劉玉璞,楊溢鐸,趙恬田,李涵,趙玥,國海東,邵水金
實驗研究
基于調(diào)節(jié)外泌體釋放電針對大鼠坐骨神經(jīng)損傷后功能恢復(fù)的影響
劉玉璞,楊溢鐸,趙恬田,李涵,趙玥,國海東,邵水金
上海中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院人體解剖教研室,上海 201203
觀察抑制血清外泌體水平對電針治療大鼠坐骨神經(jīng)損傷的影響,探討電針是否通過調(diào)節(jié)外泌體釋放促進大鼠坐骨神經(jīng)損傷后功能恢復(fù)。構(gòu)建大鼠坐骨神經(jīng)損傷模型,分組進行電針治療和藥物干預(yù),采用GW4869腹腔注射抑制外泌體釋放。觀察大鼠患側(cè)足一般情況,采用足跡分析評價坐骨神經(jīng)功能指數(shù),采用神經(jīng)傳導(dǎo)速度比和腓腸肌濕重比評價坐骨神經(jīng)功能恢復(fù)情況,采用免疫熒光染色NF200、MBP分別標記軸突和髓鞘評價神經(jīng)的再生修復(fù)情況。抑制血清外泌體水平后電針對大鼠坐骨神經(jīng)損傷治療效果受到影響。與模型組比較,電針組促進大鼠坐骨神經(jīng)損傷后功能恢復(fù)效果顯著;與電針組比較,電針+GW4869組大鼠足底潰瘍嚴重,坐骨神經(jīng)功能指數(shù)、坐骨神經(jīng)功能恢復(fù)情況、神經(jīng)再生修復(fù)情況均較差。電針通過調(diào)節(jié)外泌體釋放可促進大鼠坐骨神經(jīng)損傷后功能恢復(fù)。
坐骨神經(jīng)損傷;電針;外泌體;功能恢復(fù);大鼠
周圍神經(jīng)損傷(peripheral nerve injury,PNI)是臨床常見病,可導(dǎo)致神經(jīng)性疼痛和功能障礙,嚴重影響患者生活質(zhì)量。如何更好地促進PNI后神經(jīng)修復(fù)和功能恢復(fù)至關(guān)重要[1]。電針對PNI后功能恢復(fù)效果確切,已被大量文獻報道[2-3]和我們前期實驗[4-5]所證實,并在臨床廣為應(yīng)用,但電針作用機制目前仍未被完全闡明。外泌體是雙層膜結(jié)構(gòu)的細胞外囊泡,包含豐富的RNA和蛋白,可作為細胞間信息交流的良好載體[6]?;陔娽樣写龠M外泌體釋放的趨勢[7-8],而外泌體與PNI后修復(fù)關(guān)系密切[9-10],本研究通過構(gòu)建坐骨神經(jīng)損傷(sciatic nerve injury,SNI)模型大鼠,分組進行電針治療和GW4869干預(yù)抑制外泌體釋放,檢測神經(jīng)功能恢復(fù)和結(jié)構(gòu)再生情況,探討電針是否通過調(diào)節(jié)外泌體釋放發(fā)揮促進SNI后功能恢復(fù)和結(jié)構(gòu)再生的作用。
雄性Wistar大鼠30只,體質(zhì)量(200±20)g,SPF級,上海中醫(yī)藥大學(xué)動物實驗中心提供,動物許可證號SYXK(滬)2014-0008。飼養(yǎng)于上海中醫(yī)藥大學(xué)動物實驗中心動物房,溫度22~25 ℃,相對濕度40%~70%,12 h交替照明,自由攝食飲水。
