王冰源,牟玉蓮,李奎,劉志國
綜 述
農(nóng)業(yè)動物干細胞研究進展
王冰源,牟玉蓮,李奎,劉志國
中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100193
干細胞技術(shù)是近年來被廣泛應用于生命科學領(lǐng)域的重要技術(shù)。獲取具有無限增殖能力和分化能力的干細胞系主要有3種途徑:(1)從胚胎分離胚胎干細胞;(2)從成體組織分離成體干細胞;(3)通過體外誘導體細胞重編程為誘導多能干細胞。在農(nóng)業(yè)領(lǐng)域中,畜禽干細胞的分離、培養(yǎng)、建系有望顯著提升體細胞克隆和細胞水平基因修飾的效率;干細胞體外誘導配子技術(shù)能夠極大簡化基因編輯畜禽的制備流程,提升制備效率。同時,通過結(jié)合基因編輯、顯微注射、干細胞移植、胚胎移植等技術(shù),干細胞技術(shù)在基因編輯動物的生產(chǎn)、組織和器官的供體制備、體外配子誘導及遺傳重組胚胎制備、疾病治療靶點的篩選,以及新藥藥理研究等方面都具有極大的應用潛力,對農(nóng)業(yè)動物的遺傳改良、疾病防治具有重要意義。本文綜述了干細胞相關(guān)研究在農(nóng)業(yè)動物包括豬()、牛()、雞()、山羊()和綿羊()中的新進展,以期為農(nóng)業(yè)動物干細胞領(lǐng)域的相關(guān)研究提供參考。
豬;牛;雞;山羊;綿羊;干細胞
干細胞是一類具有自我更新和分化能力的細胞,在一定條件下可以分化為多種功能的細胞。根據(jù)干細胞在體內(nèi)所處的發(fā)育階段可將其分類為胚胎干細胞(embryonic stem cells, ESCs)和成體干細胞[1,2]。而通過向體外培養(yǎng)的體細胞中轉(zhuǎn)染重編程因子可誘導體細胞重編程為多能干細胞,即誘導多能干細胞(induced pluripotent stem cells, iPSCs),iPSCs的出現(xiàn)極大地豐富了干細胞的來源[3,4]。干細胞具有體外可操作性、能夠減少實驗動物的使用數(shù)量、提供有效和持久的疾病治療方法以及豐富的實驗素材等優(yōu)點。在干細胞的體外培養(yǎng)過程中,通過基因編輯等操作獲得穩(wěn)定傳代的基因編輯干細胞系,能夠用以制備基因編輯動物、定向誘導組織修復或器官生成、誘導配子生成、篩選治療靶點以及研究新藥藥理等[5,6],因此具有廣闊的應用前景。
近幾十年來畜禽胚胎干細胞系的建立進展十分緩慢,直至近些年豬()、山羊()、綿羊()和雞()的ESCs研究才獲得初步進展[7~9]。而相比其他農(nóng)業(yè)動物,豬的干細胞相關(guān)研究更加豐富,涉及豬ESCs、iPSCs、精原干細胞、腸道干細胞、牙胚干細胞、胰腺干細胞、骨髓間充質(zhì)干細胞和皮膚干細胞等。牛()、山羊、綿羊和雞的相關(guān)研究主要集中在ESCs、iPSCs、間充質(zhì)干細胞和生殖干細胞等。因此,本文總結(jié)了豬、牛、山羊、綿羊和雞等農(nóng)業(yè)動物ESCs、iPSCs以及成體干細胞的相關(guān)研究進展,重點綜述了豬干細胞的研究進展,以期為相關(guān)理論和應用研究提供參考。
對畜禽干細胞進行基因編輯可用于制備基因編輯農(nóng)業(yè)動物,從而獲得具有生長快、抗病力強、高產(chǎn)等優(yōu)良性狀的畜禽品種。盡管已經(jīng)能夠成功分離一些農(nóng)業(yè)動物的ESCs,但由于這些ESCs缺乏種系嵌合能力,即難以形成包括生殖系在內(nèi)的嵌合體,并且在經(jīng)過有限的傳代后很容易分化或死亡,使得農(nóng)業(yè)動物干細胞建系相較模式動物進展緩慢[7~9]。此外,在將干細胞療法應用于人類之前,有必要用可接受的動物模型驗證這些方法的安全性和有效性。而豬被用作臨床前實驗動物模型,日益受到關(guān)注,因此迫切需要建立豬胚胎干細胞系。近年來,豬ESCs的相關(guān)研究取得了一定的進展。2009年,Yang等[7]通過電穿孔轉(zhuǎn)染策略,將綠色熒光蛋白(green fluorescent protein, GFP)轉(zhuǎn)入第44代豬胚胎干細胞系,獲得了穩(wěn)定表達GFP并能持續(xù)體外增殖90代的GFP-ESCs。