陳會(huì)友,張建敏,李柏森,鄧永琳,張龔煒
綜 述
犏牛雄性不育的減數(shù)分裂基因表達(dá)與表觀遺傳調(diào)控研究進(jìn)展
陳會(huì)友,張建敏,李柏森,鄧永琳,張龔煒
西南大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,重慶 402460
種間雜交雄性不育是自然界普遍現(xiàn)象,是物種形成生殖隔離的重要方式。犏牛作為牦牛()和普通牛()的種間雜交后代,表現(xiàn)為公犏牛不育,而母犏??捎?,是研究種間雜交雄性不育的良好動(dòng)物模型。近年來利用分子生物學(xué)技術(shù)發(fā)現(xiàn)犏牛睪丸組織中大量基因表達(dá)紊亂。研究表明,DNA甲基化、組蛋白修飾和非編碼RNA等表觀遺傳因素參與精子發(fā)生過程。本文從減數(shù)分裂相關(guān)的基因表達(dá)、DNA甲基化、microRNA (miRNA)、PIWI蛋白相互作用的RNA (PIWI-interactingRNA, piRNA)、長鏈非編碼RNA (long non-coding RNA, lncRNA)和組蛋白甲基化修飾等方面總結(jié)了犏牛雄性不育的相關(guān)研究進(jìn)展,以期從遺傳和表觀遺傳調(diào)控角度更加深入理解犏牛雄性不育的分子機(jī)理。
犏牛;雄性不育;表觀遺傳;基因表達(dá)
牦牛()被稱為“高原之舟”,是青藏高原地區(qū)不可或缺的全能家畜,對(duì)高寒、缺氧和強(qiáng)紫外線等惡劣的生態(tài)環(huán)境條件有極強(qiáng)的適應(yīng)性,是當(dāng)?shù)鼐用癫豢苫蛉钡纳a(chǎn)資料和生活資料。但是牦牛乳、肉用生產(chǎn)性能較低。為了改善牦牛生產(chǎn)性能,利用牦牛和優(yōu)良肉用、奶用普通牛()開展種間雜交,F(xiàn)1、F2代犏牛具有明顯雜種優(yōu)勢(shì),肉用、奶用均比親本牦牛有顯著提高并能適應(yīng)高原地區(qū)環(huán)境氣候。但是,F(xiàn)1、F2代犏牛雄性不育,這使得其雜種優(yōu)勢(shì)無法通過橫交固定,無法通過雜交育種改良牦牛品種,成為阻礙藏區(qū)牦牛產(chǎn)業(yè)發(fā)展的瓶頸問題。種間雜交雄性不育是自然界普遍現(xiàn)象,是物種形成生殖隔離的重要方式。犏牛雄性不育也是探索物種形成生殖隔離的良好動(dòng)物模型。目前,國內(nèi)外學(xué)者已從雜交改良、組織學(xué)、內(nèi)分泌學(xué)、生物化學(xué)、細(xì)胞遺傳學(xué)和分子生物學(xué)等主要領(lǐng)域展開研究[1,2]。最近研究表明,DNA甲基化、組蛋白修飾和非編碼RNA等表觀遺傳因素是調(diào)控基因表達(dá)的重要因子,并對(duì)精子發(fā)生過程起關(guān)鍵作用[3]。本文從基因表達(dá)、DNA甲基化、組蛋白甲基化修飾和非編碼RNA等方面總結(jié)了犏牛雄性不育的相關(guān)研究進(jìn)展,以期從遺傳和表觀遺傳調(diào)控角度更加深入理解犏牛雄性不育的分子機(jī)理。
組織學(xué)研究發(fā)現(xiàn),犏牛雄性不育主要表現(xiàn)為精母細(xì)胞數(shù)量減少,生精小管內(nèi)極少見精子細(xì)胞,表明犏牛雄性不育主要是生精細(xì)胞減數(shù)分裂過程受阻[4]。減數(shù)分裂是有性生殖過程中產(chǎn)生配子的一種特殊分裂方式,是哺乳動(dòng)物繁衍后代的必須條件。研究人員在減數(shù)分裂相關(guān)基因上展開大量研究,以探索減數(shù)分裂基因表達(dá)紊亂與犏牛雄性不育的關(guān)系,其研究主要集中在以下蛋白家族(表1)。
表1 犏牛雄性不育相關(guān)基因
DAZ蛋白家族主要有3個(gè)成員,(the deleted in azoospermia)基因位于Y染色體上,(deleted in azoospermia like)和(boule protein)是常染色體基因,這3個(gè)基因編碼蛋白是RNA結(jié)合蛋白,在生殖細(xì)胞特異表達(dá),是精子發(fā)生過程的主要調(diào)控因子。有4個(gè)拷貝,以頭對(duì)頭的形式排列在Y染色體上,基因產(chǎn)物具有RNA結(jié)合蛋白特性,在睪丸組織特異性表達(dá),可能與精子生成有關(guān),是決定精子生成的基因[5]。與基因同源性約為83%,在黃牛()和牦牛睪丸組織中表達(dá),在F1代犏牛睪丸組織不表達(dá),并且的DNA甲基化程度顯著高于黃牛和牦牛[6]。這與小鼠()基因敲除后導(dǎo)致精子發(fā)生停止或功能異常結(jié)果一致[7],說明基因可能對(duì)犏牛雄性不育有重要影響。BOULE是動(dòng)物精母細(xì)胞減數(shù)分裂過程中的必需蛋白(圖1),與精子發(fā)生減數(shù)分裂阻滯、雄性不育等密切相關(guān),F(xiàn)1代犏牛基因表達(dá)水平顯著低于黃牛,5?端DNA甲基化水平極顯著高于黃牛和牦牛[8],說明犏?;虻母呒谆赡苁蛊鋗RNA表達(dá)下調(diào),對(duì)犏牛生精細(xì)胞減數(shù)分裂、雄性不育有重要影響。
SYCP蛋白家族主要有4個(gè)成員,分別是SYCP1 (synaptonemal complex protein 1)、SYCP2、SYCP3和FKBP6 (FKBP prolyl isomerase 6)。它們參與精原細(xì)胞的形成,是聯(lián)會(huì)復(fù)合體形成的關(guān)鍵蛋白。主要在減數(shù)分裂前期表達(dá),在同源染色體配對(duì)中發(fā)揮重要作用,是精子發(fā)生過程中所必須的基因。在粗線期和雙線期,F(xiàn)KBP6與SYCP1蛋白共同結(jié)合于常染色體的聯(lián)會(huì)區(qū)域,輔助SYCP1形成橫絲(transverse filaments, TF)。在犏牛、牦牛和普通牛中都有表達(dá),且差異不顯著[9]。SYCP2蛋白能與SYCP3蛋白結(jié)合發(fā)揮作用。在哺乳動(dòng)物中,SYCP2和SYCP3是軸向元件(axial element, AE)和側(cè)向元件(lateral elements, LE)形成的主要決定成分[10]。SYCP3蛋白是一個(gè)DNA結(jié)合蛋白,定位于聯(lián)會(huì)復(fù)合體的側(cè)成分,在睪丸中特別是在初級(jí)精母細(xì)胞中表達(dá)(圖1),在同源染色體配對(duì)中發(fā)揮重要作用,是精子發(fā)生過程中減數(shù)分裂所必須。犏牛睪丸表達(dá)顯著低于牦牛[11],其DNA啟動(dòng)子甲基化水平顯著高于牦牛[12]。主要在性腺組織的粗線期表達(dá),犏牛睪丸表達(dá)量顯著低于牦牛。因此,、和基因表達(dá)紊亂與犏牛雄性不育存在一定聯(lián)系[13]。
