羅 凱 謝 琛 汪 錦 王 甜 何 舜 雍太文,* 楊文鈺
外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)套作大豆碳氮代謝和花莢脫落的影響
羅 凱1謝 琛1汪 錦1王 甜1何 舜2雍太文1,*楊文鈺1
1四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/ 農(nóng)業(yè)農(nóng)村部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室/ 四川省作物帶狀復(fù)合種植工程技術(shù)研究中心, 四川溫江 611130;2成都市種子管理站/成都市農(nóng)產(chǎn)品質(zhì)量安全中心, 四川青羊 610072
玉米–大豆帶狀套作模式下, 玉米蔭蔽會(huì)抑制大豆苗期生長(zhǎng)、減少花莢數(shù)、降低產(chǎn)量, 探究外源植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆開花結(jié)莢和產(chǎn)量的調(diào)控效應(yīng)對(duì)套作大豆生產(chǎn)具有重要意義。采用單因素隨機(jī)區(qū)組設(shè)計(jì)研究套作大豆初花期葉面噴施6-芐基腺嘌呤(6-Benzylaminopurine, 6-BA)、2-N,N-二乙氨基乙基己酸酯(diethyl aminoethyl hexanoate, DTA-6)、烯效唑(S3307)對(duì)花莢脫落、葉片碳氮代謝及產(chǎn)量形成的影響。結(jié)果表明, 外源調(diào)節(jié)劑會(huì)增強(qiáng)盛莢期和鼓粒期葉片蔗糖合成酶(sucrose synthetase, SS)、蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)及轉(zhuǎn)化酶(invertase, Inv)的酶活性; 提高始粒期莖、葉、莢果的可溶性糖含量, 促進(jìn)后期莖、葉中可溶性糖向莢果的轉(zhuǎn)移。外源調(diào)節(jié)劑會(huì)增加始莢期葉片碳、氮含量, 降低葉片C/N比值; 增加始粒期葉片碳含量, 減少氮含量, 提高葉片C/N比值。外源調(diào)節(jié)劑會(huì)增加大豆開花結(jié)莢數(shù), 降低落莢數(shù)、落莢率及花莢脫落率, 以DTA-6效果較好, 其處理下2年大豆單株有效莢數(shù)和產(chǎn)量顯著高于CK, 較CK分別增加25.4%、41.3%和32.9%、37.6%。套作大豆初花期葉面噴施6-BA、DTA-6、S3307提高葉片SPS、SS和Inv酶活性, 協(xié)調(diào)大豆各器官碳氮代謝動(dòng)態(tài)平衡, 促進(jìn)大豆開花結(jié)莢、減少大豆落莢, 顯著提高大豆的單株有效莢數(shù)與產(chǎn)量, 其中DTA-6的增產(chǎn)效果最好。
玉米–大豆帶狀套作; 花莢脫落; 植物生長(zhǎng)調(diào)節(jié)劑; 碳氮代謝; 產(chǎn)量
在大豆生產(chǎn)中, 環(huán)境因素和種植模式影響大豆花莢脫落率, 決定大豆產(chǎn)量構(gòu)成因素和產(chǎn)量的形成[1-2]; 過(guò)高的花莢脫落率降低大豆單株有效莢數(shù)和單株粒數(shù), 是限制大豆發(fā)揮產(chǎn)量潛力的主要因素[3]。研究表明, 大豆花莢的形成與脫落受植物內(nèi)源激素信號(hào)水平變化和同化物供應(yīng)有效性的協(xié)同調(diào)控[4-5]; 碳、氮代謝是植物體內(nèi)重要的代謝途徑, 調(diào)控不同時(shí)期的養(yǎng)分供應(yīng)水平, 決定作物生長(zhǎng)發(fā)育, 影響大豆花莢形成與脫落[6]。栽培措施的優(yōu)化和化控技術(shù)的應(yīng)用能促進(jìn)植株生長(zhǎng)、提高作物產(chǎn)量, 是發(fā)掘大豆產(chǎn)量潛力的重要途徑[7-9]。
調(diào)節(jié)劑能影響作物在不同生育時(shí)期的生長(zhǎng)發(fā)育, 協(xié)調(diào)不同器官間的養(yǎng)分分配狀況, 提高對(duì)環(huán)境的適應(yīng)性[10-12]。烯效唑(S3307)是一種能抑制赤霉素生物合成的高效植物生長(zhǎng)延緩劑[8]; 閆艷紅等[13]發(fā)現(xiàn), 葉面噴施S3307能通過(guò)改善大豆葉片碳氮代謝水平, 增加大豆的單株有效莢數(shù)與百粒重。2-N,N-二乙氨基乙基乙酸酯(diethyl aminoethyl hexanoate, DTA-6)作為一種新型的植物生長(zhǎng)調(diào)節(jié)劑, 可有效提高作物的品質(zhì)和產(chǎn)量, 已廣泛應(yīng)用于玉米、大豆、花生等作物[14-15]。6-芐基腺嘌呤(6-benzylaminopurine, 6-BA)通過(guò)促進(jìn)細(xì)胞分裂素的生物合成調(diào)節(jié)植物細(xì)胞的增殖和分化[16], 具有延緩葉片衰老和保綠等作用[17]。