這些GFP-ESCs具有正常的核型和胚胎干細胞的典型特征,包括表達標志基因、堿性磷酸酶陽性、能夠形成類胚體、誘導條件下能夠分化為神經(jīng)細胞和心肌細胞譜系。2012年,Haraguchi等[10]將豬內(nèi)細胞團在添加抑制劑和抑制劑的人ESCs培養(yǎng)基中擴大培養(yǎng),獲得了連續(xù)培養(yǎng)100多代的豬ESCs。這些ESCs具有堿性磷酸酶活性,表達標志基因和,多次傳代后未發(fā)生形態(tài)改變。此后,Siriboon等[11]嘗試使用高質(zhì)量克隆豬囊胚的內(nèi)細胞團分離ESCs,在培養(yǎng)過程中發(fā)現(xiàn)這些囊胚具有更好的附著力、生長能力和原始克隆形成能力。分離培養(yǎng)出的細胞經(jīng)過25次傳代未發(fā)生分化,表達ESCs標志基因、、和,能體外分化為表達三胚層標志基因的類胚體。綜上所述,豬ESCs的相關(guān)研究仍處于探索能夠獲得長期穩(wěn)定傳代培養(yǎng)的建系階段,亟需加快豬ESCs的分化和生殖系嵌合等技術(shù)及理論的相關(guān)研究。
近10年,豬iPSCs的相關(guān)研究取得了較大的進展。2009年,Esteban等[12]將小鼠()、、、或人、、、通過逆轉(zhuǎn)錄病毒載體轉(zhuǎn)入藏豬的成纖維細胞中,成功誘導出iPSCs。這些藏豬iPSCs具有和人ESCs相似的形態(tài),核型正常,堿性磷酸酶陽性,表達ESCs標志基因、、和,并能夠分化為具有三胚層的畸胎瘤。Chakritbud-sabong等[13]使用人源的、、、和通過逆轉(zhuǎn)錄病毒轉(zhuǎn)導方法將豬的胚胎成纖維細胞誘導為iPSCs,這些豬iPSCs經(jīng)堿性磷酸酶染色呈陽性,表達干細胞標志基因、、和,能夠分化形成類胚體和畸胎瘤。進一步向心肌方向誘導分化后,產(chǎn)生了持續(xù)跳動并表達標志基因心臟肌鈣蛋白T的心肌細胞。Gallegos- Cdsabong等[14]將豬iPSCs分化為神經(jīng)玫瑰狀細胞,模擬人iPSCs的神經(jīng)分化,為人類神經(jīng)細胞療法提供相關(guān)數(shù)據(jù)。此后,Webb等[15]證明了豬iPSCs分化得到的神經(jīng)玫瑰狀細胞可以進一步分化為神經(jīng)嵴細胞和與周圍神經(jīng)系統(tǒng)相關(guān)的其他類型細胞。該研究用骨形態(tài)發(fā)生蛋白4或胎牛血清處理神經(jīng)玫瑰狀細胞可使其進一步分化為陽性的感覺細胞,利用這些分化獲得的豬的感覺神經(jīng)細胞來檢測其對有害刺激、鎮(zhèn)痛藥和修復機制的反應,可平行比較人和豬的感覺神經(jīng)細胞的相似性。同時,豬感覺神經(jīng)元的體外分化為神經(jīng)細胞亞型的形成提供了一個新的模型系統(tǒng),也為再生療法的研究提供了一個新的平臺。此外,Liao等[16]將豬iPSCs誘導分化為成骨樣細胞,將這些成骨樣細胞移植到蘭嶼豬的左脛骨后可顯著改善移植部位的小梁骨結(jié)構(gòu),證實了豬iPSCs來源的成骨樣細胞的治療潛力。而Talbot等[17,18]將豬iPSCs誘導分化為肝臟干細胞系,此細胞系能在無飼養(yǎng)層條件下持續(xù)培養(yǎng),并能夠在體外分化為膽管或單層肝細胞。2019年Xu等[19]將豬的周細胞通過逆轉(zhuǎn)錄病毒載體轉(zhuǎn)染、、和誘導產(chǎn)生iPSCs,將iPSCs培養(yǎng)在含重組人LIF、CHIR 99021、(S)-(+)-馬來酸二甲茚酯((S)-(+)-dimethindene maleate)和鹽酸米諾環(huán)素(minocycline hydrochloride)的基礎培養(yǎng)基中,這些iPSCs表達標志基因、和,核型正常,能夠分化為類胚體并表達外胚層、中胚層和內(nèi)胚層這3個胚層的標志基因。最重要的是,這些帶有GFP的iPSCs顯微注射到豬核移植胚胎4~8細胞中并培養(yǎng)至囊胚期后,內(nèi)細胞團和滋養(yǎng)外胚層細胞均有綠色GFP的表達。進一步將注射了GFP-iPSCs的核移植胚胎移植到代孕母豬后,在胚胎25~30天產(chǎn)生了4只存活的胎兒,盡管熒光顯微鏡下未見綠色的GFP,但在胚胎和胚外組織中通過巢式PCR可以檢測到GFP序列的表達。綜上所述,近年來豬iPSCs的研究取得了較大進展,也為豬ESCs的相關(guān)研究提供了技術(shù)參考。
