張右銘, 劉海波,2△
樹突狀細(xì)胞在心肌梗死及其修復(fù)重構(gòu)中的作用*
張右銘1, 劉海波1,2△
(1同濟(jì)大學(xué)附屬東方醫(yī)院心內(nèi)科,上海 200120;2復(fù)旦大學(xué)附屬中山醫(yī)院青浦分院心內(nèi)科,上海 201700)
樹突狀細(xì)胞;心肌梗死;動(dòng)脈粥樣硬化;缺血再灌注損傷;心肌重構(gòu)
雖然隨著介入技術(shù)的發(fā)展,及時(shí)的再灌注治療降低了急性心肌梗死的死亡率,但心梗后心臟的缺血再灌注損傷及不良重構(gòu),導(dǎo)致患者發(fā)生慢性心力衰竭,生活質(zhì)量急劇下降,對(duì)社會(huì)經(jīng)濟(jì)造成了嚴(yán)重的負(fù)擔(dān)。所以如何預(yù)防心肌梗死和改善心梗后缺血損傷及不良重構(gòu)引起的心力衰竭,提高患者預(yù)后及生存質(zhì)量成了新的熱門研究話題。
目前的研究發(fā)現(xiàn),炎癥與心肌梗死(myocardial infarction, MI)的發(fā)生發(fā)展關(guān)系密切,冠心病發(fā)生的根本原因是動(dòng)脈粥樣硬化,目前研究表明炎癥參與了動(dòng)脈粥樣硬化的整個(gè)進(jìn)程[1],隨著慢性炎癥和脂質(zhì)斑塊的累積,不斷緩慢進(jìn)展,斑塊破裂或侵蝕導(dǎo)致血栓形成,阻塞血管并導(dǎo)致MI的發(fā)生,MI后,壞死凋亡的心肌細(xì)胞可激活損傷相關(guān)分子模式(damage-associated molecular patterns, DAMPs),通過釋放各種細(xì)胞因子及趨化因子,招募和激活各種免疫細(xì)胞,參與MI后心肌損傷的修復(fù)[2]。
樹突狀細(xì)胞(dendritic cells, DCs)作為重要的抗原呈遞細(xì)胞,能調(diào)節(jié)固有免疫和適應(yīng)性免疫的各種炎癥細(xì)胞,從而在免疫反應(yīng)中發(fā)揮重要的作用[3]。根據(jù)表面標(biāo)志物的表達(dá),DCs可以被粗略地分為經(jīng)典樹突狀細(xì)胞(conventional dendritic cells, cDCs)及漿細(xì)胞樣樹突狀細(xì)胞(plasmacytoid dendritic cells, pDCs)兩大類,可用不同的表面標(biāo)志物來區(qū)分,其中cDCs還可細(xì)分為cDCs1和cDCs2兩個(gè)亞型[4-6],詳見表1。不同的實(shí)驗(yàn)使用了不同的方法來特異性清除小鼠體內(nèi)的DCs或其亞型。近來,越來越多的實(shí)驗(yàn)發(fā)現(xiàn)DCs在動(dòng)脈粥樣硬化和MI后炎癥反應(yīng)中發(fā)揮重要作用。因此,本文就DCs在MI全過程中各個(gè)階段的作用進(jìn)行綜述,重點(diǎn)闡述DCs在動(dòng)脈粥樣硬化、MI后心肌缺血再灌注損傷(myocardial ischemia-reperfusion injury, MI/RI)和心室重構(gòu)中的作用。
表1 DCs分類及常見表面標(biāo)志物
動(dòng)脈粥樣硬化是一個(gè)復(fù)雜的終生過程,涉及先天和后天免疫反應(yīng)及慢性炎癥,是引起缺血性心臟病和腦梗死最常見的原因[7]。動(dòng)脈粥樣硬化斑塊的緩慢形成是無癥狀的,其特征是內(nèi)皮功能障礙以及低密度脂蛋白(low-density lipoprotein, LDL)、免疫細(xì)胞和壞死碎片在內(nèi)皮下間隙的積聚。內(nèi)皮細(xì)胞激活觸發(fā)白細(xì)胞黏附分子的表達(dá),后者通過CCR2發(fā)出信號(hào),刺激炎癥性單核細(xì)胞的遷移和浸潤(rùn)[8]。沉積在內(nèi)膜的LDL可被進(jìn)一步氧化修飾為氧化低密度脂蛋白(oxidized low-density lipoprotein, oxLDL),發(fā)揮抗原作用,被吞噬形成泡沫細(xì)胞后,可引發(fā)動(dòng)脈粥樣硬化的形成,在這一過程中,巨噬細(xì)胞占主導(dǎo)作用[9]。雖然巨噬細(xì)胞在動(dòng)脈粥樣硬化的細(xì)胞浸潤(rùn)中占主導(dǎo)地位,但研究人員在小鼠動(dòng)脈粥樣硬化模型的主動(dòng)脈內(nèi)膜[10]和斑塊內(nèi)[11],均發(fā)現(xiàn)了CD11c+MHCII+DCs的聚集。并且,在人類的動(dòng)脈內(nèi)膜中[12]和斑塊內(nèi)[13]也可找到大量CD1α+、CD83+及CD86+DCs,其主要存在于斑塊肩部以及斑塊核心的邊緣部位[13-14]。