徐曉丹 馬志影 張杰 鄭偉
摘要:葉片是植物沉降空氣顆粒物(PM)的主要器官,而葉表PM的雨水洗脫被認(rèn)為是葉片對空氣PM的凈沉降。多毛的葉面具有較強(qiáng)的捕獲空氣PM的能力,但可能并不利于葉表PM的雨水洗脫。研究通過采集美國華盛頓特區(qū)憲法大道西北段步道兩側(cè)的6種園林植物葉片,利用掃描電鏡技術(shù)(SEM)觀測葉表微觀形態(tài),并通過ImageJ和Adobe Photoshop軟件統(tǒng)計(jì)降雨前后的PM數(shù)量,比較雨水對不同表面結(jié)構(gòu)的葉表PM洗脫率。結(jié)果表明:1)葉面毛狀體長而繁雜的皺葉莢蒾葉面PM洗脫率(19.26%)顯著低于葉面無毛的紫薇、美國冬青和荷花玉蘭3種光葉植物(>60%);2)毛狀體短、疏、貼伏于葉面的美國榆樹葉面PM洗脫率(25.57%)也顯著低于這3種光葉植物;3)毛狀體短、疏、直立的迎春葉面PM洗脫率(78.00%)與這3種光葉植物無顯著差異;4)除皺葉莢蒾外,其他5種植物葉表粒徑10~100 μm的大顆粒比小顆粒更容易從葉表洗脫。基于研究結(jié)果,建議在城市綠化中增加光葉、常綠的園林植物比例;在條件允許的前提下,于旱季定期對樹體適量噴水,以提升園林植物對空氣PM的年凈沉降量。
關(guān)鍵詞:植物葉表毛狀體,PM2.5,PM10~100,降塵,洗脫率,光滑葉片
DOI: 10.12169/zgcsly.2020.10.31.0001
Abstract:?Leaves are the main organs of plants to settle airborne particulate matter (PM), and the rain water elution of PM on leaf surface is considered as the net deposition of PM by leaves. The hairy leaves are always considered to play a positive effect in capturing PM, but it may not be conducive to the wash-off of leaf retained PM by rainfall. Therefore, this study collects the leaves of 6 landscape plants on the footpath of the Northwest Constitution Avenue in Washington, D.C., and observes the microscopic morphology of the leaves using scanning electron microscopy (SEM). The amount of PM before and after rainfall is counted using ImageJ and Adobe Photoshop software to compare the elution rates of PM on leaves with different surface structures. The results show that: 1) The elution rate of leaf retained PM of Viburnum rhytidophyllum (19.26%) with long and complicated trichomes on the adaxial leaf surface is significantly lower than those of smooth-leaved species of Lagerstroemia indica, Ilex opaca and Magnolia grandiflora (>60%); 2) The elution rate of leaf retained PM of Ulmus americana (25.57%) with short, sparse but appressed trichomes on the adaxial leaf surface is significantly lower than those of the above three smooth-leaved species; 3) The elution rate of leaf retained PM of Jasminum nudiflorum (78.00%) with short, sparse but erected trichomes on the adaxial leaf surface is not significantly different from those of the above three smooth-leaved species; and 4) Apart from V.?rhytidophyllum, the large particles with diameter of 10-100 μm on the adaxial leaf surface of the other five species are easier washed off than the small particles. Based on the above conclusions, we suggest that the proportion of smooth leaf and evergreen landscape plants could be increased for urban greening, and if the condition permits, water should be regularly sprayed on trees in dry season, which will be conducive to enhancing the annual net-deposition amount of airborne PM with landscape plants.