玉米–大豆帶狀套作模式是我國(guó)西南地區(qū)的主推模式, 能提高復(fù)種指數(shù)和土地利用率, 實(shí)現(xiàn)對(duì)自然資源的充分利用[18]。套作大豆因苗期受玉米蔭蔽影響處于生長(zhǎng)劣勢(shì), 營(yíng)養(yǎng)生長(zhǎng)期間干物質(zhì)積累不足, 營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)之間的平衡被打破[19]; 養(yǎng)分供應(yīng)失衡加劇花、莢器官間養(yǎng)分競(jìng)爭(zhēng), 促使花敗育與莢脫落, 減少開花結(jié)莢數(shù)與單株有效莢數(shù), 降低大豆產(chǎn)量[20-22]。為充分挖掘套作大豆的產(chǎn)量潛力, 本研究以玉米–大豆帶狀套作模式為對(duì)象, 通過(guò)初花期葉面噴施6BA、DTA-6、S3307, 研究其對(duì)套作大豆葉片碳氮代謝、花莢脫落和產(chǎn)量形成的影響, 旨在為完善植物生長(zhǎng)調(diào)節(jié)劑在套作大豆中的調(diào)控技術(shù)應(yīng)用提供理論支撐。
選用緊湊型玉米品種‘登海605’和耐蔭型大豆品種‘南豆25’為試驗(yàn)材料, 分別由山東登海種業(yè)股份有限公司和四川省南充市農(nóng)業(yè)科學(xué)院提供。6-芐基腺嘌呤(6-BA, 含量≥98%)和2-N,N-二乙氨基乙基己酸酯(DTA-6, 含量≥98%)為促進(jìn)型調(diào)節(jié)劑, 購(gòu)自生工生物工程(上海)股份有限公司; 烯效唑(S3307, 5%可濕性粉劑)為延緩型調(diào)節(jié)劑, 購(gòu)自四川國(guó)光農(nóng)化股份有限公司。
試驗(yàn)于2018年和2019年分別在四川省現(xiàn)代糧食產(chǎn)業(yè)仁壽示范基地(30°02'N, 104°15'E)和四川省崇州現(xiàn)代農(nóng)業(yè)研發(fā)基地(30°56'N, 103°64'E)進(jìn)行。采用單因素隨機(jī)區(qū)組設(shè)計(jì), 以清水為對(duì)照(CK), 在套作大豆初花期葉面噴施20 mg L-16-BA、60 mg L-1DTA-6、50 mg L-1S3307, 用水量為450 kg hm-2。種植方式采用玉米–大豆寬窄行種植, 玉米窄行行距40 cm, 寬行行距160 cm, 寬行內(nèi)種植2行大豆, 大豆帶內(nèi)行距40 cm, 玉米、大豆間距60 cm, 帶寬2 m, 帶長(zhǎng)6 m。分別于2018年4月8日和2019年4月15日播種玉米, 株距17 cm, 密度58,500株hm-2。分別于2018年6月18日和2019年6月19日播種大豆, 株距8.5 cm, 密度為117,000株hm-2。每個(gè)小區(qū)內(nèi)種植3帶, 小區(qū)面積36 m2。大豆底肥施用P2O563 kg hm-2, K2O 52.5 kg hm-2。玉米底肥施N 120 kg hm-2, P2O5105 kg hm-2, K2O 112.5 kg hm-2; 大喇叭口期追施N 120 kg hm-2, 施肥方式為行間開溝施肥。在整個(gè)生育期間, 適時(shí)除草和防治病蟲。
1.3.1 大豆植株可溶性糖、總碳和總氮含量的測(cè)定
于大豆初花期(R1)、始莢期(R3)、始粒期(R5)、成熟期(R8)各小區(qū)隨機(jī)選取長(zhǎng)勢(shì)一致植株3株, 按莖、葉、柄、莢分別裝袋, 與105℃下殺青30 min后, 在80℃下烘干至恒重, 粉碎后過(guò)100目篩后存放于干燥器中。R8期測(cè)定的葉片采用倒置網(wǎng)袋法從初熟期(R7)開始收集。參照硫酸-苯酚定糖法[23]測(cè)定R1、R5、R8期大豆葉片可溶性糖含量。使用Elementar vario MICRO cube元素分析儀(Elementar公司, 德國(guó))測(cè)定R3、R5期大豆各器官中總碳和總氮含量, 碳氮比即總碳含量/總氮含量[24]。
1.3.2 大豆葉片中糖代謝相關(guān)酶活性測(cè)定 于大豆盛花期(R2)、盛莢期(R4)、鼓粒期(R6)各小區(qū)隨機(jī)選擇長(zhǎng)勢(shì)一致3株大豆, 取其倒三葉中間葉, 清洗干凈去除葉脈, 用液氮處理后, 放在-80℃超低溫中保存。參照Chopra等[25]的方法測(cè)定蔗糖合成酶(sucrose synthetase, SS)、蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)、轉(zhuǎn)化酶(invertase, Inv)活性。