同樣有研究表明,在人為制造高膽固醇血癥幾天后,低密度脂蛋白受體基因敲除(low-density lipoprotein receptor gene knockout,-/-)小鼠的內(nèi)膜血管CD11c+DCs內(nèi)就可以發(fā)現(xiàn)脂質(zhì)的積聚,并呈現(xiàn)泡沫細(xì)胞樣外觀,參與早期階段斑塊的形成[15]。還有研究發(fā)現(xiàn),無論在-/-小鼠模型或載脂蛋白E基因敲除(apolipoprotein E gene knockout,-/-)小鼠模型中,耗竭CD11c+DCs都會(huì)導(dǎo)致血漿總膽固醇水平的升高。人為延長(zhǎng)-/-或-/-小鼠模型中DCs壽命和免疫原性后,血漿LDL和極低密度脂蛋白(very-low-density lipoprotein, VLDL)水平明顯降低,但與對(duì)照組相比,小鼠動(dòng)脈粥樣硬化斑塊的大小并沒有明顯改變[16]。這一過程的具體分子機(jī)制尚不清楚,不過可以看出DCs同樣具有攝取脂質(zhì)的能力并參與泡沫細(xì)胞的形成。
此外,也有研究發(fā)現(xiàn),人X組分泌磷脂酶A2修飾的低密度脂蛋白(low-density lipoprotein modified by human group X-secreted phospholipase A2, LDLx)和oxLDL可通過DCs激活T細(xì)胞[17],提呈抗原并啟動(dòng)特異性免疫被認(rèn)為是DCs在動(dòng)脈粥樣硬化中的重要功能。先前研究發(fā)現(xiàn),分離的主動(dòng)脈CD11c+DCs暴露于血液中的抗原后,可在體外誘導(dǎo)抗原特異性T細(xì)胞增殖[18-19],并且主動(dòng)脈CD11c+DCs可在體外促進(jìn)抗原T細(xì)胞產(chǎn)生腫瘤壞死因子α (tumor necrosis factor-α,TNF-α)和干擾素γ (interferon-γ, IFN-γ)[20],提示DCs可引起局部T細(xì)胞的活化和促炎細(xì)胞因子的產(chǎn)生。
不過,DCs對(duì)動(dòng)脈粥樣硬化起抑制還是促進(jìn)的作用卻存在爭(zhēng)議。有實(shí)驗(yàn)報(bào)道人為刪除-/-小鼠中的CD74 (一種參與MHCⅡ復(fù)合物形成的關(guān)鍵蛋白),間接減少DCs的數(shù)量后,發(fā)現(xiàn)T細(xì)胞的激活及斑塊的形成減少了[21]。然而,另一實(shí)驗(yàn)發(fā)現(xiàn)在人為制造的-/--/-小鼠中,起保護(hù)起作用的調(diào)節(jié)性T細(xì)胞(regulatory T cells, Treg)減少,促動(dòng)脈粥樣硬化的CD8+T細(xì)胞增加,最終促進(jìn)了動(dòng)脈粥樣硬化斑塊的形成[22]。
同樣的矛盾結(jié)果還體現(xiàn)在對(duì)DCs亞型功能的研究中。有研究將含鋅指及BTB結(jié)構(gòu)域蛋白46 (zinc finger and BTB domain containing 46,)-白喉毒素受體(diphthera toxin receptor,)轉(zhuǎn)基因小鼠的骨髓移植到-/-小鼠模型中,注射白喉毒素選擇性清除-/-小鼠體內(nèi)cDCs,發(fā)現(xiàn)斑塊大小不受影響[23]。但在利用FMS樣酪氨酸激酶3 (FMS-like tyrosine kinase, Flt3)制造-/--/-小鼠模型、特異性耗竭CD103+cDCs的實(shí)驗(yàn)中,發(fā)現(xiàn)小鼠體內(nèi)Treg減少,加重了動(dòng)脈粥樣硬化,提示cDCs對(duì)動(dòng)脈粥樣硬化有抑制作用[24]。同樣,在利用堿性亮氨酸拉鏈ATF樣轉(zhuǎn)錄因子3 (basic leucine zipper ATF-like transcription factor 3, Batf3)制造-/--/-小鼠模型、特異性耗竭cDCs的實(shí)驗(yàn)中,斑塊大小沒有明顯變化[25]。但在基于-/--/-小鼠模型的實(shí)驗(yàn)中卻發(fā)現(xiàn)cDCs可以通過刺激Th1細(xì)胞來促進(jìn)動(dòng)脈粥樣硬化斑塊形成[26]。在針對(duì)pDCs的實(shí)驗(yàn)中,使用大量抗骨髓基質(zhì)細(xì)胞抗原2 (bone marrow stromal antigen 2, BST2)的抗體來清除pDCs,發(fā)現(xiàn)清除pDCs促進(jìn)了-/-小鼠的動(dòng)脈粥樣硬化[27],但減輕了-/-小鼠的動(dòng)脈粥樣硬化[28]。同樣,有研究將血樹突狀細(xì)胞抗原2 (blood dendritic cell antigen 2,)-轉(zhuǎn)基因小鼠的骨髓移植到-/-小鼠模型中,注射白喉毒素選擇性清除-/-小鼠體內(nèi)pDCs,發(fā)現(xiàn)清除pDCs促進(jìn)了斑塊發(fā)展[29],但在-/--小鼠模型中,斑塊大小沒有變化[30]。
