何成杰
摘 要:基于高中數(shù)學(xué)知識的特點,學(xué)生在具體的學(xué)習(xí)中受到多種因素的制約,常常出現(xiàn)思維漏洞、概念不清、計算失誤、知識體系不夠完善等問題,在具體的學(xué)習(xí)中不可避免地產(chǎn)生一些的錯誤?;诖?,文章以高中數(shù)學(xué)課堂教學(xué)作為研究的切入點,對易錯易漏問題的類型和發(fā)生的原因進(jìn)行簡要分析,并在此基礎(chǔ)上提出了行之有效的應(yīng)對策略。
關(guān)鍵詞:高中數(shù)學(xué);易錯易漏;類型;原因;應(yīng)對策略
中圖分類號:G63? ? ? ? ? 文獻(xiàn)標(biāo)識碼:A? ? ? ? ? 文章編號:1673-9132(2021)09-0041-02
DOI:10.16657/j.cnki.issn1673-9132.2021.09.020
在整個高中教育體系中,數(shù)學(xué)這一學(xué)科占據(jù)十分重要的地位,是高中教育中最為重要的組成部分。在對高中數(shù)學(xué)教育進(jìn)行研究后發(fā)現(xiàn),高中數(shù)學(xué)涉及的內(nèi)容十分廣泛,且數(shù)學(xué)知識點抽象,知識點與知識點間存在較大的聯(lián)系,對學(xué)生的思維能力、學(xué)習(xí)能力等要求相對較高。尤其是在新課程標(biāo)準(zhǔn)的要求下,對高中數(shù)學(xué)課堂教學(xué)提出了更高的要求。但是在傳統(tǒng)的高中數(shù)學(xué)課堂教學(xué)模式下,學(xué)生在學(xué)習(xí)時不可避免地出現(xiàn)多種易錯易漏問題,嚴(yán)重影響了學(xué)生的數(shù)學(xué)學(xué)習(xí)成績?;诖?,必須采取積極有效的應(yīng)對策略,最大限度地減少學(xué)生在數(shù)學(xué)學(xué)習(xí)中的出錯率。
一、高中數(shù)學(xué)易錯易漏問題類型
(一)知識性錯誤
就數(shù)學(xué)學(xué)科特點來說,其中包含的數(shù)學(xué)概念、數(shù)學(xué)公式比較多,且數(shù)學(xué)概念和公式非常簡潔、抽象,存在極強的相似性。學(xué)生學(xué)習(xí)時一旦對其理解不夠全面、深刻,就會導(dǎo)致在應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)公式時,頻頻出錯;另外,學(xué)生在數(shù)學(xué)學(xué)習(xí)的過程中,審題是最為重要的步驟,也是幫助學(xué)生解答問題的關(guān)鍵。但是學(xué)生常常因為審題不清,無法從題目中篩選出有價值的信息和需要解決的問題,從而導(dǎo)致學(xué)生因為審題不清而出現(xiàn)各種各樣的知識性錯誤。
(二)邏輯性錯誤
在數(shù)學(xué)學(xué)習(xí)的過程中,基于數(shù)學(xué)學(xué)科的特點,對學(xué)生的思維能力要求相對較高。但是學(xué)生在進(jìn)行推理時,常因違背了基本的邏輯規(guī)則,或者考慮不周、虛假理由、偷換概念等,導(dǎo)致學(xué)生在推理的過程中出現(xiàn)邏輯性錯誤。
(三)習(xí)慣性錯誤
在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生的數(shù)學(xué)思維能力尤為重要,直接決定了學(xué)生的數(shù)學(xué)學(xué)習(xí)效果。但是學(xué)生在開展數(shù)學(xué)學(xué)習(xí)時,受到僵化思維的影響,在具體的學(xué)習(xí)中難以靈活運用所學(xué)的數(shù)學(xué)知識,導(dǎo)致學(xué)生在數(shù)學(xué)學(xué)習(xí)的過程中常常出現(xiàn)一些習(xí)慣性的錯誤。
(四)心理性錯誤
