癥和氧化應(yīng)激指標(biāo)也存在一定相關(guān)性。有研究顯示,炎癥和氧化應(yīng)激在脂肪組織中是相互聯(lián)系的。如同樣與胰島素抵抗相關(guān)的阻塞性睡眠呼吸暫停綜合征,其患者的間歇性缺氧和氧化應(yīng)激可以引起脂肪組織炎癥,并進(jìn)一步誘導(dǎo)胰島素抵抗,而糾正這種缺氧和氧化應(yīng)激可以減輕患者的炎癥狀況[14-17]。本研究顯示,脂肪組織IL-6(炎癥指標(biāo))與eNOS(氧化應(yīng)激指標(biāo))mRNA相對表達(dá)量呈正相關(guān),而這兩種效應(yīng)也可能在艾塞那肽的治療機(jī)制中相互作用,其具體機(jī)制值得進(jìn)一步深入探討。
綜上所述,艾塞那肽可改善肥胖小鼠模型的肥胖指標(biāo)和相關(guān)的糖代謝異常,這種療效可能是通過抗炎和抗氧化應(yīng)激實(shí)現(xiàn)的。
參 考 文 獻(xiàn)
[1] 中國超重肥胖醫(yī)學(xué)營養(yǎng)治療專家共識編寫委員會. 中國超重/肥胖醫(yī)學(xué)營養(yǎng)治療專家共識(2016年版). 中華糖尿病雜志, 2016, 8(9):525-540.
[2] Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes, 2019, 20(1):5-9.
[3] Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol, 2017, 37:35-40.
[4] Gaspar JM, Velloso LA. Hypoxia inducible factor as a central regulator of metabolism-implications for the development of obesity. Front Neurosci, 2018, 12:813.
[5] Guo C, Huang T, Chen A, Chen X, Wang L, Shen F, Gu X. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res, 2016, 49(12):e5826.
[6] Bu?dak ?, Machnik G, Bu?dak RJ, ?abuzek K, Bo?dys A, Belowski D, Basiak M, Okopień B. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner. Pharmacol Rep, 2016, 68(2):329-337.
[7] Fang J, Tang Y, Cheng X, Wang L, Cai C, Zhang X, Liu S, Li P. Exenatide alleviates adriamycin-induced heart dysfunction in mice: modulation of oxidative stress, apoptosis and inflam-mation. Chem Biol Interact, 2019, 304:186-193.
[8] Bu?dak ?, Machnik G, Skudrzyk E, Bo?dys A, Okopień B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp Ther Med, 2019, 17(4):2861-2869.
[9] Do?an GE, Toraman A, ?ebin S?, Do?an ?, Güng?r A, Aksoy H, Asutay H. Salivary IL-6 and IL-10 levels in subjects with obesity and gingivitis. Am J Dent, 2016, 29(5):261-265.
[10] Todendi PF, Klinger EI, Ferreira MB, Reuter CP, Burgos MS, Possuelo LG, Valim AR. Association of IL-6 and CRP gene polymorphisms with obesity and metabolic disorders in children and adolescents. An Acad Bras Cienc, 2015, 87(2):915-924.
[11] Braune J, Weyer U, Hobusch C, Mauer J, Brüning JC, Bechmann I, Gericke M. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol, 2017, 198(7):2927-2934.
[12] Jun JC, Devera R, Unnikrishnan D, Shin MK, Bevans-Fonti S, Yao Q, Rathore A, Younas H, Halberg N, Scherer PE, Polotsky VY. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis. J Mol Med (Berl), 2017, 95(3):287-297.
[13] Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med, 2014,73:383-399.
[14] 馮文雯,潘幸,周昭遠(yuǎn).男性肥胖型與非肥胖型OSAHS和胰島素抵抗的相關(guān)分析.新醫(yī)學(xué), 2015, 46(10):677-681.
[15] Ryan S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J Physiol, 2017, 595(8):2423-2430.
[16] Murphy AM, Thomas A, Crinion SJ, Kent BD, Tambuwala MM, Fabre A, Pepin JL, Roche HM, Arnaud C, Ryan S. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J, 2017, 49(4):1601731.
[17] Perrini S, Cignarelli A, Quaranta VN, Falcone VA, Kounaki S, Porro S, Ciavarella A, Ficarella R, Barbaro M, Genchi VA, Nigro P, Carratù P, Natalicchio A, Laviola L, Resta O, Giorgino F. Correction of intermittent hypoxia reduces inflam-mation in obese subjects with obstructive sleep apnea. JCI Insight, 2017, 2(17):e94379.
(收稿日期:2020-02-29)
(本文編輯:林燕薇)