1.3.3 大豆花莢脫落調(diào)查 于大豆R1期前, 每小區(qū)選取4株長(zhǎng)勢(shì)一致植株, 在地上鋪設(shè)尼龍網(wǎng),以備準(zhǔn)確調(diào)查花莢脫落數(shù)目。自R1期后, 每7 d記錄1次落花數(shù)和落莢數(shù), 在R8期考察單株成莢數(shù)。
單株結(jié)莢數(shù)(個(gè)株-1)=單株成莢數(shù)+單株落莢數(shù)
單株開花數(shù)(朵株-1)=單株結(jié)莢數(shù)+單株落花數(shù)
單株落花率(%)=單株落花數(shù)/單株開花數(shù)×100%
單株落莢率(%)=單株落莢數(shù)/單株結(jié)莢數(shù)×100%
花莢脫落率(%)=(單株落花數(shù)+單株落莢數(shù))/單株開花數(shù)×100%
1.3.4 產(chǎn)量相關(guān)參數(shù)測(cè)定 2018年和2019年間, 于大豆R8期, 各小區(qū)隨機(jī)選取15株植株, 調(diào)查大豆單株有效莢數(shù)、單株粒數(shù)及百粒重; 選取長(zhǎng)6 m的未取樣大豆帶測(cè)產(chǎn), 在脫粒并曬干至籽粒含水量約為13.5%時(shí), 測(cè)定籽粒產(chǎn)量。
本研究所列結(jié)果為3次重復(fù)測(cè)定值的平均值, 使用Microsoft Excel 2016處理和分析數(shù)據(jù), 采用統(tǒng)計(jì)分析軟件SPSSv.22軟件對(duì)數(shù)據(jù)進(jìn)行方差分析和差異顯著性測(cè)驗(yàn)(ANOVA, LSD, 顯著性水平為a=0.05)。利用Origin作圖。圖表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤。
2.1.1 套作大豆莖、葉、莢果中可溶性糖含量 大豆莖稈、葉片可溶性糖含量隨著生育時(shí)期呈先增后減趨勢(shì), 莢果可溶性糖含量呈連續(xù)增加趨勢(shì)(表1)。R5期, 調(diào)節(jié)劑處理下大豆莖稈、葉片可溶性糖含量顯著高于CK; 分別在6-BA和S3307處理下最高, 較CK分別增加28.8%和19.2%; 調(diào)節(jié)劑處理下莢果可溶性糖含量較CK呈增加趨勢(shì)。R8期, 調(diào)節(jié)劑處理下莖稈、葉片中的可溶性糖含量顯著低于CK, 分別在DTA-6和6-BA處理下最低, 較CK分別降低29.3%和20.2%; 調(diào)節(jié)劑處理下莢果可溶性糖含量顯著高于CK, 在DTA-6處理下最高, 較CK增加19.7%。
2.1.2 套作大豆葉片蔗糖代謝相關(guān)酶活性 隨生育期變化, 大豆葉片中SS、SPS、Inv酶活性的變化呈先上升后下降的趨勢(shì), 并在R4期達(dá)到峰值(圖1)。R2期, DTA-6處理下大豆葉片SS、SPS、Inv酶活性顯著高于CK, 較CK分別增加22.9%、54.3%和20.4%, 與S3307差異不顯著。R4期, 調(diào)節(jié)劑處理下SS和SPS酶活性顯著高于CK, 分別在6-BA和S3307處理下最高, 較CK分別顯著增加25.0%和33.0%; 調(diào)節(jié)劑處理增加Inv酶活性, 在S3307處理下最高, 較CK增加55.7%, 各調(diào)節(jié)劑處理間差異不顯著。R6期, 調(diào)節(jié)劑處理下SS和SPS酶活性顯著高于CK, 分別在DTA-6、6-BA處理下最高, 較CK分別增加33.3%和41.1%; 調(diào)節(jié)劑處理增加Inv酶活性, 在6-BA處理下達(dá)到顯著水平, 較CK增加41.1%, 與DTA-6差異不顯著。
表1 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)套作大豆可溶性糖含量的影響
CK: 清水對(duì)照; 6-BA: 6-芐基腺嘌呤; DTA-6: 2-N,N-二乙氨基乙基己酸酯; S3307: 烯效唑。R1: 初花期; R5: 始粒期; R8: 成熟期。不同小寫字母表示處理在0.05水平下差異顯著。
CK: water control; 6BA: 6-benzylaminopurine; DTA-6: diethyl aminoethyl hexanoate; S3307: uniconazole. R1: beginning flower stage; R5: beginning seed stage; R8: mature stage. Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level.