精原干細胞(spermatogonial stem cells, SSCs)能夠自我更新并分化為成熟的功能性精子,是雄性哺乳動物體內(nèi)唯一可以將遺傳信息傳遞給下一代的成體干細胞。豬SSCs在制備基因編輯豬及建立用于再生醫(yī)學的模型豬方面均具有重要價值。但一直以來,由于豬SSCs數(shù)量少以及缺乏理想的培養(yǎng)體系,豬SSCs的相關(guān)研究和應用受到了極大的阻礙。然而,令人激動的是,2020年,Zheng等[20]將表達猿猴病毒40(SV40)大T抗原的質(zhì)粒通過慢病毒轉(zhuǎn)導到豬的原代SSCs中,建立了具有豬SSCs屬性的永生化細胞系。這些永生化細胞表達SSCs和生殖細胞的標志基因,對視黃酸處理有分化反應,在移植后能夠定植于受體小鼠睪丸而無腫瘤形成。同時,這些細胞具有無限的增殖潛能,體外培養(yǎng)7個多月,傳35代以上,仍未出現(xiàn)形態(tài)異常,標志著首次建立了豬SSCs細胞系。而豬SSCs細胞系的成功建立,能夠為豬SSCs相關(guān)研究提供豐富的細胞來源,促進豬SSCs培養(yǎng)體系的開發(fā)及其在畜牧業(yè)中的應用。
豬間充質(zhì)干細胞(mesenchymal stem cells,MSCs)來源廣泛,具有增殖和多種分化潛能,且與人的MSCs具有很高的相似性,因此具有重要的研究和應用價值。Huang等[21]分離獲得豬骨髓MSCs和臍帶MSCs后,首次發(fā)現(xiàn)豬骨髓MSCs相比臍帶MSCs具有更強的遷移能力。進行蛋白質(zhì)組比較分析,發(fā)現(xiàn)了95個差異蛋白,其中VIMENTIN具有正向調(diào)控MSCs遷移的作用。隨后的研究還發(fā)現(xiàn)半乳糖凝集素3通過抑制RhoA-GTP活性而促進豬骨髓MSCs的遷移[22]。豬胰腺干細胞在II型糖尿病的移植治療中具有重要價值,Han等[23]建立了動態(tài)表達的豬胰腺干細胞系,并發(fā)現(xiàn)能夠促進豬胰腺干細胞的增殖潛力,為進一步研究豬胰腺干細胞的發(fā)育和分化提供了重要的工具。牙齒來源的干細胞作為組織再生的一種新來源,其優(yōu)勢為非侵入性的收集過程,以及在獲得和使用方面不涉及倫理問題。Gurel等[24]從6月齡豬的下頜第三磨牙牙胚中分離出牙胚干細胞,這是首次報道的豬牙胚干細胞分離和鑒定研究。此外,Lermen等[25]首次分離擴增了成年豬皮膚來源的干細胞樣細胞,在體外維持超過120天的增殖活性,表達多能因子和,并能向神經(jīng)、肌肉和脂肪樣細胞分化。腸道干細胞位于Lieberkek隱窩的底部,負責體內(nèi)穩(wěn)態(tài)和損傷后的腸道修復。Stieler等[26]報道了一種從腸道缺血環(huán)中分離腸道干細胞及培養(yǎng)的方法,可用于研究腸道干細胞在體外進行的上皮修復過程。綜上所述,豬的各類成體干細胞的分離和培養(yǎng)的成功,為體外相關(guān)機理的研究提供了豐富的實驗材料,也為組織修復及器官生成提供了素材,在農(nóng)業(yè)和醫(yī)學領(lǐng)域具有重要的應用價值。
牛ESCs的相關(guān)研究也處于建立穩(wěn)定長期傳代的胚胎干細胞系階段。Bogliotti等[27]使用含有成纖維細胞生長因子2和經(jīng)典Wnt信號通路抑制劑的培養(yǎng)系統(tǒng),獲得了形態(tài)穩(wěn)定、表達多能性標記基因并具有表觀遺傳學特征的牛ESCs。這些ESCs可快速建立克隆(3~4周)且易于增殖傳代。當用作核移植的供體時,能獲得與對照組相似的囊胚率。牛MSCs因其再生潛力和可塑性,受到了廣泛關(guān)注。同時,MSCs易于分離并且具有抗炎和血管生成能力。在分離培養(yǎng)或復蘇培養(yǎng)后,可將MSCs用于自體或同種異體治療,使得干細胞治療在臨床上更具吸引力。目前已知牛MSCs的標志基因包括、、、、和等。牛MSCs可從骨髓、脂肪組織、臍帶、胎盤、子宮和肺等組織分離獲得。MSCs療法在生產(chǎn)中可應用到乳腺炎、繁殖、骨損傷、關(guān)節(jié)損傷、糖尿病等疾病[28],可見牛MSCs具有廣闊的應用前景。