部分學(xué)生在數(shù)學(xué)學(xué)習(xí)的過程中,由于自身心理調(diào)整能力比較弱,在具體的學(xué)習(xí)中出現(xiàn)浮躁、從眾、自我、偏執(zhí)等多種不良的心理狀態(tài),這種錯誤的心理進(jìn)一步導(dǎo)致其在數(shù)學(xué)學(xué)習(xí)中頻頻出現(xiàn)多種錯誤[1]。
二、高中數(shù)學(xué)易錯易漏問題成因分析
(一)抽象思維能力弱
高中數(shù)學(xué)知識難度系數(shù)比較大,對學(xué)生的抽象思維、邏輯思維能力要求比較高,學(xué)生在學(xué)習(xí)時依然固守初中數(shù)學(xué)的思維模式,會難以拓展自身的思維,難以適應(yīng)數(shù)學(xué)知識的學(xué)習(xí)。
(二)數(shù)學(xué)知識體系不夠完整
數(shù)學(xué)知識點比較多,且各個知識點之間存在極強的聯(lián)系性,學(xué)生只有構(gòu)建一個完整的知識體系,才能更好地應(yīng)對數(shù)學(xué)學(xué)習(xí)。但是部分學(xué)生在數(shù)學(xué)學(xué)習(xí)中,因?qū)λ鶎W(xué)的數(shù)學(xué)知識掌握得不夠全面、牢固,沒有形成一個系統(tǒng)化、健全的知識體系。在這種情況下,學(xué)生在解題的過程中,常常出現(xiàn)思路僵化等問題,進(jìn)而導(dǎo)致出現(xiàn)錯誤。
(三)解題思想方法不夠靈活
數(shù)學(xué)思想是數(shù)學(xué)解題、數(shù)學(xué)學(xué)習(xí)的核心與靈魂,直接決定了解題的效率。但是多數(shù)學(xué)生在具體的學(xué)習(xí)中,對數(shù)學(xué)思想與方法運用的重視程度不夠,根本無法靈活運用,導(dǎo)致其在數(shù)學(xué)解題的過程中頻頻出現(xiàn)錯誤。
(四)學(xué)生的學(xué)習(xí)態(tài)度不夠端正
多數(shù)學(xué)生在具體的學(xué)習(xí)中,沒有形成正確的學(xué)習(xí)態(tài)度,遇到簡單的題目就得意忘形,以至于因粗心大意出現(xiàn)解題錯誤;在遇到難題的時候,又立刻失去信心,無法解答出來[2]。
三、高中數(shù)學(xué)易錯易漏問題應(yīng)對策略分析
(一)強化基礎(chǔ)知識教學(xué),構(gòu)建完整的知識體系
高中數(shù)學(xué)新課程標(biāo)準(zhǔn)中明確提出了高中數(shù)學(xué)教學(xué)的要求,即:對數(shù)學(xué)的概念進(jìn)行深刻理解,了解數(shù)學(xué)結(jié)論的本質(zhì),對數(shù)學(xué)概念、數(shù)學(xué)結(jié)論產(chǎn)生的背景及具體應(yīng)用進(jìn)行深刻地理解,并對其中蘊含的數(shù)學(xué)思想、數(shù)學(xué)方法進(jìn)行感知和應(yīng)用。這些不僅是數(shù)學(xué)知識學(xué)習(xí)的基礎(chǔ),也是導(dǎo)致學(xué)生在數(shù)學(xué)學(xué)習(xí)的過程中頻頻出現(xiàn)知識性錯誤的根源。為了最大限度地避免學(xué)生在數(shù)學(xué)學(xué)習(xí)中出現(xiàn)易錯易漏問題,教師在開展高中數(shù)學(xué)課堂教學(xué)時,應(yīng)強化基礎(chǔ)知識教學(xué),幫助學(xué)生在具體的學(xué)習(xí)中逐漸構(gòu)建一個完整的知識體系,最終幫助學(xué)生利用所學(xué)的數(shù)學(xué)知識,正確地解決數(shù)學(xué)問題。