2.2.1 各器官總碳含量 從R3到R5期, 各器官中碳含量逐漸增加(表2)。R3期, 調(diào)節(jié)劑處理增加大豆莖稈、莢中的碳含量, 在S3307達(dá)到顯著水平, 較CK分別增加3.7%和3.5%; 調(diào)節(jié)劑處理下葉片碳含量較CK呈增加趨勢(shì)。R5期, 調(diào)節(jié)劑處理下大豆葉片氮素含量顯著高于CK, 在DTA-6處理下最高, 較CK增加1.3%; 調(diào)節(jié)劑處理下大豆莖稈、莢皮碳含量較CK呈增加趨勢(shì)。
2.2.2 各器官總氮含量 大豆莖稈、葉片、莢皮中的氮素含量隨生育時(shí)期逐漸下降, 籽粒中氮素含量逐漸增加(表3)。R3期, 6-BA和DTA-6處理下葉片氮含量顯著高于CK, 較CK分別增加7.8%和8.0%, 與S3307差異不顯著; 調(diào)節(jié)劑處理后的大豆莖稈、莢皮中的氮含量較CK呈下降趨勢(shì)。R5期, 6-BA和DTA-6處理下大豆莖稈氮含量顯著高于CK, 較CK分別增加25.8%和24.8%; S3307處理下大豆葉片氮含量顯著低于CK, 較CK降低23.2%, 各調(diào)節(jié)劑處理間差異不顯著; 調(diào)節(jié)劑處理下大豆莢皮氮含量顯著高于CK, 在S3307最高, 較CK增加28.0%。
2.2.3 大豆各器官碳/氮比值 調(diào)節(jié)劑處理增加R3期大豆莖稈和莢果中的C/N比值, 降低大豆葉片中的C/N比值; 在R5期呈現(xiàn)出相反變化趨勢(shì)(表4)。R3期, S3307處理下大豆莖稈C/N比值顯著高于CK, 較CK增加7.8%, 與6-BA和DTA-6處理差異不顯著; 6-BA和DTA-6處理下大豆葉片中C/N比值顯著低于CK, 較CK分別降低7.0%和6.8%, 與S3307差異不顯著; 調(diào)節(jié)劑處理下大豆莢果C/N比值較CK呈增加趨勢(shì)。R5期, 6-BA和DTA-6處理下大豆莖稈C/N比值顯著低于CK和S3307, 較CK分別降低27.7%和21.0%; S3307處理下大豆葉片C/N比值顯著高于CK, 較CK增加31.4%, 與6-BA和DTA-6處理差異不顯著; 調(diào)節(jié)劑處理下大豆莢皮C/N比值顯著低于CK, 在6-BA最小, 較CK降低20.8%; 調(diào)節(jié)劑處理下大豆籽粒C/N比值較CK呈降低趨勢(shì)。
不同小寫字母表示處理在0.05水平下差異顯著。R2: 盛花期; R4: 盛莢期; R6: 鼓粒期。處理同表1。
Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level. R2: blooming flower stage; R4: blooming pod stage; R6: full seed stage. Treatments are the same as those given in Table 1.
表2 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)套作大豆莖、葉、莢皮和籽粒的碳素含量的影響
不同小寫字母表示處理在0.05水平下差異顯著。R3: 始莢期; R5: 始粒期。處理同表1。
Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level. R3: beginning pod stage; R5: beginning seed stage. Treatments are the same as those given in Table 1.
表3 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆莖、葉、莢皮和籽粒的氮素含量的影響
不同小寫字母表示處理在0.05水平下差異顯著。R3: 始莢期; R5: 始粒期。處理同表1。
Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level. R3: beginning pod stage; R5: beginning seed stage. Treatments are the same as those given in Table 1.
表4 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆莖、葉和莢果的C/N的影響
不同小寫字母表示處理在0.05水平下差異顯著。R3: 始莢期; R5: 始粒期。處理同表1。
Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level. R3: beginning pod stage; R5: beginning seed stage. Treatments are the same as those given in Table 1.
外源調(diào)節(jié)劑處理會(huì)提高大豆的開花數(shù)和結(jié)莢數(shù),降低花莢脫落率, 以DTA-6效果最佳, 且不同年份大豆開花數(shù)、結(jié)莢數(shù)、落花數(shù)之間存在差異(表5)。DTA-6處理下大豆開花數(shù)、結(jié)莢數(shù)顯著高于CK, 2年較CK分別增加10.4%、15.0%和5.2%、8.1%, 與6-BA、S3307處理差異不顯著。調(diào)節(jié)劑處理下大豆落花數(shù)、落莢數(shù)(6-BA除外)和落花率較CK呈下降趨勢(shì)。DTA-6處理下大豆落莢率、花莢脫落率顯著低于CK, 2年較CK分別降低15.0%、7.1%和29.4%、10.8%, 與S3307處理差異不顯著。
調(diào)節(jié)劑處理對(duì)大豆單株有效莢數(shù)、單株粒數(shù)、產(chǎn)量有極顯著影響, 對(duì)大豆百粒重有顯著影響, 不同年份下大豆單株有效莢數(shù)、產(chǎn)量有差異(表6)。DTA-6處理下2年大豆單株有效莢數(shù)、單株粒數(shù)顯著高于CK, 較CK分別增加25.4%、35.6%和32.9%、33.2%, 顯著高于6-BA處理。調(diào)節(jié)劑處理下2年大豆百粒重顯著高于CK, 在S3307處理下最大, 較CK分別增加3.6%和2.1%。調(diào)節(jié)劑處理下2年大豆產(chǎn)量顯著高于CK, 在DTA-6處理下最大, 較CK分別增加41.3%和37.6%, 顯著高于6-BA和S3307處理。
在本研究中, 調(diào)節(jié)劑處理對(duì)大豆單株莢數(shù)、單株粒數(shù)、產(chǎn)量的影響達(dá)到極顯著水平, 調(diào)節(jié)劑處理下大豆單株有效莢數(shù)、單株粒數(shù)、百粒重、產(chǎn)量顯著高于CK。玉米–大豆帶狀套作復(fù)合種植模式中, 受玉米蔭蔽影響, 大豆群體處于光能截獲劣勢(shì), 光合作用減弱, 葉片碳代謝受到抑制, 作物整體代謝能力較弱[27], 大豆開花數(shù)結(jié)莢數(shù)減少, 且易出現(xiàn)莢而不實(shí)現(xiàn)象[28]。前人研究表明, 大豆單株有效莢數(shù)、單株粒數(shù)與大豆單株產(chǎn)量呈極顯著正相關(guān)關(guān)系[8], 花莢脫落率與大豆單株莢數(shù)、單株粒數(shù)、單株產(chǎn)量呈顯著負(fù)相關(guān)關(guān)系[2]。在開花期到始粒期期間, 大豆開花結(jié)莢數(shù)及其脫落率對(duì)大豆單株有效莢數(shù)的形成起決定性作用[26]。2年數(shù)據(jù)表明, 調(diào)節(jié)劑處理顯著增加套作大豆開花數(shù)、結(jié)莢數(shù), 降低大豆落莢數(shù)、落莢率、花莢脫落率, 顯著提高大豆單株有效莢數(shù)與產(chǎn)量, 這與馮乃杰等[29]的研究結(jié)果相符合。
表5 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)套作大豆花莢脫落數(shù)及脫落率的影響
處理同表1。不同小寫字母表示處理在0.05水平下差異顯著。*表示在0.05水平顯著,**表示在0.01水平顯著。
Treatments are the same as those given in Table 1. Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level.*represents significant difference at the 0.05 probability level;**represents significant difference at the 0.01 probability level.