將動物體細胞重編程為iPSCs的機制并不是高度保守的,Pillai等[29]在誘導牛iPSCs形成的過程中發(fā)現(xiàn),優(yōu)化的小鼠和人的iPSCs誘導條件并不能有效誘導牛體細胞產(chǎn)生iPSCs,使用能夠改進小鼠和人體細胞重編程效率的方法也對誘導牛體細胞產(chǎn)生iPSCs沒有影響。盡管使用編碼牛、、、和的逆轉(zhuǎn)錄病毒載體似乎能誘導成纖維細胞產(chǎn)生iPSCs樣細胞,但這些克隆不能維持生長,說明牛iPSCs的培養(yǎng)條件和重編程還不完全,仍需進一步的改進。
牛奶是新生嬰兒發(fā)育、營養(yǎng)和免疫保護所需的重要且復雜的液態(tài)物質(zhì)。Pipino等[30]試圖分離牛奶中潛在的多能干細胞樣細胞群體,并研究其特征。發(fā)現(xiàn)分離出的牛奶干細胞表達典型的間充質(zhì)表面抗原(、和)、干細胞標記基因(和),并能分化為成骨細胞、軟骨細胞和脂肪細胞。這些結(jié)果提示牛奶也可以作為分化為多種細胞譜系的多能干細胞來源,進一步豐富了牛成體干細胞的來源。
Pawar等[8]從體外受精的山羊囊胚中分離出內(nèi)細胞團,并培養(yǎng)出了ESCs樣細胞,這些細胞中堿性磷酸酶和的表達均為陽性。此后,De等[31]對體外生產(chǎn)的處于桑椹胚、囊胚和孵化囊胚期的山羊胚胎進行干細胞分離培養(yǎng),發(fā)現(xiàn)孵化囊胚分離效率相對更高。獲得的克隆保持未分化狀態(tài)培養(yǎng)至第15代,且具有干細胞形態(tài)特征、正常核型,并表達干細胞特異性標志基因。長時間培養(yǎng)后能分化成神經(jīng)元樣和上皮樣細胞。很快,Garg等[32]也從體外受精的山羊胚胎分離了ESCs,使用飼養(yǎng)層和LIF培養(yǎng)至第22代仍保持未分化狀態(tài)。誘導分化后形成類胚體,并在30天后觀察到心肌細胞的節(jié)律性跳動。雄性生殖干細胞的自我更新與分化之間的平衡對于哺乳動物精子發(fā)生的啟動和維持至關(guān)重要,對山羊雄性生殖干細胞的研究發(fā)現(xiàn)miR-544通過靶向早幼粒細胞白血病鋅指蛋白(promyelocytic leukemia zinc finger,PLZF)來調(diào)節(jié)奶山羊雄性生殖系干細胞的自我更新[33]。對來自同一個供體綿羊的MSCs包括牙周膜MSCs、牙髓MSCs和骨髓MSCs等進行蛋白質(zhì)組分析,獲得的差異蛋白為相應組織的生長發(fā)育提供了分子基礎[34]。Fadel等[35]通過比較不同的分離和培養(yǎng)方法,初步獲得了臍帶血和腎周脂肪組織來源的MSCs。目前的研究現(xiàn)狀提示山羊和綿羊的干細胞相關(guān)研究仍需進一步深入。
雞ESCs和SSCs相關(guān)研究近年來也取得了較大進展。Zhang等[9]從X期的雞胚中分離獲得ESCs,這些ESCs經(jīng)堿性磷酸酶染色呈陽性并表達干細胞標志基因,通過優(yōu)化電轉(zhuǎn)染方法、孵化方法、顯微注射方法將其注射到雞胚腔后獲得了2只生殖系嵌合雞。用DF-1成纖維細胞做飼養(yǎng)層,在基礎培養(yǎng)基中添加人類堿性成纖維細胞生長因子(human basic fibroblast growth factor, hbFGF)、小鼠干細胞因子(mouse stem cell factor, mSCF)和人白血病抑制因子(human leukaemia inhibitory factor, hLIF)后,體外培養(yǎng)的雞ESCs能夠長期維持干細胞樣特性,即具有典型的ESCs形態(tài)、表達干細胞標志基因、具有相對穩(wěn)定的增殖速率和端粒酶活性,可體外誘導分化為心肌細胞、平滑肌細胞、神經(jīng)細胞、成骨細胞和脂肪細胞。用該培養(yǎng)體系培養(yǎng)了25代的雞ESCs能夠制備出嵌合體雞,提示DF-1成纖維細胞是雞ESCs能長期培養(yǎng)優(yōu)選飼養(yǎng)層細胞,hbFGF是維持雞ESCs多能性的重要因素[36]。