圖1 犏牛睪丸中的生精調(diào)控
DEAD-box蛋白家族是一個(gè)ATP依賴的RNA解旋酶家族,參與多種RNA代謝過程。其中(DEAD-box helicase 4)、(DEAD-box helicase 3, Y-linked)和是與精子發(fā)生密切相關(guān)的基因。在哺乳動(dòng)物中,、和的缺失或減少會(huì)導(dǎo)致不同形式的精子發(fā)生障礙。DDX4在哺乳動(dòng)物生殖系特異表達(dá),作為一種廣泛的分子標(biāo)記物被應(yīng)用于生殖研究[14]。犏牛睪丸組織的啟動(dòng)子區(qū)甲基化水平顯著高于牦牛,其mRNA在犏牛睪丸中的表達(dá)量也極顯著低于牦牛[15],說明對(duì)犏牛雄性不育存在一定影響。位于牛Y染色體上,在3種牛睪丸組織中mRNA表達(dá)量差異不顯著[16]。DDX25是已知的唯一由激素調(diào)節(jié)的RNA解旋酶,基因敲除小鼠精子發(fā)生受阻,致使圓形精子無法繼續(xù)變形[17]。犏牛睪丸組織中的基因表達(dá)水平也顯著低于牦牛[18],可能致使犏牛精子發(fā)生受阻。
在染色體自我復(fù)制過程中可能會(huì)出現(xiàn)雙鏈斷裂(double strand break, DSB)現(xiàn)象,如果這些斷裂未能及時(shí)修復(fù)就會(huì)引起細(xì)胞凋亡,修復(fù)不準(zhǔn)確也會(huì)引起基因突變和染色體突變。真核生物對(duì)這些斷裂的修復(fù)有兩種機(jī)理:非同源末端連接和同源重組,而同源重組是DNA上DSB損傷修復(fù)的主要方式,對(duì)于保持哺乳動(dòng)物細(xì)胞的基因組完整性十分重要[19]。(DNA meiotic recombinase 1)、(replication protein A1)和(BLM RecQ like helicase)等是參與哺乳動(dòng)物減數(shù)分裂同源重組修復(fù)的關(guān)鍵基因。這些基因的突變、敲除和表達(dá)水平的降低均會(huì)引起精母細(xì)胞減數(shù)分裂障礙,最終導(dǎo)致雄性不育。、基因在犏牛睪丸組織中的表達(dá)水平對(duì)比黃牛和牦牛差異顯著[20~22],且基因DNA啟動(dòng)子區(qū)甲基化水平也差異顯著,提示其可能和犏牛雄性不育相關(guān)。
Y染色體是雄性哺乳動(dòng)物相對(duì)于雌性特有的染色體,由常染色體進(jìn)化而來,和X染色體只有5%的區(qū)域相同,該區(qū)域是和X染色體同源重組的擬常染色體區(qū),而95%的其他區(qū)域則是MSY (圖1)。牛Y染色體基因組已經(jīng)公布(NCBI GenBank accession no. CM001061),通過對(duì)牛Y染色體進(jìn)行測序和注釋,牛Y染色體共鑒定出1274個(gè)基因,MSY包含28個(gè)蛋白編碼基因和375個(gè)新轉(zhuǎn)錄本。利用轉(zhuǎn)錄組測序(RNA-seq)技術(shù)比較普通牛不同年齡睪丸組織中基因表達(dá)模式發(fā)現(xiàn),13個(gè)編碼基因和220轉(zhuǎn)錄本的表達(dá)量隨睪丸發(fā)育顯著上調(diào),這表明Y染色體MSY區(qū)域的基因參與牛生精過程[23]。
MSY相關(guān)基因的拷貝數(shù)變異(copy number variation, CNV)被證明和雄性生精功能有關(guān)[24]。張龔煒等[25]首次對(duì)MSY相關(guān)基因的CNV進(jìn)行研究,發(fā)現(xiàn)F1、F2代公犏牛MSY相關(guān)基因(testis specific protein, Y-linked)、(heat shock transcription factor, Y-linked)、(preferentially expressed antigen in melanoma, Y-linked)和(zinc finger protein 280B, Y-linked)的幾何平均拷貝數(shù)(the average geometric mean copy number, CN)顯著高于普通牛和牦牛,提示犏牛MSY在基因組結(jié)構(gòu)上和牦牛以及普通牛不同,MSY相關(guān)基因的CNV可能是犏牛雄性不育的原因。隨后詳細(xì)分析普通牛和牦牛MSY相關(guān)基因、、、和序列,發(fā)現(xiàn)只有在??剖潜J氐?,牦牛缺失類型序列,和在牦牛Y染色體上成功擴(kuò)增,和的平均拷貝數(shù)在普通牛和牦牛之間差異顯著[4],說明普通牛和牦牛MSY存在差異性。犏牛、、和表達(dá)對(duì)比牦牛和普通牛顯著下調(diào),究其原因可能是犏牛精子發(fā)生異常導(dǎo)致無精子生成,提示這些基因主要參與減數(shù)分裂后精子形成過程[23,4]。除以上多拷貝基因外,犏牛睪丸組織MSY區(qū)域的單拷貝基因(ubiquitously transcribed tetratricopeptide repeat con-taining, Y-linked)、(oral-facial-digital syndrome 1, Y-linked)和(ubiquitin specific peptidase 9, Y-linked)表達(dá)對(duì)比牦牛和普通牛顯著上調(diào)。和具有組蛋白甲基化和泛素化的功能,提示后續(xù)可進(jìn)一步從組蛋白甲基化和泛素化角度探索犏牛雄性不育的機(jī)理[16]。
以DNA甲基化、組蛋白修飾和染色質(zhì)重塑為特征的表觀遺傳修飾是包括精子發(fā)生在內(nèi)的許多生物學(xué)過程中的重要調(diào)節(jié)因子[3]。DNA甲基化[41]、組蛋白修飾[42]和非編碼RNA[43]作為機(jī)體重要的表觀遺傳修飾類型,是在精子發(fā)生過程中調(diào)控的關(guān)鍵因素。表觀遺傳修飾的異常,將使生精過程基因的表達(dá)紊亂,進(jìn)而導(dǎo)致雄性不育。