一抗:神經(jīng)絲蛋白200(neurofilament-200,NF200),美國Sigma,貨號N4142;一抗:髓鞘堿性蛋白(myelin basic protein,MBP),英國Abcam,貨號ab40390;熒光二抗,美國Thermo Fisher Scientific,貨號A27039;山羊血清,美國Sigma,貨號G9023;抗熒光淬滅封片液,上海碧云天,貨號P0123;外泌體抑制劑GW4869,Sigma,貨號D1692。倒置熒光顯微鏡(IX51,Olympus),G6805A型電針治療儀(常州英迪電子醫(yī)療器械有限公司),3-0外科皮膚縫合線和9-0神經(jīng)外膜縫合線(上海浦東金環(huán)),RM6240E/EC多道生理信號采集處理系統(tǒng)(成都儀器廠)。
大鼠適應(yīng)性飼養(yǎng)1周后,腹腔注射1%戊巴比妥鈉(40 mg/kg)麻醉,行右側(cè)大腿后外側(cè)切口,顯微鏡下于右側(cè)梨狀肌下緣下約8 mm處,用雙面刀片切斷坐骨神經(jīng)干,然后在體視顯微鏡下以9-0神經(jīng)外膜縫合線縫合神經(jīng)外膜。無菌生理鹽水沖洗傷口,3-0外科皮膚縫合線縫合傷口。
造模完成后,實驗大鼠隨機分為模型組、電針組和電針+GW4869組,每組10只。模型組每日常規(guī)飼養(yǎng),不予任何治療;電針組使用G6805A型電針治療儀,電針大鼠右側(cè)“環(huán)跳”(正極)及“足三里”(負極),選用斷續(xù)波,頻率5 Hz,以肌肉出現(xiàn)輕微抽動為度,每次20 min,每日1次,每周6次,共治療3周;電針+GW4869組在電針組處理的基礎(chǔ)上腹膜腔注射GW4869,劑量1 mg/kg,隔日注射,以抑制大鼠血清外泌體釋放。
觀察大鼠傷口情況、足部皮膚厚薄、足趾紅腫、右后肢肌肉及關(guān)節(jié)活動等變化情況。
2.4.1 足跡分析評價坐骨神經(jīng)功能指數(shù)
以碳素墨水著色大鼠雙后足,使其行走于狹長紙盒,盒底襯墊白紙,收集大鼠實驗側(cè)(E)和正常側(cè)(N)足跡,分別測量足印長度(printlength,PL,足跟與第3趾趾尖間距)、足趾跨距(toespread,TS,第1~5趾跨距)、中間趾跨距(intermediate toe spread,ITS,第2~4趾跨距),計算坐骨神經(jīng)功能指數(shù)(SFI)。SFI=-38.3×PL+109.5×TS+13.3×ITS-8.8。SFI正常值為0,-100為完全損傷,數(shù)據(jù)越接近0表明神經(jīng)功能恢復(fù)越好[12]。
2.4.2 神經(jīng)傳導(dǎo)速度比和腓腸肌濕重比檢測
大鼠麻醉后俯臥位固定在固鼠板上,于雙下肢后部坐骨神經(jīng)分布區(qū)域備毛,使用RM6240E/EC多道生理信號采集處理系統(tǒng)檢測神經(jīng)傳導(dǎo)速度。于坐骨結(jié)節(jié)下方,坐骨神經(jīng)兩側(cè)分別插入1對針灸針并接1對刺激電極;于坐骨神經(jīng)下段兩側(cè),腘窩上方分別插入1對針灸針并接1對接收電極。兩對電極排列須平行。然后給予強度1 mV、波寬0.2 ms的電刺激,點擊軟件傳導(dǎo)速度測量選項后彈出文本框,先以直尺測量并記錄2對電極之間的距離并輸入,選擇手動測量后再通過波形觀察標記記錄1次興奮傳播所需時間(2個動作電位峰值相差時間),即可得到傳導(dǎo)速度。距離/時間為該側(cè)坐骨神經(jīng)傳導(dǎo)速度,計算患側(cè)與健側(cè)神經(jīng)傳導(dǎo)速度比,比值越大表明神經(jīng)功能恢復(fù)越好。
大鼠麻醉后分別取雙側(cè)下肢腓腸肌并稱取濕重,計算患側(cè)與健側(cè)比值,比值越大表明肌肉萎縮越少。
2.4.3 軸突和髓鞘免疫熒光染色