因SSCs可體外獲取,并不涉及倫理問題等優(yōu)勢,已日益成為體外干細胞研究的熱點。經(jīng)過改進酶消化、差速貼壁、流式或磁珠富集等現(xiàn)有的雞SSCs分離和純化方法,在添加生長因子并覆以飼養(yǎng)層細胞的培養(yǎng)基中培養(yǎng),可獲得體外培養(yǎng)的雞SSCs[37]。同時,利用建系的雞ESCs誘導分化為SSCs,也為SSCs的獲得提供了新途徑。在雞ESCs向SSCs分化的研究中發(fā)現(xiàn),CRISPR/Cas9介導的缺失抑制雞ESCs分化為SSCs樣細胞[38];WNT通路通過促進雞ESCs向SSCs分化[39];成纖維細胞生長因子8 (fibroblast growth factor 8,)通過動態(tài)調(diào)控生殖細胞自我更新和分化進而負向調(diào)控雞ESCs向SSCs分化[40];3β羥基類固醇脫氫酶2 (3β-hydroxysteroid dehydrogenase2,)則通過調(diào)節(jié)類固醇激素合成途徑正向調(diào)控雞ESCs向SSCs分化[41];作為雞SSCs的特異性標記,基因通過轉(zhuǎn)錄因子促進雞ESCs向SSCs分化[42]。綜上可見,雞ESCs和SSCs的相關(guān)研究已進入新的階段,即建系后的機理研究和分化研究階段,可為其他農(nóng)業(yè)動物干細胞提供方法和理論參考。
自開展農(nóng)業(yè)動物干細胞相關(guān)研究以來,雖然對多種畜禽干細胞的認識和利用取得了很大的進步,但在分離、培養(yǎng)、建系、分化以及應用等方面仍存在許多未知的問題。因此,對品種改良、生產(chǎn)基因編輯動物、研制新獸藥、研發(fā)疾病新療法以及組織修復和器官移植等應用,都需要對畜禽干細胞進行更多更深的探索和研究,同時也需要長時間的不懈努力。目前,豬已經(jīng)成為生物醫(yī)學研究中最受歡迎的大型動物模型之一,亦被認為是比嚙齒類動物模型更好的選擇。在進行人體實驗之前,使用豬的干細胞及其衍生物進行研究可作為評價藥物或治療的安全性和有效性的實驗平臺。
闡明如何將干細胞分化成精子樣和卵母細胞樣細胞,將這些精子樣和卵母細胞樣細胞進行體外受精,以創(chuàng)建擁有新的遺傳組合的重構(gòu)胚胎,再通過這些重構(gòu)胚胎分離出更多的干細胞。即可以利用這種“干細胞–精子樣和卵母細胞樣細胞–重構(gòu)胚胎–干細胞”循環(huán),在體外快速獲得大量具有特定遺傳效應的胚胎,進行胚胎移植后獲得特定個體(圖1)。該策略能夠?qū)崿F(xiàn)縮短世代間隔和加速改善后代性狀的目的,也意味著等待動物妊娠的時間變短,同時被消耗的動物變少,因此具有廣闊的應用前景。綜上所述,干細胞技術(shù)是未來農(nóng)業(yè)科技快速進步不可缺少的重要技術(shù),畜禽干細胞的成功和發(fā)展有望顯著提高動物克隆和基因編輯的效率,畜禽干細胞成功誘導分化成配子將極大簡化畜禽基因工程和合成生物技術(shù),為畜禽種質(zhì)創(chuàng)新技術(shù)提供重要支撐。
圖1 農(nóng)業(yè)動物干細胞技術(shù)展望
建立豬、牛、山羊、綿羊、雞等農(nóng)業(yè)動物來源的“干細胞–精子樣和卵母細胞樣細胞–重構(gòu)胚胎–干細胞”循環(huán),可快速高效地獲得具有特定基因或目標性狀的個體。
[1] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos., 1981, 292(5819): 154–156.
[2] Labat ML. Stem cells and the promise of eternal youth: embryonic versus adult stem cells., 2001, 55(4): 179–185.
[3] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors., 2006, 126(4): 663–676.
[4] Qin T, Miao XY. Current progress and application prospects of induced pluripotent stem cells., 2010, 32(12): 1205–1214.秦彤, 苗向陽. iPS細胞研究的新進展及應用. 遺傳, 2010, 32(12): 1205–1214.