表6 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆產(chǎn)量與產(chǎn)量構(gòu)成的影響
處理同表1。不同小寫字母表示處理在0.05水平下差異顯著。*表示在0.05水平顯著,**表示在0.01水平顯著。
Treatments are the same as those given in Table 1. Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level.*represents significant difference at the 0.05 probability level;**represents significant difference at the 0.01 probability level.
同化物供應(yīng)的有效性, 決定了不同器官間的養(yǎng)分分配狀況; 合理的養(yǎng)分分配有利于減少不同器官間的養(yǎng)分競(jìng)爭(zhēng), 對(duì)生殖器官的形成和發(fā)育起著重要的調(diào)控作用[15]??扇苄蕴鞘堑湫偷奶妓衔? 其含量水平能反映作物體內(nèi)作為有效態(tài)營(yíng)養(yǎng)物的碳水化合物和能量水平[30]。本試驗(yàn)結(jié)果表明, 調(diào)節(jié)劑處理提高R5期大豆葉片內(nèi)可溶性糖的含量, 增強(qiáng)葉片內(nèi)碳水化合物的供應(yīng); 促進(jìn)后期莖、葉中碳水化合物向籽粒的轉(zhuǎn)移, 這與閆艷紅等[13]的研究結(jié)論相一致。糖的合成、水解與轉(zhuǎn)移, 需要多種酶的共同參與; 蔗糖合成酶能夠催化蔗糖的合成; 蔗糖磷酸合成酶調(diào)控光合產(chǎn)物向蔗糖和淀粉分配; 轉(zhuǎn)化酶能將蔗糖水解為同等量的果糖和葡萄糖, 是參與蔗糖水解的關(guān)鍵酶[31]。葉片內(nèi)蔗糖合成酶和蔗糖磷酸合成酶活性的增強(qiáng), 有利于提高葉片可溶性糖、蔗糖和淀粉含量[25]。葉片內(nèi)Inv酶活性提高有利于促進(jìn)葉片內(nèi)不同碳水化合物之間的相互轉(zhuǎn)化, 增強(qiáng)碳水化合物的轉(zhuǎn)運(yùn)能力。本研究中, 調(diào)節(jié)劑處理提高各時(shí)期大豆葉片SS、SPS、Inv酶活性, 提高葉片內(nèi)碳水化合的合成和向籽粒運(yùn)輸?shù)哪芰? 為花莢的形成提供能量供應(yīng)和物質(zhì)基礎(chǔ), 這與趙黎明等[32]和宋春燕等[33]的研究結(jié)果相一致。
前人研究表明, 大豆開花結(jié)莢期間的養(yǎng)分比例失調(diào), 器官間的養(yǎng)分競(jìng)爭(zhēng)是誘導(dǎo)花莢脫落的重要原因[34]。營(yíng)養(yǎng)生長(zhǎng)時(shí)期積累足夠的干物質(zhì), 是協(xié)調(diào)器官間養(yǎng)分比例、維持花莢正常發(fā)育的必要條件。蔣利[35]研究發(fā)現(xiàn), 在玉米–大豆帶狀套作模式下, 花莢脫落率高的大豆品種, 盛花期到盛莢期仍有大量的干物質(zhì)分配到莖稈和葉片的生長(zhǎng)上, 增強(qiáng)了莖葉與花莢之間的養(yǎng)分競(jìng)爭(zhēng)。本研究結(jié)果表明, R3期, 調(diào)節(jié)劑處理增加葉片和莢果碳、氮含量, 葉片C/N比值降低, 莢果C/N比值上升, 說(shuō)明調(diào)節(jié)劑處理在維持葉片代謝強(qiáng)度的同時(shí), 提高莢果代謝強(qiáng)度, 促進(jìn)莢的形成, 降低莢的脫落。劉春娟等[36-37]研究發(fā)現(xiàn), 葉面噴施DTA-6和S3307能延緩葉片衰老, 促進(jìn)生育后期大豆葉片活性, 提高莢中碳、氮代謝強(qiáng)度, 促進(jìn)葉片中蔗糖、果糖和淀粉向莢果的轉(zhuǎn)移, 使更多的碳水化合物用于莢的形成, 進(jìn)而提高大豆產(chǎn)量, 與本研究結(jié)果相一致。
外源噴施6-BA、DTA-6、S3307增強(qiáng)葉片SS、SPS、Inv酶的活性, 提高始粒期大豆莖、葉、莢中的可溶性糖含量, 增強(qiáng)后期籽粒中可溶性糖的積累, 優(yōu)化葉片內(nèi)碳水化合物的合成及轉(zhuǎn)運(yùn); 調(diào)節(jié)劑處理下R3期葉片C/N比值降低, R5期葉片C/N比值增加, 維持不同時(shí)期碳氮代謝的動(dòng)態(tài)平衡; 調(diào)節(jié)劑處理促進(jìn)大豆開花結(jié)莢, 降低落莢率及花莢脫落率, 顯著提高套作大豆的單株有效莢數(shù)與產(chǎn)量, 其中以DTA-6處理的增產(chǎn)效果最佳。
[1] Chen P, Song C, Liu X M, Zhou L, Yang H, Zhang X N, Zhou Y, Du Q, Pang T, Fu Z D, Wang X C, Liu W G, Yang F, Shu K, Du J B, Liu J, Yang W Y, Yong T W. Yield advantage and nitrogen fate in an additive maize–soybean relay intercropping system., 2019, 657: 987–999.