Keywords: leaf-surface trichome, PM2.5, PM10~100, dust fall, elution rate, smooth leaf
空氣顆粒物(PM,0.1~100.0 μm)造成的城市污染是世界上最緊迫的環(huán)境問題之一[1],尤其是在發(fā)展中國家[2]。研究表明,空氣動力學(xué)直徑小于10 μm的PM10,其50%可進(jìn)入上呼吸道[3],進(jìn)而引起心血管和呼吸系統(tǒng)方面的疾病[4]。據(jù)報(bào)道,空氣污染每年導(dǎo)致100多萬人過早死亡和100萬胎兒產(chǎn)前死亡[5]。
園林植物可以捕獲、消減空氣中的PM,尤其是通過葉片滯留空氣PM,從而有效改善空氣質(zhì)量[6-10]。然而,植物捕捉到的空氣PM大都只是暫時(shí)滯留在葉片表面上,此后大部分(76%)會被風(fēng)吹到空氣中,再次成為空氣污染物;少部分會被雨水洗脫至土壤(24%),或在葉片脫落時(shí)沉積到地面[11-14]。據(jù)報(bào)道,空氣中的PM通常源自地面活動產(chǎn)生的粉塵、地下化石燃料的排放[2]。葉表PM沉降到地面才是其最好的歸宿,才能更加有效地實(shí)現(xiàn)PM良性循環(huán),是植物葉片對空氣PM的凈沉降[15]。葉表PM沉降到地面主要通過雨水洗脫和落葉來實(shí)現(xiàn)。然而,落葉往往一年一次,而且落葉表面的大部分PM會被風(fēng)重懸,再次成為空氣PM??梢?,葉面PM通過落葉事件產(chǎn)生的PM凈沉降可能非常有限。相反,葉表PM的雨水洗脫在一年之中則是一個(gè)非常頻繁的事件,盡管單次降雨(>12.5 mm)最多只能洗脫51%~70%的葉面PM[14],但年降雨事件將會產(chǎn)生巨大的凈沉降總量。綜上,植物葉片對空氣PM的凈沉降基本可以通過葉面PM的雨水洗脫來實(shí)現(xiàn)[15]。因此,研究植物葉面PM的雨水洗脫更有意義。
研究表明,葉面PM的雨水洗脫與植物類型密切相關(guān)[14]。例如,葉表具有蠟質(zhì)的洋常春藤(Hedera helix)比光葉的心葉巖白菜(Bergenia cordifolia)的葉面PM洗脫率低[16]。葉表具有毛狀體的葉片也可能比光葉具有更低的葉面PM洗脫率,但目前葉表毛狀體對葉面PM的洗脫影響尚不明確,而這對于降塵綠地植物種類的優(yōu)選至關(guān)重要。為此,本研究探索植物葉表毛狀體在自然降雨過程中對葉面PM洗脫的影響,以期為降塵植物的優(yōu)選提供新的參考數(shù)據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
實(shí)驗(yàn)材料的采集地點(diǎn)位于美國華盛頓特區(qū)憲法大道西北段,采集北側(cè)步行道兩旁位于地面(1.5±0.1)m處樹冠外圍枝條上的葉片,采集的物種包括栽植于地面的荷花玉蘭(Magnolia grandiflora)、紫薇(Lagerstroemia indica)、美國榆樹(Ulmus americana)、美國冬青(Ilex opaca)、皺葉莢蒾(Viburnum rhytidophyllum)和栽植于花臺中的迎春(Jasminum nudiflorum)共6種。采集時(shí)間選擇在2017年9月14日和15日(分別采集雨前、雨后的樣本,12 h內(nèi)降雨量35.6 mm,雨前7天內(nèi)沒有降雨和人工灌溉)。樣本采集時(shí),分別從東、西、南、北4個(gè)方向外圍樹冠能接觸降雨枝條處輕采葉片3片,設(shè)置4個(gè)重復(fù),樣本封存于標(biāo)本箱中,帶回實(shí)驗(yàn)室。
1.2SEM樣品制備、觀測及PM統(tǒng)計(jì)
一般來說,葉背面的PM洗脫可以忽略不計(jì)[17],因此僅觀測葉片正面的PM洗脫情況。首先,輕輕剪取約0.5~1.0 cm2的小塊葉片。其次,按照Wen和Nowicke(1999)[18]的方法,在美國Smithsonian研究所國家自然歷史博物館(NMNH)的SEM實(shí)驗(yàn)室干燥樣品并鍍金,厚度為16.6 μm。最后,在Philips XL-30掃描電子顯微鏡下進(jìn)行觀察、拍照,每個(gè)樣本拍攝至少10個(gè)不同的視野。