造成這些差異的原因目前尚不清楚,不過由于-/-和-/-小鼠模型中脂質(zhì)分布的不同和對(duì)免疫細(xì)胞效應(yīng)的不同,兩者有各自的優(yōu)缺點(diǎn)[31],所以造成這些相互矛盾結(jié)果的原因可能是由于小鼠模型的不同。此外,于永慧等[32]發(fā)現(xiàn),不同階段-/-小鼠的炎癥基因存在差異化表達(dá)且不同周齡-/-小鼠中炎癥因子表達(dá)情況有顯著差異。因此不同實(shí)驗(yàn)中小鼠模型周齡的不同也可能是造成不同結(jié)果的重要因素。另外,考慮到用來標(biāo)記DCs及其亞型的分子(如MHCⅡ、CD103、CD8a等)也可以被其他免疫細(xì)胞表達(dá),因此不能排除受到了其他免疫細(xì)胞的影響。并且由于模型的限制,無法維持長(zhǎng)期的特異性耗竭,也無法有效評(píng)價(jià)DCs及其亞型在慢性炎癥中的作用,更有效的特異性耗竭DCs及其亞型的辦法仍需進(jìn)一步研究。
隨著介入技術(shù)的發(fā)展,MI患者的生存率大大提高,然而,缺血心肌的血流恢復(fù)過程亦會(huì)引起損傷,這種現(xiàn)象被稱為MI/RI,它會(huì)降低心肌再灌注的有益影響[33]。MI/RI的發(fā)病機(jī)制很復(fù)雜,炎癥反應(yīng)在這一過程中扮演了重要角色。除了中性粒細(xì)胞、巨噬細(xì)胞和淋巴細(xì)胞外, DCs在缺血再灌注損傷中也發(fā)揮了重要作用。已有文獻(xiàn)報(bào)道,人DCs中P2Y11受體具有免疫抑制作用,P2Y11受體激動(dòng)劑可以減輕缺血再灌注過程中的炎癥反應(yīng)并保護(hù)缺血器官[34]。但也有研究發(fā)現(xiàn),在大鼠心肌缺血再灌注過程中,CD1a+CD80+DCs向心肌的遷移、黏附和聚集增加,加重了心肌損傷[35]。
不過,目前針對(duì)DCs在MI/RI中作用的研究相對(duì)較少,尚未能有確切的結(jié)論。但在小鼠研究中有一致的證據(jù)表明,促炎CD4+T細(xì)胞的浸潤(rùn)加重了MI/RI。除了CD4+T細(xì)胞外, CD8+記憶T細(xì)胞亞群在再灌注開始后早期就聚集在冠狀動(dòng)脈微循環(huán)中,可能參與到再灌注過程中,對(duì)心肌產(chǎn)生損害[36-37]??紤]到DCs作為強(qiáng)大的抗原提呈細(xì)胞,是特異性免疫應(yīng)答的始動(dòng)者,所以在MI/RI過程中,各類T細(xì)胞的浸潤(rùn)很大可能是通過DCs發(fā)動(dòng)。已有證據(jù)表明,在肝臟、腎臟等器官移植時(shí)發(fā)生的缺血再灌注損傷中, DCs可以激活T細(xì)胞,加強(qiáng)炎癥對(duì)再灌注后組織的損傷[38-39]。
亦有實(shí)驗(yàn)發(fā)現(xiàn),在結(jié)扎小鼠冠狀動(dòng)脈后,壞死心肌和正常心肌之間的梗死邊界區(qū)內(nèi)CD11c+DCs數(shù)量明顯增加,并且和CD4+T細(xì)胞形成集落[40]。這些實(shí)驗(yàn)均提示在MI時(shí), DCs與T細(xì)胞有某種聯(lián)系,但其確鑿的實(shí)驗(yàn)證據(jù)和內(nèi)在的分子機(jī)制仍有待進(jìn)一步研究。
MI后左室重構(gòu)是一個(gè)復(fù)雜的心肌結(jié)構(gòu)改變過程,不良左室重構(gòu)嚴(yán)重影響患者的預(yù)后。已有大量研究表明,炎癥在心肌梗死愈合和隨后的左室重構(gòu)中起著至關(guān)重要的作用[41-42]。
Anzai等[43]的研究設(shè)計(jì)了條件性DCs敲除小鼠,將人DTR結(jié)合在DCs的啟動(dòng)子區(qū)域,在小鼠MI術(shù)前采用注射白喉毒素的方法完全清除小鼠體內(nèi)的CD11c+DCs,發(fā)現(xiàn)在DCs敲除小鼠MI模型中,其左室重構(gòu)較對(duì)照組明顯惡化,雖然病理檢查未顯示梗死面積有明顯區(qū)別,但DCs敲除小鼠梗死區(qū)域心臟壁更薄,并且新生血管受損。他們更深入的研究發(fā)現(xiàn),梗死區(qū)及周邊區(qū)域浸潤(rùn)高表達(dá)Ly6C (Ly6Chigh)的單核細(xì)胞和M1型巨噬細(xì)胞明顯增加,而低表達(dá)Ly6C (Ly6Clow)的單核細(xì)胞和M2型巨噬細(xì)胞顯著降低,并且在DCs敲除MI模型小鼠中,炎癥因子和MMP-9的表達(dá)也明顯增高,而抗炎因子IL-10卻顯著降低。這些研究結(jié)果表明DCs敲除后通過激活炎癥單核細(xì)胞和M1型巨噬細(xì)胞及抑制抗炎單核細(xì)胞和M2型巨噬細(xì)胞,增強(qiáng)了炎癥反應(yīng)及細(xì)胞外基質(zhì)的降解,從而延緩MI后的心臟愈合,導(dǎo)致心功能惡化。這些研究提示DCs可通過調(diào)節(jié)單核細(xì)胞和巨噬細(xì)胞的動(dòng)態(tài)平衡及轉(zhuǎn)化而起到抑制心臟重構(gòu)的作用。