DNA甲基化是在甲基轉(zhuǎn)移酶(DNA methyltrans-ferase, DNMT)催化作用下,以S-腺苷甲硫氨酸(S-Adenosylmethionine, SAM)作為甲基供體,通過共價(jià)鍵結(jié)合的方式使基因組CpG二核苷酸中胞嘧啶5號(hào)位碳原子獲得一個(gè)甲基基團(tuán)的化學(xué)修飾過程[44]。DNA甲基化能引起染色質(zhì)結(jié)構(gòu)、DNA構(gòu)象、DNA穩(wěn)定性及DNA與蛋白質(zhì)相互作用方式的改變,從而調(diào)控基因表達(dá)[45]。DNA甲基化可能通過調(diào)節(jié)雄性生殖細(xì)胞的增殖和分化而發(fā)揮關(guān)鍵作用[46],是雄性不育的一個(gè)重要影響因素。在雄性不育模型中觀察到的異常DNA甲基化模式可能是精原細(xì)胞的再甲基化失敗或精母細(xì)胞、精子細(xì)胞和成熟精子細(xì)胞的甲基化狀態(tài)維持不變所致[47]。由于啟動(dòng)子DNA甲基化通常抑制基因轉(zhuǎn)錄,在精子發(fā)生過程中DNA甲基化的紊亂導(dǎo)致了生精基因的表達(dá)紊亂,和雄性不育高度相關(guān)[45]。在犏牛中,研究發(fā)現(xiàn)、和基因啟動(dòng)子區(qū)域甲基化水平升高導(dǎo)致基因表達(dá)下調(diào),進(jìn)而影響犏牛生殖[48~50]。最近利用全基因組甲基化測序技術(shù)發(fā)現(xiàn)啟動(dòng)子高甲基化基因在配子產(chǎn)生、piRNA (非編碼RNA的一種)代謝過程和染色質(zhì)結(jié)構(gòu)的DNA甲基化過程中顯著富集,表明啟動(dòng)子高甲基化和piRNA途徑等表觀遺傳紊亂可能和犏牛雄性不育高度相關(guān)[29]。犏牛睪丸中PIWI/piRNA通路基因啟動(dòng)子發(fā)生DNA超甲基化,使、、(phospholipase D family member 6)、(maelstrom spermatogenic transposon silencer)、、(tudor domain containing 1)和等基因表達(dá)下調(diào),并導(dǎo)致犏牛精子發(fā)生過程中粗線期piRNA的產(chǎn)生降低,同時(shí)還發(fā)現(xiàn)轉(zhuǎn)座因子LINEs (long interspersed nuclear elements)、SINEs (short interspersed nuclear elements)和LTRs (long terminal repeats)在犏牛睪丸中高甲基化(圖1)。因此,DNA高甲基化和piRNA生成途徑中斷是導(dǎo)致生殖細(xì)胞發(fā)育不成功的原因之一,這可能導(dǎo)致犏牛雄性不育[29]。
隨著基因組研究的深入,以前普遍認(rèn)為不編碼蛋白質(zhì)的非編碼RNA被證明其在轉(zhuǎn)錄后具有基因調(diào)控的作用。非編碼RNA主要包括lncRNA、核糖體RNA (rRNA)、轉(zhuǎn)運(yùn)RNA (tRNA)、核小RNA (small nuclearRNA, snRNA)、核仁小RNA (small nucleolar RNA, snoRNA)、miRNA和piRNA等多種已知功能的RNA,及未知功能的RNA。這些RNA的共同特點(diǎn)是都能從基因組上轉(zhuǎn)錄而來,但是不翻譯成蛋白,在RNA水平上就能行使各自的生物學(xué)功能。例如piRNA主要在睪丸組織中表達(dá),其在轉(zhuǎn)錄后水平調(diào)控動(dòng)物生殖系統(tǒng)[51~53]。
2.2.1 PIWI/piRNA途徑與犏牛雄性不育
piRNA一般長約24~35 nt,通過與AGO蛋白家族相互作用形成piRNA沉默復(fù)合體(piRNA-induced silencing complex, pi-RISC)來調(diào)控基因重復(fù)序列及轉(zhuǎn)座子等基因元件的活性[54],主要影響動(dòng)物生殖[51]。小鼠減數(shù)分裂時(shí)期piRNAs主要分前粗線期piRNAs (26~28 nt)和粗線期piRNAs (~30 nt)[55]。前粗線期piRNAs主要在細(xì)線期精母細(xì)胞中發(fā)現(xiàn),來源于轉(zhuǎn)座子元件[56,57]。粗線期piRNAs起源于基因組不同區(qū)域的piRNA簇,并與粗線期精母細(xì)胞中的PIWIL1和PIWIL2結(jié)合維持到圓形精子細(xì)胞階段,是成年小鼠睪丸中的主要piRNAs,約占總piRNAs的95%[58]。在小鼠中,編碼PIWI蛋白的/、和/基因以及其他協(xié)助piRNA產(chǎn)生或功能表達(dá)所必需的蛋白是PIWI/piRAN通路的重要組成部分,它們共同維持小鼠的精子發(fā)生。一旦piRNA通路基因發(fā)生突變,都會(huì)導(dǎo)致雄性不育[59,60]。例如,轉(zhuǎn)錄因子A-MYB/MYBL1 (myelo-blastosis oncogene-like 1)被證明直接識(shí)別上游DNA元件來啟動(dòng)粗線期piRNAs的轉(zhuǎn)錄[55],生成的piRNA前體轉(zhuǎn)錄本被輸送到核外細(xì)胞質(zhì),隨后又被PIWI蛋白結(jié)構(gòu)域修剪成前體piRNA,經(jīng)過一系列修剪后,由核酸外切酶(PARN like, ribonuclease domain con-taining 1, PNLDC1)[61]對(duì)piRNA3?端進(jìn)一步修剪成成熟大小,最終piRNA3?端被2?-O-甲基轉(zhuǎn)移酶(HEN methyltransferase 1, HENMT1)修飾產(chǎn)生成熟的piRNA[62](圖2)。如前所述,犏牛睪丸中PIWI/piRNA通路相關(guān)基因(、、、、、和)啟動(dòng)子超甲基化抑制基因表達(dá),使piRNA生成顯著降低[29],表明PIWI/piRNA通路參與犏牛雄性不育的過程。
2.2.2 miRNA與犏牛雄性不育
miRNA是一種長度約為22 nt并高度保守的內(nèi)源性非編碼小分子RNA,雖然不編碼蛋白質(zhì)但具有調(diào)控功能。miRNA的生物學(xué)功能主要體現(xiàn)在對(duì)其靶基因的轉(zhuǎn)錄后水平調(diào)控,主要有靶標(biāo)mRNA的降解和mRNA翻譯抑制2種方式,它們?cè)诰影l(fā)生過程中以相對(duì)特異性方式表達(dá),在雄性動(dòng)物生殖健康中起著至關(guān)重要的作用[63]。例如,miRNA參與調(diào)控睪丸支持細(xì)胞的增殖和粘附,一旦支持細(xì)胞增殖和粘附功能異常,將會(huì)導(dǎo)致精子發(fā)生受阻[64]。因此,miRNAs的失調(diào)被認(rèn)為是雄性不育的分子基礎(chǔ),這些分子的異常表達(dá)模式可以遺傳給后代[65]。研究表明,miRNA在哺乳動(dòng)物精子發(fā)生的不同過程中起著重要的調(diào)節(jié)作用:和通過靶向(signal transducer and activator of transcription 3)和(Cyclin D1)在轉(zhuǎn)錄后水平促進(jìn)小鼠 SSCs的更新[66],通過抑制(KIT proto-oncogene, receptor tyrosine kinase)的表達(dá)在維持精原細(xì)胞的未分化狀態(tài)中發(fā)揮關(guān)鍵作用[67]。研究表明,小鼠粗線期精母細(xì)胞中存在許多來自X染色體的miRNAs,這些miRNAs可能導(dǎo)致性染色體減數(shù)分裂失活[68]。徐傳飛[69]通過對(duì)小RNA測序發(fā)現(xiàn)61個(gè)miRNA在犏牛與牦牛睪丸組織之間差異表達(dá),其中、、、和參與SSCs自我更新以及分化過程;和參與精子發(fā)生過程中減數(shù)分離起始過程,說明miRNA在犏牛生精過程中具有影響力。廖珂[70]發(fā)現(xiàn)涉及細(xì)胞增殖、凋亡過程的miRNA表達(dá)在犏牛和普通牛間也存在差異,如、和等。徐傳飛[71]對(duì)差異miRNAs的靶基因進(jìn)行GO分析和KEGG分析,結(jié)果顯示靶向的(cyclin dependent kinase 2)、和主要參與細(xì)胞分化、增殖以及凋亡等通路。