選擇ImageJ圖像處理軟件(National Institutes of Health, 1.8.0)對掃描電鏡圖像進(jìn)行二值化[19],以獲得葉片表面PM的投影圖像,再將投影圖像導(dǎo)入到Adobe Photoshop 7.0軟件中,選擇PM的投影面積,填充黑色。隨后,將處理過的圖像導(dǎo)入ImageJ進(jìn)行比例標(biāo)定,并調(diào)整灰度閾值,使PM的投影邊緣更加突出。最后,從結(jié)果窗口獲得PM的數(shù)目和直徑。
所獲數(shù)據(jù)采用SPSS 19.0進(jìn)行方差分析(ANOVA),平均值之間的差異用Duncan極差法進(jìn)行多重比較,置信區(qū)間為95%,顯著性水平為0.05。百分比表示的數(shù)據(jù)經(jīng)過反正弦變換后再進(jìn)行分析。
2 結(jié)果與分析
2.1 毛狀體不利于葉面PM的洗脫
毛狀體對降雨過程中葉面PM(直徑為0.2~98.6 μm)的洗脫有很大影響。在6種供試物種中(圖1、圖2),葉面多毛的樹種美國榆樹(圖1C、圖1D)和皺葉莢蒾(圖1E、圖1F),其葉面PM的洗脫率分別為25.57%和19.26%(表1);光葉樹種美國冬青(圖2A、圖2B)、荷花玉蘭(圖2C、圖2D)和紫薇(圖2E、圖2F)的葉面PM洗脫率分別高達(dá)為62.21%、66.52%和90.43%(表1)。由此可見,毛狀體不利于葉面PM的洗脫。這可能是因?yàn)槊珷铙w增加了葉片表面的張力,如皺葉莢蒾的毛狀體似乎形成了復(fù)雜的疏水結(jié)構(gòu),從而阻止雨水與PM的最有效接觸。另外,在降雨后,繁雜的毛狀體結(jié)構(gòu)還可能會滯留更多的雨滴直至其蒸發(fā)完畢,從而增加葉面PM的滯留[20]。
2.2 毛狀體長、繁雜不利于葉面PM的洗脫
皺葉莢蒾、美國榆樹和迎春的葉表均具有毛狀體,其中皺葉莢蒾的毛狀體長達(dá)200 μm,3~6個(gè)毛狀體從一個(gè)點(diǎn)呈放射狀延伸,在葉表的密度達(dá)24.45個(gè)/mm2(圖1E、圖1F),相互交錯(cuò)分布。長而繁雜的毛狀體容易形成多個(gè)疏水的保護(hù)空間,使滯留的PM難以被雨水洗脫掉,尤其是被困在毛狀體基部的PM10~100(圖1E、圖1F),最終呈現(xiàn)出最低的葉面PM洗脫率。與其相反,迎春(圖1A、圖1B)和美國榆樹(圖1C、圖1D)葉表的毛狀體較短(長約90 μm),密度也較低(<3.00個(gè)/mm2),葉面PM的洗脫率相對較高。因此,毛狀體長、繁雜的葉表不利于葉面PM的洗脫。此外,從表1可知,美國榆樹和迎春的葉表雖有相似的短而稀疏的毛狀體,但迎春(78.00%)的洗脫率卻顯著高于美國榆樹(25.57%),其原因可能在于美國榆樹的葉片具有眾多的溝槽,使其對PM尤其是小顆粒的洗脫產(chǎn)生了負(fù)面影響。
2.3 毛狀體與葉面的夾角大有利于PM的洗脫
迎春和美國榆樹葉表的毛狀體長度和密度雖然十分相似,但迎春的毛狀體較為直立(圖1A、圖1B),幾乎垂直于葉面,周圍的PM被雨水洗脫得較為干凈,其葉面PM的洗脫率顯著高于美國榆樹(表1)。而美國榆樹的毛狀體幾乎貼伏在葉片表面,雨水洗脫后,毛狀體周圍仍保留了大量的PM(圖1C、圖1D),尤其是PM2.5~10。因此,毛狀體與葉面的夾角越大,葉面滯留的PM更易被雨水洗脫。
2.4 大顆粒比小顆粒更易洗脫
對于不同粒徑的葉面PM(圖3),除皺葉莢蒾外,其他5種植物葉面的PM10~100(粒徑10.0~100.0μm)的洗脫率均高于PM2.5~10,這表明大顆粒比小顆粒更容易從葉面上被雨水洗脫,這與前人的報(bào)道類似[21-24]。葉表的溝槽(如美國榆樹)、蠟質(zhì)(如荷花玉蘭和美國冬青),以及疏而短的毛狀體可能更不利于小顆粒的洗脫,而對大顆粒的洗脫影響較小。
3 結(jié)論與討論
3.1 結(jié)論
本研究通過對自然降雨前后6種街道園林植物葉面PM的計(jì)數(shù)比較,結(jié)論如下:毛狀體長、密集、雜亂的葉表不利于葉面PM的洗脫;葉表毛狀體與葉面的夾角越小,越不利于葉面PM的洗脫;多毛葉片比無毛葉片具有較低的葉面PM洗脫率;葉表小顆粒的洗脫率低于大顆粒。研究結(jié)果為園林植物凈沉降空氣PM提供了新的理論基礎(chǔ)。
3.2 討論