NF200是神經(jīng)元骨架蛋白,被廣泛用以標記軸突[12-13]。SNI后可發(fā)生瓦勒變性,軸突崩解消失后再生[14],因此,通過坐骨神經(jīng)橫截面NF200檢測可反映軸突再生情況。取患側(cè)坐骨神經(jīng)4%多聚甲醛固定,梯度蔗糖脫水,OCT包埋,10 μm橫截面冰凍切片,再進行免疫熒光染色。PBS清洗,0.5%Triton X-100破膜,山羊血清封閉,一抗NF200或MBP 4 ℃度孵育過夜,分別染色軸突和髓鞘,次日PBS清洗3次,熒光二抗避光孵育,再清洗3次,抗熒光淬滅封片液封片,最后熒光顯微鏡下觀察拍照。使用Image J軟件評價軸突和髓鞘情況。每組隨機選取10個視野染色圖片,轉(zhuǎn)化為8-bit灰度后減去背景,調(diào)整閾值后設(shè)置size為1以上,排除可能的非特異性雜點,然后統(tǒng)計軸突和髓鞘數(shù)目。
造模后1周大鼠手術(shù)傷口基本結(jié)痂愈合,患側(cè)足呈背伸、外展、外翻狀態(tài),足趾并攏呈爪樣,跛行步態(tài)且行走不穩(wěn)或拖步,各組大鼠患側(cè)均出現(xiàn)肌肉萎縮、足趾蜷縮、無法伸展、踝部紅腫等,且輕重程度不一。3周后足底觀察發(fā)現(xiàn),與模型組比較,電針組大鼠足趾蜷縮有所改善;與模型組和電針組比較,電針+GW4869組大鼠足底潰瘍明顯嚴重。見圖1。
與模型組比較,電針組大鼠坐骨神經(jīng)功能指數(shù)明顯升高(<0.01);與電針組比較,電針+GW4869組大鼠坐骨神經(jīng)功能指數(shù)明顯降低(<0.05)。見圖2。
與模型組比較,電針組和電針+GW4869組大鼠神經(jīng)傳導(dǎo)速度比和腓腸肌濕重比明顯升高,差異有統(tǒng)計學(xué)意義(<0.05);與電針組比較,電針+GW4869組大鼠神經(jīng)傳導(dǎo)速度比和腓腸肌濕重比明顯降低,差異有統(tǒng)計學(xué)意義(<0.01)。見圖3。
坐骨神經(jīng)NF200免疫熒光染色顯示,與模型組比較,電針組大鼠NF200表達明顯升高,差異有統(tǒng)計學(xué)意義(<0.05);與電針組比較,電針+GW4869組大鼠NF200表達明顯降低,差異有統(tǒng)計學(xué)意義(<0.05)。見圖4。
與模型組比較,電針組大鼠MBP表達明顯升高,髓鞘數(shù)目和完整性均有改善,差異有統(tǒng)計學(xué)意義(<0.05);與電針組比較,電針+GW4869組大鼠MBP表達明顯降低,髓鞘數(shù)目減少,差異有統(tǒng)計學(xué)意義(<0.05),且有較多呈不規(guī)則形狀。見圖5。
圖1 各組大鼠足底一般情況(標尺=0.5 cm)
注:A.大鼠足跡;B.坐骨神經(jīng)功能指數(shù)統(tǒng)計;與模型組比較,**P<0.01;與電針組比較,#P<0.05
注:與模型組比較,*P<0.05;與電針組比較,##P<0.01
注:與模型組比較,*P<0.05;與電針組比較,#P<0.05
注:與模型組比較,*P<0.05;與電針組比較,#P<0.05