圖2 粗線期piRNA的生物發(fā)生
2.2.3 lncRNA與犏牛雄性不育
lncRNA長度一般大于200 nt,主要與染色質(zhì)修飾蛋白、RNA結(jié)合蛋白、小RNA和其他lncRNA相互作用調(diào)節(jié)各種生理過程。lncRNA的功能大致可分為3種調(diào)控模式:競爭者(competitor)、激活者(activator)和前體(precursor)[72]。首先,作為競爭者,lncRNAs可以與某些DNA結(jié)合蛋白結(jié)合,從而抑制其與靶DNA的結(jié)合[73]。例如,一些lncRNAs可以與DNA甲基轉(zhuǎn)移酶1 (DNA methyltransferase 1,DNMT1)結(jié)合,從而阻止DNMT1與靶DNA結(jié)合[74]。因此,DNA靶區(qū)域的甲基化狀態(tài)會(huì)受到影響,導(dǎo)致靶基因的轉(zhuǎn)錄激活。其次,與競爭者相反,lncRNAs還可以作為招募者,通過將表觀遺傳修飾因子招募到特定的靶位點(diǎn)來啟動(dòng)表觀遺傳修飾,從而加強(qiáng)DNA甲基化或組蛋白修飾[75,76]。第三,lncRNAs可以被某些核糖核酸酶(RNase)如Dicer消化,產(chǎn)生小的非編碼RNA,如。是一種附睪特異的1.6 kb mRNA樣前體,能產(chǎn)生類似miRNA的小RNA,通過形成類似miRNA的小RNA,下調(diào)CES7/CES5A(carboxylesterase 5A)蛋白的表達(dá),從而影響精子獲能[77]。在沉默牛的lncRNA(H19母系印跡表達(dá)轉(zhuǎn)錄本)后,生精小管中的細(xì)胞數(shù)量有減少的趨勢(shì),這影響了IGF-1R (insulin-like growth factor I receptor)在支持細(xì)胞和生精細(xì)胞中的表達(dá)。IGF-1維持多種類型干細(xì)胞的存活,在雄性生殖系中具有重要功能[78]。近期,阿果約達(dá)等[79]通過RNA-seq技術(shù)從犏牛、牦牛和普通牛中篩選出6178個(gè)差異顯著lncRNA轉(zhuǎn)錄本,候選靶基因2676個(gè),最終篩選出犏牛不育相關(guān)基因(prostaglandin D2 synthase)、(insulin like growth factor 2和(mesoderm specific transcript)等,這些差異靶基因與犏牛雄性不育相關(guān)。伍仕鑫[80]通過分離出犏牛、牦牛睪丸高純度精原細(xì)胞進(jìn)行l(wèi)ncRNA的RNA-seq、GO和KEGG富集分析后,發(fā)現(xiàn)差異lncRNAs的靶基因(Cyclin-dependent kinase 1)、(BRCA1 DNA Repair Associated)、(Claspin)和(G2/mitotic-specific cyclin-B1)等主要參與犏牛生精過程中細(xì)胞分裂的起始(圖1),細(xì)胞周期負(fù)性調(diào)控和相變調(diào)控,細(xì)胞周期進(jìn)程的檢控,DNA復(fù)制的損傷檢測及修復(fù),同源重組和細(xì)胞的內(nèi)吞、程序性死亡、生長、分化和凋亡,以及細(xì)胞物質(zhì)代謝等重要的信號(hào)通路和生物學(xué)過程。這些結(jié)果提示lncRNA可以作為犏牛雄性不育的重點(diǎn)研究方向。
組蛋白甲基化是發(fā)生在精氨酸和賴氨酸上的共價(jià)修飾,是影響基因活性的一種表觀遺傳機(jī)制,其功能主要體現(xiàn)在異染色質(zhì)形成、基因印記、X染色體失活和轉(zhuǎn)錄調(diào)控等方面[81]。它由組蛋白甲基轉(zhuǎn)移酶(histone methyltransferase, HMT)調(diào)節(jié),可在精氨酸和賴氨酸殘基中添加或移除甲基[82,83],所以組蛋白賴氨酸甲基化修飾與基因的活化或抑制有關(guān)。通常認(rèn)為,組蛋白H3K4﹑H3K36和H3K79的甲基化與轉(zhuǎn)錄活化基因有關(guān),而H3K9﹑H3K27和H4K20的甲基化抑制基因表達(dá)[84~86]。例如MLL5/KMT2E (lysine methyltransferase 2E)催化組蛋白H3K4二甲基化(H3K4me2),是形成頂體所必須的組蛋白甲基轉(zhuǎn)移酶,基因敲除的小鼠是不育的[87]。而H3K9的去甲基化在減數(shù)分裂末期對(duì)于精子發(fā)生的完成至關(guān)重要,否則會(huì)抑制魚精蛋白1 (protamine 1, PRM1)和過渡性蛋白1 (transition protein 1, TNP1)表達(dá),進(jìn)而導(dǎo)致染色質(zhì)凝集和不育[88]。由此可見,組蛋白甲基轉(zhuǎn)移酶在精子發(fā)生中發(fā)揮著重要作用。犏牛支持細(xì)胞中組蛋白H3K4三甲基化(H3K4me3)缺失,H3K27me3和H4K20me3顯著富集(圖1),H3K4me3、H3K9me1、H3K9me3和H4K20me3在犏牛精母細(xì)胞減數(shù)分裂染色體中的水平和定位存在顯著差異,這些結(jié)果提示了組蛋白甲基化在精子發(fā)生和犏牛雄性不育中的潛在作用[89]。
近年來分子生物學(xué)興起,特別是組學(xué)技術(shù)的發(fā)展,可以從全基因組水平分析基因表達(dá)、組蛋白甲基化、DNA甲基化和非編碼RNA等與犏牛雄性不育的關(guān)系,為理解犏牛雄性不育的分子機(jī)理提供了新的角度與見解。但要闡述犏牛雄性不育的分子機(jī)制,以下幾個(gè)方面需要引起特別注意:(1)由于睪丸組織細(xì)胞異質(zhì)性和精子發(fā)生的動(dòng)態(tài)與連續(xù)性,基于睪丸組織的組學(xué)研究難以明確具體發(fā)生紊亂的細(xì)胞類型及發(fā)育階段;(2)由于精子發(fā)生細(xì)胞無法建立體外培養(yǎng)體系,對(duì)候選基因的功能驗(yàn)證需要借助小鼠敲除/敲入體系;(3)前期研究主要關(guān)注生精相關(guān)細(xì)胞的表達(dá)調(diào)控關(guān)系,忽略了支持細(xì)胞等睪丸微環(huán)境對(duì)精子發(fā)生的調(diào)控作用[64,89];(4)各種表觀遺傳因素表現(xiàn)出細(xì)胞類型特異性和生精階段特異性的表達(dá)調(diào)控特性,闡述不同表觀遺傳因素的動(dòng)態(tài)調(diào)控網(wǎng)絡(luò)是今后一個(gè)主要方向,如piRNAs主要在哺乳動(dòng)物粗線期精母細(xì)胞表達(dá)[29,58],miRNA參與調(diào)控支持細(xì)胞和精原細(xì)胞[64,69]。