有研究對(duì)ST段抬高心肌梗死死亡患者進(jìn)行尸檢,發(fā)現(xiàn)心臟破裂組與非破裂組相比, CD68+巨噬細(xì)胞浸潤(rùn)增加, CD209+DCs和CD11c+DCs浸潤(rùn)及修復(fù)性纖維化程度較低,提示心梗部位DCs數(shù)量的減少與巨噬細(xì)胞浸潤(rùn)增加會(huì)使修復(fù)性纖維化受損,增加心肌梗死后心臟破裂的風(fēng)險(xiǎn),表明DCs在心肌梗死后炎癥及隨后的愈合過程中具有保護(hù)作用[44]。我們前期的研究發(fā)現(xiàn),MI小鼠模型中CD11c+DCs產(chǎn)生的外泌體可將CD4+輔助性T細(xì)胞招募到心肌梗死區(qū),并有助于預(yù)防心肌梗死后的左心室不良重構(gòu)[45]。這些結(jié)果均提示DCs在MI后炎癥反應(yīng)和隨后的左心室重構(gòu)中具有心肌保護(hù)作用,但具體針對(duì)DCs各亞型的功能,不同實(shí)驗(yàn)報(bào)告了不同的結(jié)果。
有研究利用-重組小鼠,注射白喉毒素選擇性地清除CD103+及CD11b+cDCs,發(fā)現(xiàn)與對(duì)照組相比,選擇性清除cDCs顯著減少了MI后心肌損傷的范圍,且能預(yù)防心室不良重構(gòu),改善心功能,表明cDCs不利于MI后心肌損傷的恢復(fù)及心功能的改善,加重了心室不良重構(gòu)[46]。但也有實(shí)驗(yàn)發(fā)現(xiàn),心肌梗死后, XCR-1+CD172α+cDCs浸潤(rùn)心肌,攝取壞死心肌細(xì)胞釋放的α-肌球蛋白碎片,逐漸遷移到縱膈淋巴結(jié)中并將心臟自身抗原提呈給CD4+T細(xì)胞,并最終引起Treg的增殖[47]。活化的Treg可通過增加巨噬細(xì)胞精氨酸酶1、IL-13、骨橋蛋白及TGF-β的表達(dá)而誘導(dǎo)巨噬細(xì)胞向M2型分化,從而抑制了MI后的心臟重構(gòu)[48];而耗竭Treg可加速心肌梗死后心室的擴(kuò)張,加重心室重構(gòu)[49]。由此可以推測(cè)cDCs對(duì)心室功能有保護(hù)作用。
為了探討pDCs的作用,研究者在-重組小鼠中注射白喉毒素選擇性地耗竭pDCs,發(fā)現(xiàn)對(duì)MI后心功能沒有影響,其作用可能在于產(chǎn)生I型干擾素并保護(hù)組織免受病毒感染,在MI后心臟修復(fù)的過程中并不重要[46]。
整體來說,DCs在預(yù)防心室不良重構(gòu)方面發(fā)揮了積極的作用,但在針對(duì)DCs不同亞群的研究中,不同實(shí)驗(yàn)卻得出了矛盾的結(jié)論,有待進(jìn)一步研究。
近年來,人們?cè)絹碓揭庾R(shí)到炎癥在整個(gè)心梗過程中的重要性,研究人員一直以來都嘗試開發(fā)基于免疫炎癥的新型療法,并且已收獲很多成果[50-52]。DCs作為免疫調(diào)控的中心環(huán)節(jié),深入?yún)⑴c了MI發(fā)生發(fā)展的全過程,因此基于DCs的免疫療法潛力巨大。
將攜帶人載脂蛋白B100 (apolipoprotein B100, ApoB100)的致耐受樹突狀細(xì)胞(tolerogenic dendritic cells, tDCs)導(dǎo)入-/-小鼠中,使之成為具有人基因的轉(zhuǎn)基因-/-小鼠(tg×-/-小鼠),可顯著降低小鼠體內(nèi)效應(yīng)T細(xì)胞的數(shù)量并誘導(dǎo)Treg的增殖,從而顯著延緩動(dòng)脈粥樣硬化病變的發(fā)展[53]。這提示基于DCs的免疫治療可以延緩動(dòng)脈粥樣硬化的發(fā)展,在預(yù)防MI方面有極大潛力。同樣,李大主等[54]將攜帶熱休克蛋白60 (heat shock protein 60, HSP60)的tDCs接種至-/-小鼠后,發(fā)現(xiàn)小鼠動(dòng)脈粥樣硬化斑塊中的炎癥反應(yīng)和斑塊的進(jìn)展受到抑制。后續(xù)有研究者發(fā)現(xiàn),經(jīng)典調(diào)脂藥物——他汀類藥物可以通過抑制人CD83+CD86+DCs中的miRNA let-7c來抑制oxLDL誘導(dǎo)DCs的成熟,進(jìn)而抑制DCs促進(jìn)T細(xì)胞增殖的能力,從而影響動(dòng)脈粥樣硬化斑塊的發(fā)生和發(fā)展[55]。