[2] 蔣利, 雍太文, 張群, 肖靜, 楊歡, 楊文鈺. 種植模式和施氮水平對(duì)大豆花莢脫落及產(chǎn)量的影響. 大豆科學(xué), 2015, 34: 843–849. Jiang L, Yong T W, Zhang Q, Xiao J, Yang H, Yang W Y. Effect of different planting patterns and N application rates on abscission of flower and pod of soybean and yield., 2015, 34: 43–849 (in Chinese with English abstract).
[3] Liu B, Qu D N. Effects of shading on spatial distribution of flower and flower abscission in field-grown three soybeans in Northern China., 2015, 27: 629–635.
[4] 崔洪秋, 馮乃杰, 孫福東, 劉濤, 李建英, 杜吉到, 韓毅強(qiáng), 鄭殿峰. DTA-6對(duì)大豆花莢脫落纖維素酶和基因表達(dá)的調(diào)控. 作物學(xué)報(bào), 2016, 42: 51–57. Cui H Q, Feng N J, Sun F D, Liu T, Li J Y, Du J D, Han Y Q, Zheng D F. Regulation of DTA-6 by abscission cellulase andgene expression in flowers and pods of soybean., 2016, 42: 51–57 (in Chinese with English abstract).
[5] Duarte L, Clemente J, Caixeta I, Senoski M, Aquino L. Dry matter and nutrient accumulation curve in cabbage crop., 2019, 32: 679–689.
[6] Zhang J H, He N P, Liu C G, Xu L, Chen Z, Li Y, Wang R M, Yu G R, Sun W, Xiao C W, Reich P. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments., 2020, 26: 2534–2543.
[7] 胡志輝, 汪艷杰, 陳禪友. 噴施細(xì)胞分裂素對(duì)豇豆花莢脫落率及花莢酶活性的影響. 植物科學(xué)學(xué)報(bào), 2016, 34: 439–445. Hu Z H, Wang Y J, Chen C Y. Effects of spraying cytokinin on abscission rate and enzymic activity of flowers and pods of cowpea., 2016, 34: 439–445 (in Chinese with English abstract).
[8] 萬(wàn)燕, 閆艷紅, 楊文鈺. 不同氮肥水平下葉面噴施烯效唑?qū)μ鬃鞔蠖股L(zhǎng)和氮代謝的影響. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2012, 38: 185–196. Wan Y, Yan Y H, Yang W Y. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybean under different nitrogen levels.(Agric Life Sci), 2012, 38: 185–196 (in Chinese with English abstract).
[9] 鄭殿峰, 宋春艷. 植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆氮代謝相關(guān)生理指標(biāo)以及產(chǎn)量和品質(zhì)的影響. 大豆科學(xué), 2011, 30: 109–112. Zheng D F, Song C Y. Effects of plant growth regulators on nitrogen metabolism related indicators and yield in soybean., 2011, 30: 109–112 (in Chinese with English abstract).
[10] Zhang M C, Duan L S, Tian X L, He Z P, Li J M, Wang B M, Li Z H. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system., 2007, 164: 709–717.
[11] Wen D X, Li Y, He L F, Zhang C Q. Transcriptome analysis reveals the mechanism by which spraying diethyl aminoethyl hexanoate after anthesis regulates wheat grain filling., 2019, 19: 327.
[12] Kim J H, Shon J Y, Lee C K, Yang W, Yoon Y W, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature., 2011, 122: 207–213.