[5] Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ.breeding: application of embryonic stem cells to animal production?., 2019, 100(4): 885–895.
[6] Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. Stem cells on regenerative and reproductive science in domestic animals., 2019, 43(1): 7–16.
[7] Yang JR, Shiue YL, Liao CH, Lin SZ, Chen LR. Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP., 2009, 11(2): 235–244.
[8] Pawar SS, Malakar D, De AK, Akshey YS. Stem cell-like outgrowths fromfertilized goat blastocysts., 2009, 47(8): 635–642.
[9] Zhang YN, Yang HY, Zhang ZT, Shi QQ, Wang D, Zheng MM, Li BC, Song JZ. Isolation of chicken embryonic stem cell and preparation of chicken chimeric model., 2013, 40(3): 2149–2156.
[10] Haraguchi S, Kikuchi K, Nakai M, Tokunaga T. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition., 2012, 58(6): 707–716.
[11] Siriboon C, Lin YH, Kere M, Chen CD, Chen LR, Chen CH, Tu CF, Lo NW, Ju JC. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning., 2015, 10(2): e0118165.
[12] Esteban MA, Xu JY, Yang JY, Peng MX, Qin DJ, Li W, Jiang ZX, Chen JK, Deng K, Zhong M, Cai JL, Lai LX, Pei DQ. Generation of induced pluripotent stem cell lines from Tibetan miniature pig., 2009, 284(26): 17634–17640.
[13] Chakritbudsabong W, Sariya L, Pamonsupornvichit S, Pronarkngver R, Chaiwattanarungruengpaisan S, Ferreira JN, Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T, Rungarunlert S. Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor- mediated reprogramming:VSMUi001-D., 2017, 24: 21–24.
[14] Gallegos-Cárdenas A, Webb R, Jordan E, West R, West FD, Yang JY, Wang K, Stice SL. Pig induced pluripotent stem cell-derived neural rosettes developmentally mimic human pluripotent stem cell neural differentiation., 2015, 24(16): 1901–1911.