綜上所述,表觀遺傳調(diào)控在犏牛雄性不育過程中起到極為關(guān)鍵的作用。今后研究可重點(diǎn)關(guān)注犏牛睪丸支持細(xì)胞和粗線期以前階段生精細(xì)胞,DNA甲基化、非編碼RNA和組蛋白甲基化等表觀遺傳角度是研究犏牛雄性不育的良好切入點(diǎn)。
[1] Jin YC, Yan ZX, Li SS, Liu LJ. The research progress of Dzo male sterility in China., 2017, 47(3): 41–44.靳義超, 閆忠心, 李升升, 劉連杰. 我國犏牛雄性不育的研究進(jìn)展. 青海畜牧獸醫(yī)雜志, 2017, 47(3): 41–44.
[2] An DK, Xie RQ, Zhou ML. The research progress of male infertility Dzo., 2016, (1): 46–48.安德科, 謝榮清, 周明亮. 雄性犏牛不育的研究進(jìn)展. 黑龍江畜牧獸醫(yī), 2016, (1): 46–48.
[3] Rajender S, Avery K, Agarwal A. Epigenetics, sperma-togenesis and male infertility., 2011, 727(3): 62–71.
[4] Zhang GW, Wu YH, Luo ZG, Guan JQ, Wang L, Luo XL, Zuo FY. Comparison of Y-chromosome-linked TSPY, TSPY2, and PRAMEY genes in Taurus cattle, yaks, and interspecific hybrid bulls., 2019, 102(7): 6263–6275.
[5] De Vries JWA, Hoffer MJV, Repping S, Hoovers JMN, Leschot NJ, van der Veen F. Reduced copy number of DAZ genes in subfertile and infertile men., 2002, 77(1): 68–75.
[6] Fu Y, Wei YP, Meng R, Wu KX, Chen SM, Zhang LC, Wang XZ. Establishment of real-time fluorescence quantitative PCR method for detection of Dazl gene in testes of yellow cattle, yak and Dzo., 2013, 22(1): 12–18.付永, 魏雅萍, 孟茹, 吳克選, 陳生梅, 張立成, 王謝忠. 黃牛、牦牛和犏牛睪丸組織Dazl基因?qū)崟r(shí)熒光定量PCR檢測方法的建立. 西北農(nóng)業(yè)學(xué)報(bào), 2013, 22(1): 12–18.
[7] Ruggiu M, Speed R, Taggart M, Mckay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis., 1997, 389(6646): 73–77.
[8] Fu Y, Wei YP, Chen SM. Expression level of Boule gene mRNA in testes of yellow cattle, yak and Dzo., 2013, 49(1): 10–13.付永, 魏雅萍, 陳生梅. 黃牛、牦牛和犏牛睪丸組織中Boule基因mRNA表達(dá)水平. 中國畜牧雜志, 2013, 49(1): 10–13.
[9] Qu XG. Study on the relationship between synaptonemal complex related genes and male sterility in Dzo [Dissertation]., 2008.屈旭光. 聯(lián)會(huì)復(fù)合體相關(guān)基因與犏牛雄性不育關(guān)系的研究[學(xué)位論文]. 南京農(nóng)業(yè)大學(xué), 2008.
[10] Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis., 2006, 173(4): 497–507.
[11] Luo H, Jia C, Qu XG, Zhao XB, Zhong JC, Xie Z, Li QF. Cloning of b-Sycp2 gene and expression level of mRNA in testis of yellow cattle, yak and Dzo., 2013, 46(2): 367–375.駱驊, 賈超, 屈旭光, 趙興波, 鐘金城, 謝莊, 李齊發(fā). 黃牛、牦牛和犏牛b-Sycp2基因的克隆與睪丸組織mRNA的表達(dá)水平. 中國農(nóng)業(yè)科學(xué), 2013, 46(2): 367– 375.
[12] Wang S, Pan Z, Zhang Q, Xie Z, Liu H, Li Q. Differential mRNA expression and promoter methylation status of SYCP3 gene in testes of yaks and cattle-yaks., 2012, 47(3): 455–462.
[13] Li BJ, Luo H, Qu XG, Pan ZX, Xie Z, Liu HL, Li QF. Analysis of expression characteristics of synaptonemal complex protein b-FKBP6 gene in yak and Dzo., 2013, 36(5): 129–132.李伯江, 駱驊, 屈旭光, 潘增祥, 謝莊, 劉紅林, 李齊發(fā). 牦牛與犏牛聯(lián)會(huì)復(fù)合體蛋白b-FKBP6基因的表達(dá)特征分析. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 36(5): 129–132.