一方面,教師在開展高中數(shù)學(xué)課堂教學(xué)時,應(yīng)全面加強數(shù)學(xué)基礎(chǔ)知識教學(xué),對每一個數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)法則、數(shù)學(xué)公式,都要詳細(xì)地講明,弄清前因后果及各知識點間存在的內(nèi)在聯(lián)系等。同時,教師在開展數(shù)學(xué)基礎(chǔ)知識教學(xué)時,必須要努力打破教材中各個章節(jié)間的限制,將所有的數(shù)學(xué)知識進(jìn)行重新建構(gòu),最終促使學(xué)生在數(shù)學(xué)基礎(chǔ)知識的學(xué)習(xí)過程中,逐漸構(gòu)建出一個完整的知識網(wǎng)絡(luò)體系。另一方面,教師在強化基礎(chǔ)知識教學(xué)時,在完成一定的數(shù)學(xué)知識教學(xué)后,還應(yīng)抽出一定的時間,對所學(xué)的數(shù)學(xué)知識點進(jìn)行歸納和總結(jié),引導(dǎo)學(xué)生在知識點回顧和反思的過程中,逐漸形成完整的數(shù)學(xué)知識體系,最終降低數(shù)學(xué)的錯誤發(fā)生率 [3]。
(二)加強數(shù)學(xué)思維能力訓(xùn)練
高中數(shù)學(xué)具有極強的思維性,在高中數(shù)學(xué)學(xué)科的學(xué)習(xí)中,學(xué)生的數(shù)學(xué)思維能力是學(xué)習(xí)的核心,直接決定了數(shù)學(xué)學(xué)習(xí)的結(jié)果。為了最大限度地避免學(xué)生在數(shù)學(xué)學(xué)習(xí)中出現(xiàn)錯誤,必須要全面加強學(xué)生數(shù)學(xué)思維能力的訓(xùn)練。首先,教師在強化數(shù)學(xué)概念等基礎(chǔ)知識教學(xué)時,可以充分借助類比的途徑,引導(dǎo)學(xué)生在與其相似概念的對比中,通過抽絲剝繭、分離抽象等途徑,最終將其抽象出來,并促使學(xué)生在學(xué)習(xí)的過程中形成極強的抽象思維能力。其次,教師在強化學(xué)生數(shù)學(xué)思維能力訓(xùn)練時,可充分結(jié)合數(shù)學(xué)教學(xué)內(nèi)容,立足于學(xué)生的思維發(fā)展?fàn)顩r,科學(xué)地設(shè)計一些具有思考價值、推理價值的問題,引領(lǐng)學(xué)生在逐步推理的過程中,逐漸發(fā)展自身的邏輯推理思維。最后,在強化學(xué)生數(shù)學(xué)思維能力訓(xùn)練時,還應(yīng)結(jié)合具體的數(shù)學(xué)問題,積極開展“一題多解”的訓(xùn)練模式,促使學(xué)生在具體的訓(xùn)練過程中,逐漸拓展自身的數(shù)學(xué)思維廣度與深度,最終能夠靈活解決數(shù)學(xué)問題。如此一來,學(xué)生在數(shù)學(xué)學(xué)習(xí)的過程中,自身的易錯易漏問題也會隨之降低。
(三)強化審題訓(xùn)練
在具體的高中數(shù)學(xué)教學(xué)中,審題是學(xué)生進(jìn)行解題的基礎(chǔ)和關(guān)鍵,學(xué)生審題是否全面直接決定了高中數(shù)學(xué)的學(xué)習(xí)效果。但是在研究中發(fā)現(xiàn),多數(shù)學(xué)生在數(shù)學(xué)審題的過程中,常常因為“看錯題、抄錯題、遺漏條件、審題不夠深刻”等多種因素,致使在數(shù)學(xué)學(xué)習(xí)中出現(xiàn)多種錯誤。為了最大限度地避免出現(xiàn)易錯、易漏問題,教師必須重視審題訓(xùn)練,認(rèn)識到審題教學(xué)的重要性,還要對學(xué)生的閱讀能力進(jìn)行訓(xùn)練,保證學(xué)生能夠讀懂題目、理解數(shù)學(xué)題目,并在此基礎(chǔ)上開展數(shù)學(xué)學(xué)習(xí);另一方面,還應(yīng)指導(dǎo)學(xué)生在審題的過程中對數(shù)學(xué)題目進(jìn)行歸類,在短時間內(nèi)找到與其相關(guān)的數(shù)學(xué)知識點,最終對其進(jìn)行有效的解決[4]。
(四)樹立正確的“錯誤觀念”,分析其原因