[15] Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL. Pig induced pluripotent stem cell-derived neural rosettes parallel human differentiation into sensory neural subtypes., 2017, 19(2): 88–94.
[16] Liao YJ, Tang PC, Chen YH, Chu FH, Kang TC, Chen LR, Yang JR. Porcine induced pluripotent stem cell-derived osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs., 2018, 13(8): e0202155.
[17] Talbot NC, Blomberg LA, Garrett WM, Caperna TJ. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line., 2010, 46(9): 746–757.
[18] Talbot NC, Caperna TJ. A feeder-cell independent subpopulation of the PICM-19 pig liver stem cell line capable of long-term growth and extensive expansion., 2014, 66(1): 1–7.
[19] Xu JJ, Yu LQ, Guo JX, Xiang JZ, Zheng Z, Gao DF, Shi BB, Hao HY, Jiao DL, Zhong L, Wang Y, Wu J, Wei HJ, Han JY. Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system., 2019, 10(1): 193.
[20] Zheng Y, Feng TY, Zhang PF, Lei PP, Li FY, Zeng WX. Establishment of cell lines with porcine spermatogonial stem cell properties., 2020, 11: 33.
[21] Huang L, Niu CG, Willard B, Zhao WM, Liu L, He W, Wu TW, Yang SL, Feng ST, Mu YL, Zheng LM, Li K. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells., 2015, 6(1): 77.
[22] Gao Q, Xia Y, Liu L, Huang L, Liu Y, Zhang X, Xu K, Wei JL, Hu YQ, Mu YL, Li K. Galectin-3 enhances migration of minature pig bone marrow mesenchymal stem cells through inhibition of RhoA-GTP activity., 2016, 6: 26577.
[23] Han W, He X, Zhang MZ, Hu SX, Sun F, Ren LP, Hua JL, Peng S. Establishment of a porcine pancreatic stem cell line using T-REx(?) system-inducible Wnt3a expression., 2015, 48(3): 301–310.
[24] Gurel Pekozer G, Ramazanoglu M, Schlegel KA, Kok FN, Torun Kose G. Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering., 2018, 46(3): 607–618.
[25] Lermen D, Gorjup E, Dyce PW, von Briesen H, Müller P. Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells., 2010, 5(1): e8968.
[26] Stieler Stewart A, Freund JM, Blikslager AT, Gonzalez LM. Intestinal stem cell isolation and culture in a porcine model of segmental small intestinal ischemia., 2018, (135): 57647.
[27] Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong CQ, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts., 2018, 115(9): 2090–2095.
[28] Hill ABT, Bressan FF, Murphy BD, Garcia JM. Applications of mesenchymal stem cell technology in bovine species., 2019, 10(1): 44.
[29] Pillai VV, Kei TG, Reddy SE, Das M, Abratte C, Cheong SH, Selvaraj V. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance., 2019, 90(9): 1149– 1160.
[30] Pipino C, Mandatori D, Buccella F, Lanuti P, Preziuso A, Castellani F, Grotta L, Di Tomo P, Marchetti S, Di Pietro N, Cichelli A, Pandolfi A, Martino G. Identification and characterization of a stem cell-like population in bovine milk: a potential new source for regenerative medicine in veterinary., 2018, 27(22): 1587–1597.
[31] Kumar De A, Malakar D, Akshey YS, Jena MK, Dutta R. Isolation and characterization of embryonic stem cell-like cells fromproduced goat () embryos., 2011, 22(4): 181–196.
[32] Garg S, Dutta R, Malakar D, Jena MK, Kumar D, Sahu S, Prakash B. Cardiomyocytes rhythmically beating generated from goat embryonic stem cell., 2012, 77(5): 829–839.
[33] Song WC, Mu HL, Wu J, Liao MZ, Zhu HJ, Zheng LM, He X, Niu BW, Zhai YX, Bai CL, Lei AM, Li GP, Hua JL. miR-544 Regulates dairy goat male germline stem cell self-renewaltargeting PLZF., 2015, 116(10): 2155–2165.
[34] Mrozik KM, Zilm PS, Bagley CJ, Hack S, Hoffmann P, Gronthos S, Bartold PM. Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: analysis of differentially expressed proteins., 2010, 19(10): 1485–1499.
[35] Fadel L, Viana BR, Feitosa MLT, Ercolin ACM, Roballo KCS, Casals JB, Pieri NCG, Meirelles FV, Martins DDS, Miglino MA, Ambrósio CE. Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep., 2011, 26(4): 267–273.