[14] Gustafson EA, Yajima M, Juliano CE, Wessel GM. Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis., 2011, 349(2): 440–450.
[15] Zhou Y, Luo H, Li BJ, Jia C, Xie Z, Zhao XB, Zhong JC, Li QF. mRNA expression level and promoter methylation of DDX4 gene in testes of yak and cattle-yak., 2013, 46(3): 630–638.周陽, 駱驊, 李伯江, 賈超, 謝莊, 趙興波, 鐘金城, 李齊發(fā). 牦牛和犏牛睪丸組織DDX4基因mRNA表達(dá)水平與啟動(dòng)子區(qū)甲基化. 中國農(nóng)業(yè)科學(xué), 2013, 46(3): 630– 638.
[16] Wu Y, Zhang WX, Zuo F, Zhang GW. Comparison of mRNA expression from Y-chromosome X-degenerate region genes in taurine cattle, yaks and interspecific hybrid bulls., 2019, 50(6): 740–743.
[17] Dai LS. Regulation of Testis-specific miRNA-469 by GRTH/DDX25 controls male germ cells development [Dissertation]., 2011.戴立勝. GRTH/DDX25通過調(diào)節(jié)睪丸特異miRNA-469控制雄性生殖細(xì)胞的發(fā)育[學(xué)位論文]. 吉林大學(xué), 2011.
[18] Zhang SY, Chai ZX, Peng YL, Zhong JC. Sequencing and expression of DDX25/GRTH mRNA in Yak and Cattle-yak testis., 2015, 24(10): 1–9.張思源, 柴志欣, 彭婭林, 鐘金城. 牦牛和犏牛DDX25/ GRTH基因序列及其在睪丸組織的表達(dá)水平. 西北農(nóng)業(yè)學(xué)報(bào), 2015, 24(10): 1–9.
[19] Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair., 2003, 22(37): 5792–5812.
[20] Li X, Li QF, Zhao XB, Xu HT, Gu Y, Zhu X, Xie Z, Liu HL. Sequence analysis and study on the expression level of Dmcl mRNA in yak and cattle-yak testis., 2010, 43(15): 3221–3229.李賢, 李齊發(fā), 趙興波, 徐洪濤, 顧垚, 朱翔, 謝莊, 劉紅林. 牦牛和犏牛Dmc1基因序列分析及睪丸組織轉(zhuǎn)錄水平研究. 中國農(nóng)業(yè)科學(xué), 2010, 43(15): 3221–3229.
[21] Luo H. Expression, cloning and promoter methylation analysis of meiotic homologous recombinant genes in testes of yellow cattle and Dzo [Dissertation]., 2013.駱驊. 黃牛和犏牛睪丸組織中減數(shù)分裂同源重組基因表達(dá)、克隆與啟動(dòng)子區(qū)甲基化分析[學(xué)位論文]. 南京農(nóng)業(yè)大學(xué), 2013.
[22] Zeng Q, Huang L, Jin SY, Lin YQ, Zheng YC. Study on the difference of Msh4 gene mRNA expression in testes of yak and Dzo., 2013, (6): 62–64, 191–192.曾琴, 黃林, 金素鈺, 林亞秋, 鄭玉才. 牦牛和犏牛睪丸組織Msh4基因mRNA表達(dá)差異的研究. 黑龍江畜牧獸醫(yī), 2013, (6): 62–64, 191–192.
[23] Wu YH. Analysis of Y chromosome gene expression patterns and genome-wide DNA methylation differences in cattle, yak and yattle [Dissertation]., 2019.吳雨徽. 普通牛、牦牛和犏牛Y染色體基因表達(dá)模式及全基因組DNA甲基化差異分析[學(xué)位論文]. 西南大學(xué), 2019.
[24] Giachini C, Nuti F, Turner DJ, Laface I, Xue YL, Daguin F, Forti G, Tyler-Smith C, Krausz C. TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages., 2009, 94(10): 4016–4022.
[25] Zhang GW, Guan JQ, Luo ZG, Zhang WX, Wang L, Luo XL, Zuo FY. A tremendous expansion of TSPY copy number in crossbred bulls (Bos taurus x Bos grunniens)., 2016, 94(4): 1398–1407.
[26] Wei YP, Fu Y, Wu KX, Chen SM. Boule Gene Evolution Analysis in Cattle,Yak and Cattle-yak Testis Tissue., 2012, 22(4): 53–55.魏雅萍, 付永, 吳克選, 陳生梅. 黃牛、牦牛和犏牛睪丸組織中Boule基因片段進(jìn)化分析. 生物技術(shù), 2012, 22(4): 53–55.
[27] Yao W, Li YX, Li BJ, Luo H, Xu HT, Pan ZX, Xie Z, Li QF. Epigenetic regulation of bovine spermatogenic cell- specific gene boule., 2015, 10(6): e0128250.
[28] Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis- specific gene FKBP6 in testes of yak and cattle-yak hybrids., 2016, 51(6): 1030–1038.
[29] Zhang GW, Wang L, Chen HY, Guan JQ, Wu YH, Zhao JJ, Luo ZG, Huang WM, Zuo FY. Promoter hypermethylation of PIWI/piRNA pathway genes associated with diminished pachytene piRNA production in bovine hybrid male sterility., 2020: 15(9): 914–931.
[30] Yue XP, Chang TC, DeJarnette JM, Marshall CE, Lei CZ, Liu WS. Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires., 2013, 96(12): 8024–8034.
[31] Zhang L, Chen ZH, Zhong JC, Jiang XO, Li N. Cloning and sequence analysis of TSPY gene in yak and cattle-yak., 2013, 34(2): 32–37.張利亞, 陳智華, 鐘金城, 姜雪鷗, 李娜. 牦牛及雜種后代犏牛的TSPY基因克隆分析. 家畜生態(tài)學(xué)報(bào), 2013, 34(2): 32–37.
[32] Pan ZX, Liu ZS, Li YX, Yu SL, Li MG, Xie Z, Li QF. Difference of SNRPN methylation status and its mRNA expression in testes between cattle-yaks and their parents., 2010, 43(22): 4709–4716.潘增祥, 劉振山, 李隱俠, 于莎莉, 李明桂, 謝莊, 李齊發(fā). 犏牛及其親本睪丸組織中印記基因SNRPN DMR甲基化與mRNA表達(dá)差異研究. 中國農(nóng)業(yè)科學(xué), 2010, 43(22): 4709–4716.
[33] Liu ZS. The expression activity and DNA methylation modification of four genes (IGF2, H19, SNRPN and DAZL) of Dzo and its parents were analyzed [Dissertation]., 2008.劉振山. 犏牛及其親本IGF2、H19、SNRPN和DAZL等四個(gè)基因表達(dá)活性及其DNA甲基化修飾分析[學(xué)位論文]. 南京農(nóng)業(yè)大學(xué), 2008.