這揭示了他汀類藥物治療動(dòng)脈粥樣硬化時(shí)還具有免疫治療方面的作用。最近,研究者基于CX3CL1/CX3CR1通路開發(fā)了一種針對(duì)CX3CR1的DCs靶向DNA疫苗,該疫苗通過將質(zhì)粒與針對(duì)DCs的限制性抗原攝取受體DEC205的單鏈Fv抗體(scFv)結(jié)合,從而將質(zhì)粒特異性提供給DCs,增強(qiáng)接種效果,并用于小鼠動(dòng)脈粥樣硬化模型。研究發(fā)現(xiàn),注射修飾后的DEC205-CX3CR1 DNA疫苗顯著減少了小鼠斑塊處巨噬細(xì)胞的浸潤(rùn),減小了小鼠粥樣硬化斑塊的大小,對(duì)動(dòng)脈粥樣硬化具有顯著的抑制作用[56]。研究者已建議使用DNA疫苗阻斷CX3CR1通路的方法作為目前動(dòng)脈粥樣硬化治療方法的補(bǔ)充。
有研究者發(fā)現(xiàn),刺激人DCs內(nèi)的P2Y11受體對(duì)MI/RI具有保護(hù)作用,在器官移植和急性MI后的MI/RI期間, P2Y11受體激動(dòng)劑藥物可以提供有益幫助[34]。此外,有研究者發(fā)現(xiàn),高遷移率族蛋白B1(high mobility group protein B1, HMGB1)作為MI/RI后心肌損傷產(chǎn)生的DAMPs,通過Toll樣受體4 (Toll-like receptor 4, TLR4)通路激活CD1a+CD80+DCs,影響其在心肌中的分布,誘導(dǎo)DCs活化和成熟。并且,使用HMGB1中和抗體可提供明顯的心臟保護(hù)[35]。所以說,基于DCs的免疫療法在減輕MI/RI方面亦有重要作用。
早期有研究通過敲除小鼠白細(xì)胞介素1受體相關(guān)激酶4 (interleukin-1 receptor-associated kinase 4,-)基因,消除CD11c+DCs動(dòng)員、捕獲抗原、成熟及產(chǎn)生細(xì)胞因子的能力,從而使--/-MI模型小鼠心功能及心室不良重構(gòu)獲得改善,存活率提高[57]。使用TNF-α和心臟抗原刺激骨髓源性樹突狀細(xì)胞(bone marrow-derived dendritic cells, BMDCs)以制備tDC,再向MI小鼠模型中注入tDC,可激活小鼠體內(nèi)的Treg,進(jìn)而促進(jìn)早期巨噬細(xì)胞亞群從炎性M1型轉(zhuǎn)換為修復(fù)性M2型,并增加新生血管的生成,從而減少梗死面積,提升左室功能[52]。除此之外,我們前期的研究還發(fā)現(xiàn),通過體外給予MI模型小鼠CD11c+DCs分泌的外泌體治療,可以激活CD4+T淋巴細(xì)胞并改善心臟功能[45]。同樣,經(jīng)典藥物血管緊張素轉(zhuǎn)化酶抑制劑對(duì)CD11c+DCs介導(dǎo)的免疫炎癥反應(yīng)也有抑制作用,可以減輕MI后的炎癥反應(yīng),從而改善心室功能,提高生存率[58]。
各種實(shí)驗(yàn)結(jié)果均表明,基于DCs的免疫療法有十分光明的前景,相信隨著后續(xù)研究的不斷探索,免疫治療將在MI的預(yù)防與治療中發(fā)揮重要作用。
DCs在心肌梗死的發(fā)生和發(fā)展的各個(gè)階段都發(fā)揮著重要的作用,但現(xiàn)階段的研究對(duì)其在各個(gè)階段中的具體作用及相應(yīng)的分子機(jī)制,尚不能達(dá)成共識(shí),仍需進(jìn)一步研究?;贒Cs的免疫療法前景廣闊,目前已取得一定成果,這為延緩動(dòng)脈粥樣硬化的發(fā)展、減輕急性心肌梗死后缺血再灌注損傷和預(yù)防心臟不良重構(gòu)提供了全新的思路,具有巨大臨床應(yīng)用潛力。
[1] Gistera A, Hansson GK. The immunology of atherosclerosis[J]. Nat Rev Nephrol, 2017, 13(6):368-380.
[2] Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling [J]. Nat Rev Cardiol, 2014, 11(5):255-265.
[3] Worbs T, Hammerschmidt SI, Forster R. Dendritic cell migration in health and disease[J]. Nat Rev Immunol, 2017, 17(1):30-48.