高中數(shù)學(xué)教師在開展數(shù)學(xué)課堂教學(xué)時,還要立足學(xué)生因態(tài)度問題導(dǎo)致的心理性因素,以此作為切入點,幫助學(xué)生在數(shù)學(xué)學(xué)習(xí)的過程中逐漸樹立“正確的錯誤觀念”。這就要求教師應(yīng)指導(dǎo)學(xué)生對數(shù)學(xué)學(xué)習(xí)中形成的錯誤進(jìn)行客觀、全面地認(rèn)識,不要回避錯誤,不要害怕發(fā)生錯誤,必須要對其有足夠的重視,將其作為一種行之有效的數(shù)學(xué)學(xué)習(xí)資源,積極主動糾錯。另一方面,教師在開展數(shù)學(xué)教學(xué)中,還應(yīng)指導(dǎo)學(xué)生圍繞發(fā)生的錯誤點,對出錯原因展開分析,使得學(xué)生在錯誤發(fā)生原因的分析中,明確自身在以往數(shù)學(xué)知識學(xué)習(xí)中存在的漏洞,最終幫助學(xué)生日后的學(xué)習(xí)更具有針對性。
(五)指導(dǎo)學(xué)生建立錯題本
在具體的高中數(shù)學(xué)學(xué)習(xí)中,基于數(shù)學(xué)學(xué)科的特點,學(xué)生不可避免地會出現(xiàn)各種各樣的錯誤。為了最大限度地避免易錯易漏問題,教師在組織和開展教學(xué)時,應(yīng)指導(dǎo)學(xué)生建立錯題本,將學(xué)生日常學(xué)習(xí)中出現(xiàn)的錯誤進(jìn)行歸納、總結(jié)、歸類。并結(jié)合具體的錯誤題目,將自己的分析思路、發(fā)生錯誤的原因、正確的解題方法等明確地標(biāo)注出來,以便后期進(jìn)行有針對性的學(xué)習(xí)。在學(xué)習(xí)的過程中,由于學(xué)生之間存在顯著的個體差異,學(xué)生出現(xiàn)的錯誤形式和種類也多種多樣?;诖?,教師應(yīng)指導(dǎo)學(xué)生分享自己在日常學(xué)習(xí)中出現(xiàn)的錯誤,引導(dǎo)學(xué)生在相互借鑒和分析的過程中,逐漸完善自身的數(shù)學(xué)知識體系,最終降低錯誤的發(fā)生率。最后,針對學(xué)生在日常學(xué)習(xí)中出現(xiàn)的錯誤題目,教師可抽出一定的時間,對其進(jìn)行集中訓(xùn)練,結(jié)合具體的錯誤題目,指出學(xué)生在解題過程中出現(xiàn)的錯誤思維、錯誤方向等,引領(lǐng)學(xué)生利用正確的數(shù)學(xué)思維分析,進(jìn)而正確地解決。如此一來,真正體現(xiàn)了錯題本的價值,將其作為一種重要的學(xué)習(xí)資源,顯著提升了學(xué)生識錯糾錯的能力。
綜上所述,在高中數(shù)學(xué)學(xué)習(xí)的過程中,受到數(shù)學(xué)學(xué)科知識特點、學(xué)生的思維能力、學(xué)習(xí)習(xí)慣、數(shù)學(xué)思想方法運用等因素的影響,在具體的學(xué)習(xí)過程中不可避免地常常產(chǎn)生一定的困難,影響了學(xué)生的數(shù)學(xué)學(xué)習(xí)成績?;诖耍仨毩⒆阌诋?dāng)前高中數(shù)學(xué)學(xué)習(xí)中出現(xiàn)的錯誤類型和原因,采取積極有效的措施,強化基礎(chǔ)知識教學(xué),加強數(shù)學(xué)思維能力和審題訓(xùn)練,在此基礎(chǔ)上指導(dǎo)學(xué)生形成正確的“錯誤觀念”,建立錯題本等,最大限度地降低錯誤的發(fā)生率。
參考文獻(xiàn):
[1]巫喜社.高中數(shù)學(xué)易錯點提前干預(yù)的策略研究[J].數(shù)學(xué)學(xué)習(xí)與研究,2020(12):24.
[2]張春華.結(jié)合示錯教學(xué)模式,提升高中數(shù)學(xué)教學(xué)效率[J].數(shù)學(xué)大世界(上旬),2019(9):99.
[3]樊振彪.高中生數(shù)學(xué)易錯問題研究[D].內(nèi)蒙古師范大學(xué),2014.
[4]王娟.淺析高中數(shù)學(xué)易錯點成因及提前干預(yù)的方法[J].考試周刊,2017(8):51.