[34] Li MG, Liu ZS, Pan ZX, Luo H, Xie Z, Li QF. The mRNA expression and methylation status in imprinting control region of H19 gene between cattle-yak and their parents., 2012, 11(10): 1691–1699.
[35] Dong LY, Li QF, Qu XG, Li YX, Li XF, Xu HT, Xie Z. Expression levels of Cdc2 and Cdc25A mRNA in cattle, yak, and cattle-yak testis., 2009, 31(5): 495–499.董麗艷, 李齊發(fā), 屈旭光, 李隱俠, 李新福, 徐洪濤, 謝莊. 黃牛、牦牛和犏牛睪丸組織中Cdc2、Cdc25A基因mRNA表達(dá)水平. 遺傳, 2009, 31(5): 495–499.
[36] Russell S, Patel M, Gilchrist G, Stalker L, Gillis D, Rosenkranz D, Lamarre J. Bovine piRNA-like RNAs are associated with both transposable elements and mRNAs., 2017, 153(3): 305–318.
[37] Zeng XX, Liu ZN, Yang Q, Song QQ, Zhong JC, Ji QM, Ma ZJ. Self-renewal and differentiation regulation of spermatogonial stem cells in yak and Dzo. In: The Ninth National Congress and academic Symposium of the Chinese Society of Genetics. Haerbin, China, 2013.曾賢彬, 劉仲娜, 楊琴, 宋喬喬, 鐘金城, 姬秋梅, 馬志杰. 牦牛和犏牛精原干細(xì)胞的自我更新與分化調(diào)控. 見:中國遺傳學(xué)會(huì)第九次全國會(huì)員代表大會(huì)暨學(xué)術(shù)研討會(huì). 中國哈爾濱, 2013,.
[38] Ma XQ. Study on hybrid sterile gene Prdm9 in yak [Dissertation]., 2014.馬曉琴. 牦牛雜交不育基因Prdm9的研究[學(xué)位論文]. 西南民族大學(xué), 2014.
[39] Yan P, Xiang L, Guo X, Bao PJ, Jin S, Wu XY. The low expression of Dmrt7 is associated with spermatogenic arrest in cattle-yak., 2014, 41(11): 7255– 7263.
[40] Lei JW, Huang L, Jin SY, Zheng YC. Comparison of mRNA levels of ERK1, ERK2 and P38 genes in testes of yaks and male sterile Dzo., 2016, 35(5): 666–671.雷杰雯, 黃林, 金素鈺, 鄭玉才. 牦牛和雄性不育犏牛睪丸ERK1、ERK2、P38基因mRNA水平的比較.四川動(dòng)物, 2016, 35(5): 666–671.
[41] Stewart KR, Veselovska L, Kelsey G. Establishment and functions of DNA methylation in the germline., 2016, 8(10): 1399–1413.
[42] Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility., 2005, 308(5727): 1466–1469.
[43] Bie BB, Wang Y, Li L, Fang H, Liu LB, Sun J. Noncoding RNAs: Potential players in the self-renewal of mammalian spermatogonial stem cells., 2018, 85(8–9): 720–728.
[44] Zeng Y, Chen T. DNA Methylation Reprogramming during Mammalian Development., 2019, 10(4): 257.
[45] Cui XR, Jing X, Wu XQ, Yan MQ, Li Q, Shen Y, Wang ZQ. DNA methylation in spermatogenesis and male infertility., 2016, 12(4): 1973–1979.
[46] Wosnitzer M, Goldstein M, Hardy MP. Review of Azoospermia., 2014, 4: e28218.
[47] Lee J, Shinohara T. Epigenetic modifications and self- renewal regulation of mouse germline stem cells., 2011, 21(8): 1164–1171.
[48] Gu Y, Li QF, Pan ZX, Li MG, Luo H, Xie Z. Molecular cloning, gene expression and methylation status analysis of PIWIL1 in cattle-yaks and the parental generation., 2013, 140(3–4): 131–137.
[49] Liu ZS, Li QF, Pan ZX, Qu XG, Zhang CX, Xie Z. Comparative analysis on mRNA expression level and methylation status of DAZL gene between cattle-yaks and their parents., 2011, 126(3–4): 258–264.
[50] Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis- specific gene FKBP6 in testes of yak and cattle-yak hybrids., 2016, 51(6): 1030–1038.
[51] Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions., 2019, 20(2): 89–108.
[52] Yuan ZH, Zhao YM. The regulatory functions of piRNA/ PIWI in spermatogenesis., 2017, 39(8): 683–691.袁志恒, 趙艷梅. piRNA/PIWI功能調(diào)控與精子發(fā)生. 遺傳, 2017, 39(8): 683–691.
[53] Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions., 2015, 84: 405–433.
[54] Liu QP, AN N, Cen S, LI XY. Molecular mechanisms of genetic transposition inhibition by piRNA., 2008, 40(6): 445–450.劉啟鵬, 安尼, 岑山, 李曉宇. piRNA抑制基因轉(zhuǎn)座的分子機(jī)制. 遺傳, 2018, 40(6): 445–450.
[55] Li XZ, Roy CK, Dong XJ, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng ZP, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes., 2013, 50(1): 67–81.
[56] Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju JY, Sheridan R, Sander C, Zavolan M, Tuschl T. A novel class of small RNAs bind to MILI protein in mouse testes., 2006, 442(7099): 203–207.
[57] Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice., 2008, 31(6): 785– 799.
[58] Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins., 2006, 442(7099): 199–202.
[59] Carmell MA, Girard A, Van De Kant HJG, Bourchis D, Bestor TH, De Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline., 2007, 12(4): 503–514.
[60] Weick EM, Miska EA. piRNAs: from biogenesis to function., 2014, 141(18): 3458–3471.
[61] Kawaoka S, Izumi N, Katsuma S, Tomari Y. 3' end formation of PIWI-interacting RNAs., 2011, 43(6): 1015–1022.
[62] Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, Bergmann M, Goodnow CC, Ormandy CJ, Wong L, Mann J, Scott HS, Jamsai D, Adelson DL, O'bryan MK. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse., 2015, 11(10): e1005620.
[63] Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action., 2009, 10(2): 141–148.
[64] Xia MM, Shen XY, Niu CM, Xia J, Sun HY, Zheng Y. MicroRNA regulates sertoli cell proliferation and adhesion., 2008, 40(9): 724–732.夏蒙蒙, 申雪沂, 牛長敏, 夏靜, 孫紅亞, 鄭英. MicroRNA參與調(diào)控睪丸支持細(xì)胞的增殖與粘附功能. 遺傳, 2018, 40(9): 724–732.
[65] Rajender S, Meador C, Agarwal A. Small RNA in spermatogenesis and male infertility., 2012, 4: 1266–1274.