[4] Guilliams M, van de Laar L. A Hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system[J]. Front Immunol, 2015, 6:406.
[5] Sichien D, Lambrecht BN, Guilliams M, et al. Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues[J]. Mucosal Immunol, 2017, 10(4):831-844.
[6] Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells[J]. Nat Rev Immunol, 2015, 15(8):471-485.
[7] Herrero-Fernandez B, Gomez-Bris R,Somovilla-Crespo B, et al. Immunobiology of atherosclerosis: a complex net of interactions[J]. Int J Mol Sci, 2019, 20(21):5293.
[8] Gil-Pulido J, Zernecke A. Antigen-presenting dendritic cells in atherosclerosis [J]. Eur J Pharmacol, 2017, 816:25-31.
[9] Back M, Yurdagul A, Jr., Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities [J]. Nat Rev Cardiol, 2019, 16(7):389-406.
[10] Busch M, Westhofen TC, Koch M, et al. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice[J]. PLoS One, 2014, 9(2):e88452.
[11] Sage AP, Murphy D, Maffia P, et al. MHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity[J]. Circulation, 2014, 130(16):1363-1373.
[12] Millonig G, Niederegger H, Rabl W, et al.Network of vascular-associated dendritic cells in intima of healthy young individuals[J]. Arterioscler Thromb Vasc Biol, 2001, 21(4):503-508.
[13] Yilmaz A, Lochno M, Traeg F, et al. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques[J]. Atherosclerosis, 2004, 176(1):101-110.
[14] Erbel C, Sato K, Meyer FB, et al.Functional profile of activated dendritic cells in unstable atherosclerotic plaque[J]. Basic Res Cardiol, 2007, 102(2):123-132.
[15] Paulson KE, Zhu SN, Chen M, et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis[J]. Circ Res, 2010, 106(2):383-390.
[16] Gautier EL, Huby T, Saint-Charles F, et al. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis[J]. Circulation, 2009, 119(17):2367-2375.
[17] Liu A, Ming JY, Fiskesund R, et al. Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: involvement of heat shock proteins[J]. Arterioscler Thromb Vasc Biol, 2015, 35(1):197-205.
[18] Weber C, Meiler S, Doring Y, et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice [J]. J Clin Invest, 2011, 121(7):2898-2910.