理論上,只有加速空氣PM的沉降,才會減輕霧霾的發(fā)生,而植物對空氣PM的滯留還只是PM回歸土壤的第一步,后繼的葉面PM洗脫——“凈沉降”顯得更為重要。大量的研究表明,多毛的葉表對PM具有較好的滯留效果,但本研究卻發(fā)現(xiàn),多毛的葉表不利于PM的洗脫。因此,在滯塵植物的選擇上,到底應(yīng)該側(cè)重于葉面PM滯留量大的毛葉植物,還是葉面PM洗脫量高的光葉植物?基于本研究的結(jié)果,滯塵植物的選擇應(yīng)該更側(cè)重“年凈沉降量”較大的植物,即葉面的PM年滯留量大且洗脫率高的植物,這應(yīng)該是后期研究的重點(diǎn)。由于PM的形狀并不是理想的球形,本研究僅通過SEM計(jì)數(shù)方法難以計(jì)算單位葉面積的PM洗脫質(zhì)量。在6種被試園林植物中,紫薇不僅表現(xiàn)出最高的葉面PM洗脫率(90.43%),還呈現(xiàn)出最高的葉面PM滯留量(6 172.01 cm2),因此其單位葉面積的PM凈沉降量最大(5 581.34 cm2)。但是,紫薇是落葉樹種,落葉期間無法通過葉片實(shí)現(xiàn)降塵,因此紫薇葉片的PM年凈沉降量是不是最高,還需要開展周年實(shí)驗(yàn)進(jìn)一步探索。今后,如果能采用更為精準(zhǔn)的稱量方法[25-26],則可以測量出植物葉片對空氣PM的年凈沉降量,甚至有可能為植物葉片滯塵能力的統(tǒng)一評價(jià)提供標(biāo)準(zhǔn)。
實(shí)踐中,我國冬季由空氣PM引起的霧霾較為突出,其原因除了供暖排放增加外,可能還有:1)冬季降雨量少,導(dǎo)致PM洗脫事件減少;2)落葉植物在冬季落葉后,只有常綠植物可以滯留PM。因此,從“年凈沉降”的角度,建議根據(jù)單位綠地面積園林植物的葉片對空氣PM的年凈沉降總量優(yōu)選不同類型的降塵園林植物種類;在城市綠化中,應(yīng)優(yōu)先種植常綠樹種[27],并增加光葉、常綠的園林植物比例,以提升葉片對空氣PM的年凈沉降總量。此外,在條件允許的少雨季節(jié)(旱季),建議定期向滯留PM的樹體適量噴水,這也會增加植物對空氣中PM的年凈沉降量。與PM洗脫一樣,無毛的葉片可能更有利于其滯留的PM被風(fēng)重懸至空氣中。那么,在風(fēng)多雨少[28]的沙漠附近,是選擇葉片多毛的植物滯留更多的PM,還是選擇葉片無毛的植物提升PM的年凈沉降總量?這一問題還有待進(jìn)一步研究。
致謝:
本研究得到了國家留學(xué)基金和美國史密森學(xué)會國家自然歷史博物館(NMNH)的支持。感謝Jun Wen、A J Harris和Scott Whittaker(美國史密森學(xué)會)在SEM實(shí)驗(yàn)和數(shù)據(jù)分析方面給予的幫助。
參考文獻(xiàn)
[1]POPE C A,DOCKERY D W.Health effects of fine particulate air pollution:lines that connect [J].Journal of the Air and Waste Management Association,2006,56(10):1368-1380.
[2]HUANG R J,ZHANG Y L,BOZZETTI C,et al.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222.
[3]SCHWARZE P E,OVREVIK J,LG M,et al.Particulate matter properties and health effects:consistency of epidemiological and toxicological studies[J].Human & Experimental Toxicology,2006,25(10):559-579.
[4]MAHER B A,AHMED I A M,DAVISON B,et al.Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter[J].Environmental Scicence & Technology,2013,47(23):13737-13744.
[5]CURTIS L,REA W,SMITH-WILLIS P,et al.Adverse health effects of outdoor air pollutants[J].Environment International,2006,32(6):815-830.
[6]KIM S,LEE S,HWANG K,et al.Exploring sustainable street tree planting patterns to be resistant against fine particles (PM2.5)[J].Sustainability,2017,9(10):1709.
[7]于璐,王譽(yù)潔,孫豐賓,等.植物群落不同垂直高度對PM2.5濃度的影響[J].中國城市林業(yè),2019,17(1):1-5.