[66] He ZP, Jiang JJ, Kokkinaki M, Tang L, Zeng WX, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional leveltargeting STAT3 and Ccnd1., 2013, 31(10): 2205–2217.
[67] Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells., 2013, 140(2): 280–290.
[68] Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I. The expression profile of microRNAs in mouse embryos., 2006, 34(6): 1765–1771.
[69] Xu CF. The identification and functional analysis of microRNAs in the spermatogenic arrest of cattleyak [Dissertation]., 2019.徐傳飛. 犏牛精子發(fā)生阻滯相關(guān)microRNA鑒定與功能分析[學(xué)位論文]. 西南科技大學(xué), 2019.
[70] Liao K. Comparative analysis of microRNA in yak, ordinary cattle and catttle-yak testis tissue [Dissertation]., 2016.廖珂. 牦牛、普通牛和犏牛睪丸組織microRNA的比較研究[學(xué)位論文]. 西南民族大學(xué), 2016.
[71] Xu CF, Shah MA, Mipam T, Wu SX, Yi CP, Luo H, Yuan M, Chai ZX, Zhao WS, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes., 2020, 16(2): 239–250.
[72] Zhang CW, Gao LZ, Xu EY. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development., 2016, 59: 110–117.
[73] Hung T, Wang YL, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langer?d A, B?rresen-Dale AL, Kim SK, Van De Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY. Extensive and coordinated transcription of noncoding RNAs within cell cycle promoters., 2011, 43(7): 621–629.
[74] Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D'alo F, Melnick A, Leone G, Ebralidze KK, Pradhan S, Rinn JL, Tenen DG. DNMT1-interacting RNAs block gene-specific DNA methylation., 2013, 503(7476): 371–376.
[75] Berghoff EG, Clark MF, Chen S, Cajigas I, Leib DE, Kohtz JD. Evf2 (Dlx6as) lncRNA regulates ultraconserved enhancer methylation and the differential transcriptional control of adjacent genes., 2013, 140(21): 4407–4416.
[76] Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding HM, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment., 2013, 152(3): 570–583.
[77] Ni MJ, Hu ZH, Liu Q, Liu MF, Lu MH, Zhang JS, Zhang L, Zhang YL. Identification and characterization of a novel non-coding RNA involved in sperm maturation., 2011, 6(10): e26053.
[78] Lei QJ, Pan Q, Li N, Zhou Z, Zhang JQ, He X, Peng S, Li GP, Sidhu K, Chen SL, Hua JL. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway., 2018, 234(1): 915–926.
[79] A GYD, Xiong XR, Wang Y, Yang XY, Han J, Wang B, Li J. Identification and analysis of long non-coding RNA associated with cattle-yak male infertility., 2019, 50(3): 551–561.阿果約達(dá), 熊顯榮, 王艷, 楊顯英, 韓杰, 王斌, 李鍵. 犏牛雄性不育相關(guān)lncRNA的鑒定與分析. 畜牧獸醫(yī)學(xué)報(bào), 2019, 50(3): 551–561.
[80] Wu SX. Identification and functional analysis of lncRNA related to spermatogenesis block in Dzo [Dissertation]., 2019.伍仕鑫. 犏牛精子發(fā)生阻滯相關(guān)lncRNA的鑒定與功能分析[學(xué)位論文]. 西南科技大學(xué), 2019.
[81] Ge SQ, Li JZ, Zhang XJ. Methylation and acetylation of histones during spermatogenesis., 2011, 33(9): 939–946.葛少欽, 李建忠, 張曉靜. 精子發(fā)生過程中組蛋白甲基化和乙酰化. 遺傳, 2011, 33(9): 939–946.
[82] Fischle W, Wang YM, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains., 2003, 17(15): 1870–1881.
[83] Aletta JM, Cimato TR, Ettinger MJ. Protein methylation: a signal event in post-translational modification., 1998, 23(3): 89–91.
[84] Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome., 2008, 31(6): 537–545.
[85] Werner M, Ruthenburg AJ. The united states of histone ubiquitylation and methylation., 2011, 43(1): 5–7.
[86] Niu YX, Bai JT, Zheng SZ. The regulation and function of histone methylation., 2018, 61(6): 347–357.
[87] Yap DB, Walker DC, Prentice LM, McKinney S, Turashvili G, Mooslehner-Allen K, de Algara TR, Fee J, de Tassigny Xd, Colledge WH, Aparicio S. Mll5 is required for normal spermatogenesis., 2011, 6(11): e27127.
[88] Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis., 2007, 450(7166): 119–123.
[89] Li YC, Wang GW, Xu SR, Zhang XN, Yang QE. The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid., 2020, 144: 164–173.
Progress on meiotic gene expression and epigenetic regulation of male sterility in Dzo cattle
Huiyou Chen, Jianmin Zhang, Baisen Li, Yonglin Deng, Gongwei Zhang
Interspecific hybrid male sterility is a common occurrence in nature and plays an important role in species reproductive isolation. Dzo (cattle-yak), the offspring of interspecific cross between domestic yak () and cattle (), is a unique animal model for investigating interspecific hybrid male sterility. Dzo females are completely fertile while the males are sterile. In recent years, molecular studies have demonstrated that the expressions of genes were dysregulated during meiosis in Dzo testis, as compared to those in cattle or yak. Other studies have revealed that epigenetic factors/events, such as DNA methylation, histone modification and non-coding RNA, are also involved in spermatogenesis. This review summarizes the dysregulation of gene expression, DNA methylation, microRNA (miRNA), PIWI-interacting RNA (piRNA), long non-coding RNA (lncRNA), and histone methylation modification during meiosis in Dzo testis. These results highlighted the potential roles of genetic and epigenetic regulations of meiosis in Dzo testis, thereby providing a more detailed understanding on the molecular mechanisms of interspecific hybrid male sterility.
Dzo; male sterility; epigenetic; gene expression
2020-06-15;
2020-07-14
國家自然科學(xué)基金項(xiàng)目(編號(hào):31802046)和中央高?;究蒲袠I(yè)務(wù)費(fèi)(編號(hào):XDJK2020D011,XDJK2019RC001)資助[Supported by the National Natural Science Foundation of China (No. 31802046) and the Fundamental Research Funds for the Central Universities (Nos. XDJK2020D011, XDJK2019RC001)]
陳會(huì)友,在讀碩士研究生,專業(yè)方向:動(dòng)物遺傳育種。E-mail: 17602359737@163.com
張龔煒,博士,副教授,碩士生導(dǎo)師,研究方向:動(dòng)物遺傳育種。E-mail: zgw-vip@163.com
10.16288/j.yczz.20-176
https://kns.cnki.net/kcms/detail/11.1913.R.20200929.1343.001.html
URI: 2020/9/30 13:13:34
(責(zé)任編委: 趙要風(fēng))