[19] Choi JH, Do Y, Cheong C, et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves[J]. J Exp Med, 2009, 206(3):497-505.
[20] Koltsova EK, Garcia Z, Chodaczek G, et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis[J]. J Clin Invest, 2012, 122(9):3114-3126.
[21] Sun J, Hartvigsen K, Chou MY, et al. Deficiency of antigen-presenting cell invariant chain reduces atherosclerosis in mice[J]. Circulation, 2010, 122(8):808-820.
[22] Wigren M, Rattik S, Yao Mattisson I, et al. Lack of ability to present antigens on major histocompatibility complex class II molecules aggravates atherosclerosis in-/-mice[J]. Circulation, 2019, 139(22):2554-2566.
[23] Rombouts M, Cools N, Grootaert MO, et al. Long-term depletion of conventional dendritic cells cannot be maintained in an atherosclerotic Zbtb46-DTR mouse model[J]. PLoS One, 2017, 12(1):e0169608.
[24] Choi JH, Cheong C, Dandamudi DB, et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis[J]. Immunity, 2011, 35(5):819-831.
[25] Gil-Pulido J, Cochain C, Lippert MA, et al. Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice[J]. PLoS One, 2017, 12(8):e0181947.
[26] Li Y, Liu X, Duan W, et al. Batf3-dependent CD8α+dendritic cells aggravates atherosclerosis via Th1 cell induction and enhanced CCL5 expression in plaque macrophages[J]. EBioMedicine, 2017, 18:188-198.
[27] Daissormont IT, Christ A, Temmerman L, et al. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity[J]. Circ Res, 2011, 109(12):1387-1395.
[28] Macritchie N, Grassia G, Sabir SR, et al. Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein E-deficient mice [J]. Arterioscler Thromb Vasc Biol, 2012, 32(11):2569-2579.
[29] Yun TJ, Lee JS, Machmach K, et al. Indoleamine 2,3-dioxygenase-expressing aortic plasmacytoid dendritic cells protect against atherosclerosis by induction of regulatory T cells[J]. Cell Metab, 2016, 23(5):852-866.
[30] Mandl M, Drechsler M, Jansen Y, et al. Evaluation of the BDCA2-DTR transgenic mouse model in chronic and acute inflammation[J]. PLoS One, 2015, 10(8):e0134176.
[31] Getz GS, Reardon CA. Do the-/-and-/-mice yield the same insight on atherogenesis?[J]. Arterioscler Thromb Vasc Biol, 2016, 36(9):1734-1741.
[32] 于永慧,董瑞紅,劉劍剛,等. 不同階段-/-小鼠動(dòng)脈粥樣硬化炎癥差異基因表達(dá)的比較研究[J]. 中國(guó)病理生理雜志, 2019, 35(9):1694-1699.
Yu YH, Dong RH, Liu JG, et al. Preliminary comparison of inflammatory differential gene expression during atherosclerosis in-/-mice[J]. Chin J Pathophysiol, 2019, 35(9):1694-1699.
[33] Yellon DM, Hausenloy DJ. Myocardial reperfusion injury[J]. N Engl J Med, 2007, 357(11):1121-1135.
[34] Chadet S, Ivanes F, Benoist L, et al. Hypoxia/reoxygenation inhibits P2Y11 receptor expression and its immunosuppressive activity in human dendritic cells[J]. J Immunol, 2015, 195(2):651-660.
[35] Xue J, Ge H, Lin Z, et al. The role of dendritic cells regulated by HMGB1/TLR4 signalling pathway in myocardial ischaemia reperfusion injury[J]. J Cell Mol Med, 2019, 23(4):2849-2862.
[36] Boag SE, Das R, Shmeleva EV, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients[J]. J Clin Invest, 2015, 125(8):3063-3076.
[37] Hoffmann J, Shmeleva EV, Boag SE, et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients[J]. Circ Res, 2015, 116(1):87-98.
[38] Funken D, Ishikawa-Ankerhold H, Uhl B, et al.targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+T-cell response in the postischemic liver[J]. FASEB J, 2017, 31(11):4796-4808.
[39] Ozaki KS, Kimura S, Nalesnik MA, et al. The loss of renal dendritic cells and activation of host adaptive immunity are long-term effects of ischemia/reperfusion injury following syngeneic kidney transplantation[J]. Kidney Int, 2012, 81(10):1015-1025.
[40] Anzai A, Anzai T, Nagai S, et al. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling[J]. Circulation, 2012, 125(10):1234-1245.
[41] Santos-Zas I, Lemarié J, Tedgui A, et al. Adaptive immune responses contribute to post-ischemic cardiac remodeling[J]. Front Cardiovasc Med, 2018, 5:198.
[42] Rhee AJ, Lavine KJ. New approaches to target inflammation in heart failure: harnessing insights from studies of immune cell diversity[J]. Annu Rev Physiol, 2020, 82:1-20.