[8]SHI J N,ZHANG G,AN H L,et al.Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing,China[J].Atmospheric Pollution Research,2017,8(5):836-842.
[9]LIU Y J,YANG Z,ZHU M H,et al.Role of plant leaves in removing airborne dust and associated metals on Beijing roadsides[J].Aerosol and Air Quality Research,2017,17(10):2566-2584.
[10]LIU L,GUAN D S,PEART M R,et al.The dust retention capacities of urban vegetation:a case study of Guangzhou,South China[J].Environmental Science and Pollution Research,2013,20(9):6601-6610.
[11]BECKETT K P,F(xiàn)REER-SMITH P H,TAYLOR G.Particulate pollution capture by urban trees:effect of species and windspeed[J].Global Change Biology,2000,6(8):995-1003.
[12]OULD-DADA Z,BAGHINI N M.Resuspension of small particles from tree surfaces[J].Atmospheric Environment,2001,35(22):3799-3809.
[13]SCHAUBROECK T,DECKMYN G,NEIRYNCK J,et al.Multilayered modeling of particulate matter removal by a growing forest over time,from plant surface deposition to wash-off via rainfall[J].Environmental Science & Technology,2014,48(18):10785-10794.
[14]XU X W,ZHANG Z M,BAO L,et al.Influence of rainfall duration and intensity on particulate matter removal from plant leaves[J].Science of the Total Environment,2017,609(12):11-16.
[15]XU X D,XIA J J,GAO Y,et al.Additional focus on particulate matter wash-off events from leaves is required:A review of studies of urban plants used to reduce airborne particulate matter pollution[J].Urban Forestry & Urban Greening,2020,48(2):126559.
[16]WEERAKKODY U,DOVER J W,MITCHELL P,et al.The impact of rainfall in remobilising particulate matter accumulated on leaves of four evergreen species grown on a green screen and a living wall[J].Urban Forestry & Urban Greening,2018,35(10):21-31.
[17]POTTER C S,RAGSDALE H L.Dry deposition washoff from forest tree leaves by experimental acid rainfall[J].Atmospheric Environment,1991,25(2):341-349.
[18]WEN J,NOWICKE J W.Pollen ultrastructure of Panax(the ginseng genus,Araliaceae),an eastern Asian and eastern North American disjunct genus[J].American Journal of Botany,1999,86(11):1624-1636.
[19]YAN J L,LIN L,ZHOU W Q,et al.A novel approach for quantifying particulate matter distribution on leaf surface by combining SEM and object-based image analysis[J].Remote Sensing of Environment,2016,173(2):156-161.
[20]ZHANG X Y,LYU J Y,ZENG Y X,et al.Individual effects of trichomes and leaf morphology on PM2.5 dry deposition velocity:a variable-control approach using species from the same family or genus[J].Environmental Pollution,2021,272:116385.
[21]TERZAGHI E,WILD E,ZACCHELLO G,et al.Forest filter effect:role of leaves in capturing/releasing air particulate matter and its associated PAHs[J].Atmospheric Environment,2013,74(8):378-384.
[22]PRZYBYSZ A,SB A,HANSLIN H M,et al.Accumulation of particulate matter and trace elements on vegetation as affected by pollution level,rainfall and the passage of time[J].Science of the Total Environment,2014,481(5):360-369.
[23]WANG H X,SHI H,WANG Y H.Effects of weather,time,and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum[J].The Scientific World Journal,2015,2015(1):935-942.
[24]WEERAKKODY U,DOVER J W,MITCHELL P,et al.Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics[J].Science of the Total Environment,2018,635(4):1012-1024.
[25]劉金強(qiáng),曹治國,劉歡歡,等.基于超聲清洗的樹木葉面顆粒物粒徑分布與吸滯效率研究:以銀杏和油松為例[J].植物生態(tài)學(xué)報(bào),2016,40(8):798-809.
[26]劉同彥,紀(jì)媛,蔣春曉,等.基于洗脫稱量粒度分析的北京常見樹種樹葉滯納大氣顆粒物特性[J].林業(yè)科學(xué),2016,52(12):74-83.
[27]BLANUSA T,F(xiàn)ANTOZZI F,MONACI F,et al.Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments[J].Urban Forestry & Urban Greening,2015,14(4):1095-1101.
[28]阿麗亞·拜都熱拉,玉米提·哈力克,塔依爾江·艾山,等.新疆阿克蘇市綠化樹種滯塵能力及影響因素[J].中國沙漠,2015,35(2):322-329.