[13] 閆艷紅, 萬(wàn)燕, 楊文鈺, 王小春, 雍太文, 劉衛(wèi)國(guó), 張新全. 葉面噴施烯效唑?qū)μ鬃鞔蠖够ê筇嫉x及產(chǎn)量的影響. 大豆科學(xué), 2015, 34: 75–81. Yan Y H, Wan Y, Yang W Y, Wang X C, Yong T W, Liu W G, Zhang X Q. Effect of spraying uniconazole on carbon and nitrogen metabolism and yield of relay strip intercropping soybean., 2015, 34: 75–81 (in Chinese with English abstract).
[14] Zhou W G, Chen F, Zhao S H, Yang C Q, Meng Y J, Shuai H W, Luo X F, Dai Y J, Yin H, Du J B, Liu J, Fan G Q, Liu W G, Yang W Y, Shu K. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism., 2018, 70: 101–114.
[15] Liu C J, Feng N J, Zheng D F, Cui H Q, Sun F D, Gong X W. Uniconazole and diethyl aminoethyl hexanoate increase soybean pod setting and yield by regulating sucrose and starch content., 2019, 99: 748–758.
[16] Roitsch T, Ehne? R. Regulation of source/sink relations by cytokinins., 2000, 32: 359–367.
[17] Choi J, Hwang I. Cytokinin: perception, signal transduction, and role in plant growth and development., 2007, 50: 98–108.
[18] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. Maize–soybean strip intercropping: achieved a balance between high productivity and sustainability., 2018, 17: 747–754.
[19] Yang W T, Miao J Q, Wang X W, Xu J C, Lu M J, Li Z X. Corn-soybean intercropping and nitrogen rates affected crop nitrogen and carbon uptake and C:N ratio in upland red soil., 2018, 41: 1890–1902.
[20] Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio., 2014, 155: 245–253.
[21] Liu X, Rahman T, Song C, Su B Y, Yang F, Yong T W, Wu Y S, Zhang C Y, Yang W Y. Changes in light environment, morpho-logy, growth and yield of soybean in maize–soybean intercropping systems., 2017, 200: 38–46.
[22] Chen P, Du Q, Liu X M, Zhou L, Hussain S, Lei L, Song C, Wang X C, Liu W G, Yang F, Shu K, Liu J, Du J B, Yang W Y, Yong T W. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize–soybean relay strip intercropping system., 2017, 12: e0184503.
[23] 徐光域, 顏軍, 郭曉強(qiáng), 劉嵬, 李曉光, 茍小軍. 硫酸-苯酚定糖法的改進(jìn)與初步應(yīng)用. 食品科學(xué), 2005, 26(8): 342–346. Xu G Y, Yan J, Guo X Q, Liu W, Li X G, Gou X J. The betterment and apply of phenol-sulphate acid method., 2005, 26(8): 342–346 (in Chinese with English abstract).
[24] 鄧小燕, 王小春, 楊文鈺, 張群. “麥/玉/豆”模式下氮肥運(yùn)籌對(duì)玉米碳氮代謝的影響. 草業(yè)學(xué)報(bào), 2012, 21(4): 52–61. Deng X Y, Wang X C, Yang W Y, Zhang Q. Effects of nitrogen strategies on carbon and nitrogen metabolism of maize in wheat/maize/soybean relay intercropping system., 2012, 21(4): 52–61 (in Chinese with English abstract).
[25] Chopra J, Kaur N, Gupta A K. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures., 2000, 53: 539–548.
[26] Dyer D J, Carlson D R, Cotterman C D, Sikorski J A, Ditson S L. Soybean pod set enhancement with synthetic cytokinin analogs., 1987, 84: 240–243.
[27] Cui L, Yang W Y, Huang N, Liu J, Wang Y L, Wang X H, Liu Y, Yan S. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize–soybean intercropping systems., 2015, 26: 2414–2420.
[28] Yan Y H, Wan Y, Liu W G, Wang X C, Yong T W, Yang W Y, Zhao L L. Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system., 2015, 18: 295–301.
[29] 馮乃杰, 宋莉萍, 劉金輝, 鄭殿峰. 不同時(shí)期PGRS對(duì)大豆花莢脫落率及纖維素酶活性的影響. 中國(guó)油料作物學(xué)報(bào), 2011, 33: 253–258. Feng N J, Song L P, Liu J H, Zheng D F. Regulation of plant growth regulators on abscission rate and cellulase activity of soybean flowers and pods., 2011, 33: 253–258 (in Chinese with English abstract).
[30] 劉海坤, 劉小寧, 黃玉芳, 葉優(yōu)良. 不同氮水平下小麥植株的碳氮代謝及碳代謝與赤霉病的關(guān)系. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2014, 22: 782–789. Liu H K, Liu X N, Huang Y F, Ye Y L. Effect of nitrogen application on carbon and nitrogen metabolisms and relationship between carbon metabolism and wheat scab., 2014, 22: 782–789 (in Chinese with English abstract).
[31] Liu C G, Wang Y J, Pan K W, Zhu T T, Li W, Zhang L. Carbon and nitrogen metabolism in leaves and roots of Dwarf Bamboo (Yi) subjected to drought for two consecutive years during sprouting period., 2014, 33: 243–255.