[43] Anzai A, Anzai T, Nagai S, et al. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling[J]. Circulation, 2012, 125(10):1234-1245.
[44] Nagai T, Honda S, Sugano Y, et al. Decreased myocardial dendritic cells is associated with impaired reparative fibrosis and development of cardiac rupture after myocardial infarction in humans[J]. J Am Heart Assoc, 2014, 3(3):e000839.
[45] Liu H, Gao W, Yuan J, et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4+T lymphocytes after myocardial infarction[J]. J Mol Cell Cardiol, 2016, 91:123-133.
[46] Lee JS, Jeong SJ, Kim S, et al. Conventional dendritic cells impair recovery after myocardial infarction[J]. J Immunol, 2018, 201(6):1784-1798.
[47] Van der Borght K, Scott CL, Nindl V, et al. Myocardial infarction primes autoreactive T cells through activation of dendritic cells[J]. Cell Rep, 2017, 18(12):3005-3017.
[48] Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+CD4+T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation[J]. Circ Res, 2014, 115(1):55-67.
[49] Saxena A, Dobaczewski M, Rai V, et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function[J]. Am J Physiol Heart Circ Physiol, 2014, 307(8):H1233-H1242.
[50] Rymer JA, Newby LK. Failure to launch: targeting inflammation in acute coronary syndromes[J]. JACC Basic Transl Sci, 2017, 2(4):484-497.
[51] Adamo L, Staloch LJ, Rocha-Resende C, et al. Modulation of subsets of cardiac B lymphocytes improves cardiac function after acute injury[J]. JCI Insight, 2018, 3(11):e120137.
[52] Choo EH, Lee JH, Park EH, et al. Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization[J]. Circulation, 2017, 135(15):1444-1457.
[53] Hermansson A, Johansson DK, Ketelhuth DF, et al. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice[J]. Circulation, 2011, 123(10):1083-1091.
[54] 李大主,周游,吳偉,等. 負(fù)載熱休克蛋白60的致耐受性樹突狀細(xì)胞疫苗對(duì)小鼠動(dòng)脈粥樣硬化斑塊的影響[J]. 中國(guó)病理生理雜志, 2006, 22(6):1079-1082.
Li DZ, Zhou Y, Wu W, et al. Effects of rapamycin-treated HSP60-pulsed dendritic cells on the progression of the atherosclerotic plaque in mice[J]. Chin J Pathophysiol, 2006, 22(6):1079-1082.
[55] Frostegard J, Zhang Y, Sun J, et al. Oxidized low-density lipoprotein (OxLDL)-treated dendritic cells promote activation of T cells in human atherosclerotic plaque and blood, which is repressed by statins: microRNA let-7c is integral to the effect[J]. J Am Heart Assoc, 2016, 5(9):e003976.
[56] Zhou JJ, Wang YM, Lee VWS, et al. DEC205-DC targeted DNA vaccine against CX3CR1 protects against atherogenesis in mice[J]. PLoS One, 2018, 13(4):e0195657.
[57] Maekawa Y, Mizue N, Chan A, et al. Survival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling: a regulator of bone marrow-derived dendritic cells[J]. Circulation, 2009, 120(14): 1401-1414.
[58] Ma Y, Yuan J, Hu J, et al. ACE inhibitor suppresses cardiac remodeling after myocardial infarction by regulating dendritic cells and AT2 receptor-mediated mechanism in mice[J]. Biomed Pharmacother, 2019, 114:108660.
Role of dendritic cells in myocardial infarction and cardiac remodeling
ZHANG You-ming1, LIU hai-bo1,2△
(1,,,200120,;2,,,201700,)
Myocardial infarction (MI) is one of the leading causes of death worldwide. One of the primary reasons is that the rupture of atherosclerotic plaque leads to the formation of thrombosis, and then interrupts the coronary blood flow, thus finally causing the death of myocardial cells and cardiac dysfunction. A large number of researches have revealed that dendritic cells (DCs) play an essential role in immune inflammatory responses in the occurrence and development of atherosclerosis and MI. This article reviews the role of DCs in atherosclerosis, myocardial ischemia/reperfusion injury and cardiac remodeling after MI, and shows the potential values of DCs as an immunotherapeutic strategy for MI.
Dendritic cells; Myocardial infarction; Atherosclerosis; Ischemia/reperfusion injury; Myocardial remodeling
R542.2+1; R363.2
A
10.3969/j.issn.1000-4718.2020.11.025
1000-4718(2020)11-2093-06
2020-04-12
2020-05-21
國(guó)家自然科學(xué)基金資助項(xiàng)目(No.81770350)
Tel: 021-67009999; E-mail: haiboliu13@fudan.edu.cn
(責(zé)任編輯:宋延君,羅森)