[36] Zhang L, Wu YN, Li X, Wei S, Xing YM, Lian Z, Han HB. An alternative method for long-term culture of chicken embryonic stem cell., 2018, 2018: 2157451.
[37] Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods., 2017, 58(6): 681–686.
[38] Zuo QS, Jin K, Wang YJ, Song JZ, Zhang YN, Li BC. CRISPR/Cas9-mediated deletion of C1EIS inhibits chicken embryonic stem cell differentiation into male germ cells ()., 2017, 118(8): 2380–2386.
[39] He NN, Wang YL, Zhang C, Wang M, Wang YJ, Zuo QS, Zhang YN, Li BC. Wnt signaling pathway regulates differentiation of chicken embryonic stem cells into spermatogonial stem cellsWnt5a., 2018, 119(2): 1689–1701.
[40] Wang M, Zhang C, Huang CL, Cheng SZ, He NN, Wang YL, Ahmed MF, Zhao RF, Jin J, Zuo QS, Zhang YN, Li BC. Regulation of fibroblast growth factor 8 (FGF8) in chicken embryonic stem cells differentiation into spermatogonial stem cells., 2018, 119(2): 2396–2407.
[41] Zhang C, Wang M, He NN, Ahmed MF, Wang YL, Zhao RF, Yu XJ, Jin J, Song JZ, Zuo QS, Zhang YN, Li BC. Hsd3b2 associated in modulating steroid hormone synthesis pathway regulates the differentiation of chicken embryonic stem cells into spermatogonial stem cells., 2018, 119(1): 1111–1121.
[42] Jin J, Zhao RF, Chen C, Zhou J, Lu ZY, Jin K, Zhang C, Wang M, Sun CH, Wang YJ, Zhang WH, Li TT, Zuo QS, Zhang YN, Chen GH, Li BC. The Lbc gene promotes differentiation of chicken embryo stem cell into sperma-togonial stem cells via the regulation of transcriptional factor Hoxa5., 2019, doi: 10.1002/jcb. 27760.
Research progress of stem cells in agricultural animals
Bingyuan Wang, Yulian Mu, Kui Li, Zhiguo Liu
As an important biological technology, stem cell technology has been being widely used in the life sciences for a long time. There are three major ways to obtain stem cells with unlimited proliferation and differentiation capabilities, including 1) isolating embryonic stem cells (ESCs) from embryos, 2) isolating adult stem cells from adult tissues, and 3)reprogramming of differentiated somatic cells into induced pluripotent stem cells (iPSCs). In the field of agriculture, the efficient purification, culture and establishment of livestock and poultry stem cell lines are expected to significantly improve the efficiency of somatic cell cloning and genetic modification of cells. The technology of stem cell induced-gamete production will greatly simplify the generation process, and consequently improve the generation efficiency of genetically modified animals. In addition, by combining with gene editing, microinjection, stem cell transplantation, and embryo transfer, stem cell technology has great potential in the production of genetically modified animals, tissue and organ donors,induced gametes and genetically reconstructed embryos, in the screening of disease treatment targets, and in the research of new drug pharmacology, which is of great significance to the genetic improvement, disease prevention and treatment for agricultural animals. In this review, we summarize the current research progress of stem cells in agricultural animals, including pig (), cattle (, chicken (, goat () and sheep (, to provide information for the studies in the field of stem cells in agricultural animals.
pig; cattle; chicken; goat; sheep; stem cell
2020-06-16;
2020-09-08
國家自然科學基金項目(編號:31702083) 和中央級公益性科研院所基本科研業(yè)務費專項(編號:2020-YWF-YB-06) 資助[Supported by the National Natural Science Foundation of China (No. 31702083) , and Central Public-interest Scientific Institution Basal Research Fund (No. 2020-YWF-YB-06)]
王冰源,博士研究生,助理研究員,研究方向:動物遺傳育種與繁殖。E-mail: wangbingyuan@caas.cn
劉志國,博士研究生,助理研究員,研究方向:動物遺傳育種與繁殖。E-mail: liuzhiguo@caas.cn
10.16288/j.yczz.20-180
https://kns.cnki.net/kcms/detail/11.1913.R.20201028.1052.001.html
URI: 2020/10/28 14:54:51
(責任編委: 李明洲)