[32] 趙黎明, 馮乃杰, 鄭殿峰. 植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆莢皮同化物代謝及糖分積累的影響. 植物科學(xué)學(xué)報(bào), 2008, 26: 407–411. Zhao L M, Feng N J, Zheng D F. Effects of plant growth regulators on assimilation metabolism and sugar accumulation in pod husks of soybean., 2008, 26: 407–411 (in Chinese with English abstract).
[33] 宋春艷, 馮乃杰, 鄭殿峰. 植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆葉片碳代謝相關(guān)生理指標(biāo)及產(chǎn)量品質(zhì)的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2011, 29(3): 91–95. Sun C Y, Feng N J, Zheng D F. Effects of plant growth regulators on carbon metabolism related indicators in soybean leaves., 2011, 29(3): 91–95 (in Chinese with English abstract).
[34] Truong Q, Koch K, Yoon Jo M, Everard J D, Shanks J V. Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition., 2013, 64: 2985–2995.
[35] 蔣利. 凈套作條件下不同施N量對(duì)大豆植株形態(tài)、花莢脫落和產(chǎn)量的影響. 四川農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 四川雅安, 2015. Jiang L. The Effects of N Application on Plant Morphology, Flower, and Pod Abscission and Yield of Soybean in Monoculture and the Strip Intercropping System. MS Thesis of Sichuan Agriculture University, Ya’an, Sichuan, China, 2015 (in Chinese with English abstract).
[36] 劉春娟, 馮乃杰, 鄭殿峰, 宮香偉, 孫福東, 石英, 崔洪秋, 張盼盼, 趙晶晶. 植物生長(zhǎng)調(diào)節(jié)劑S3307和DTA-6對(duì)大豆源庫(kù)碳水化合物代謝及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49: 657–666. Liu C J, Feng N J, Zheng D F, Gong X W, Sun F D, Shi Y, Cui H Q, Zhang P P, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on carbohydrate content and yield in soybean., 2016, 49: 657–666 (in Chinese with English abstract).
[37] 劉春娟, 馮乃杰, 鄭殿峰, 孫福東, 劉濤, 崔洪秋, 趙晶晶. S3307和DTA-6對(duì)大豆葉片生理活性及產(chǎn)量的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2016, 22: 626–633. Liu C J, Feng N J, Zheng D F, Sun F D, Liu T, Cui H Q, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on the leaf physiological activity and yield of soybean., 2016, 22: 626–633 (in Chinese with English abstract).
Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean
LUO Kai1, XIE Chen1, WANG Jin1, WANG Tian1, HE Shun2, YONG Tai-Wen1,*, and YANG Wen-Yu1
1College of Agriculture, Sichuan Agriculture University / Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest China, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Wenjiang 611130, Sichuan, China;2Chengdu Seed Management Station / Chengdu Agricultural Product Quality and Safety Center, Qingyang 610072, Sichuan, China
Maize shading inhibited the growth of soybean at the seedling stage, reduced the number of soybean flowers and pods, and decreased the yield of soybean under maize–soybean relay strip intercropping system. To explore the effect of exogenous plant growth regulators (PGRs) on flowering, pod setting, and yield of soybean is important for relay strip intercropping soybean production. Field experiments were used one-factor randomized block design to investigate the effect of foliage spraying 6-Benzylaminopurine (6-BA), diethyl aminoethyl hexanoate (DTA-6) and uniconazole (S3307) at the beginning of flowering stage on abscission of flowers and pods, leaf carbon and nitrogen metabolism, and yield formation in relay strip intercropping soybean. The results demonstrated that spraying PRGs improved the sucrose synthetase (SS), sucrose phosphate synthetase (SPS) and invertase (Inv) activities in soybean leaves. Exogenous PGRs increased soluble sugar content in stems, leaves, and pods of soybean at the beginning of grain-filling stage, promoted soluble sugar transport from stem and leaves to pods. Exogenous PGRs increased carbon and nitrogen content and decreased the C:N ratio in soybean leaves at the beginning of podding stage. PGRs increased the carbon content, decreased nitrogen content, and increased the C:N ratio in soybean leaves at beginning of grain-filling stage. Foliar spraying PGRs increased the number of flowers and pods, reduced the abscission pod number, and decreased the ratio of pods abscission and flowers-pods abscission, the effect of DTA-6 treatments was better than others. The pods per plant and yield of soybean in 2018 and 2019 under DTA-6 treatment were increased by 25.4%, 41.3% and 32.9%, 37.6% as compared with CK, respectively. Foliar spraying PGRs increased the activities of SPS, SS, and Inv enzymes in soybean leaves, coordinated the carbon-nitrogen metabolism in soybean organs, promoted the soybean flowering and pod-setting, decreased the abscission of pods, increased the pods per plant and yield of relay strip intercropping soybean, the production increasing effect of DTA-6 were better than others.
maize–soybean relay strip intercropping; flowers and pods abscission; plant growth regulators; carbon and nitrogen metabolism; yield
10.3724/SP.J.1006.2021.04129
本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0201006)和國(guó)家現(xiàn)代農(nóng)業(yè)(大豆)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-04-03A)資助。
This study was supported by the National Key Research and Development Program of China (2018YFD0201006) and the China Agriculture Research System (Soybean) (CARS-04-03A).
雍太文, E-mail: scndytw@qq.com
E-mail: 592234005@qq.com
2020-06-16;
2020-10-14;
2020-11-06.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20201105.1555.010.html