PNI后的修復(fù)過程復(fù)雜,其機制尚未完全闡明。由于顯微外科手術(shù)進行縫合或橋接后仍存在功能缺失,故如何更好地促進PNI后功能恢復(fù)成為研究的重點。電針將針灸與神經(jīng)電刺激相結(jié)合,可發(fā)揮更好的療效。電針兼具電刺激和經(jīng)穴效應(yīng)兩者的特點,較單純針灸更能促進PNI后功能恢復(fù)[15-16]。大量研究表明,電針能促進軸突生長和突觸重建,減輕損傷區(qū)炎癥反應(yīng),抑制神經(jīng)細胞凋亡,促進神經(jīng)再生,改善神經(jīng)再生微環(huán)境[17]。本實驗結(jié)果表明,電針可促進SNI的修復(fù)與神經(jīng)再生,更好地促進損傷神經(jīng)早期功能恢復(fù),明顯改善肌肉萎縮程度。電針對損傷后神經(jīng)軸突再生、軸漿轉(zhuǎn)運、施萬細胞增殖及神經(jīng)營養(yǎng)因子的分泌均有明顯促進作用[3-5,18-19]。因此,深入探討電針修復(fù)SNI的作用及其機制具有十分重要的臨床意義。
外泌體是一種杯盤型磷脂雙層囊泡,直徑40~150 nm,廣泛存在于血清、血漿、尿液和腦脊液等體液中。其包含大量RNA與蛋白,并具有膜滲透性,耐受性良好,甚至還可穿過血腦屏障,介導(dǎo)細胞與細胞/組織間的信息交互,在疾病檢測和治療中都具有極大潛力[20]。外泌體在PNI修復(fù)過程中發(fā)揮重要的調(diào)控作用[9],外泌體中miR-9和miR-19、miR-219[21]等分別參與調(diào)節(jié)神經(jīng)元的成熟和分化、髓鞘的形成與再生,外泌體miR-21則可介導(dǎo)感覺神經(jīng)元和巨噬細胞的通訊并調(diào)節(jié)痛閾[22]。因此,在神經(jīng)損傷疾病中具有很高研究價值[10,23]。但外泌體內(nèi)的遺傳物質(zhì)、作用機制及轉(zhuǎn)運機制等問題尚未明確,還有待深入研究。
GW4869為非競爭性的鞘磷脂酶抑制劑,具有抑制細胞分泌外泌體的作用[24-25],相關(guān)動物實驗已有大量文獻報道,如腹膜內(nèi)注射GW4869用以抑制循環(huán)中的外泌體[26],而使用GW4869有效的同時未發(fā)現(xiàn)任何不良影響[27],體質(zhì)量和血清乳酸脫氫酶水平也與對照組無明顯差異[28],表明GW4869本身可能具有的直接藥物較為微弱。本實驗通過觀察抑制血清外泌體水平對電針治療大鼠SNI的影響,探討電針是否通過調(diào)節(jié)外泌體釋放促進大鼠SNI后功能恢復(fù)。通過構(gòu)建大鼠SNI模型,本研究分為模型組、電針組和電針+GW4869組,處理3周后對多個神經(jīng)再生功能指標進行檢測,包括一般情況、足跡分析、神經(jīng)傳導(dǎo)速度比、腓腸肌濕重比,并通過免疫熒光染色NF200和MBP觀察損傷神經(jīng)橫截面軸突和髓鞘,從而反映神經(jīng)再生修復(fù)情況。結(jié)果表明,與模型組比較,電針組可促進神經(jīng)功能恢復(fù)和結(jié)構(gòu)再生;與電針組比較,電針+GW4869組抑制大鼠血清外泌體釋放,神經(jīng)功能恢復(fù)和結(jié)構(gòu)再生均受到抑制,結(jié)合文獻報道穴位注射GW4869阻斷穴位局部外泌體后電針的鎮(zhèn)痛效應(yīng)降低[29],說明電針可通過調(diào)節(jié)外泌體釋放促進大鼠SNI后功能恢復(fù)和結(jié)構(gòu)再生,提示外泌體是研究電針作用機制的一個新的切入點。鑒于外泌體主要作為載體介導(dǎo)其內(nèi)容物如RNA和蛋白發(fā)揮作用,因此,外泌體內(nèi)容物將是我們今后進一步研究的方向??傊?,本研究證實電針通過調(diào)節(jié)外泌體釋放促進大鼠SNI后功能恢復(fù),為深入研究電針通過外泌體內(nèi)容物促進SNI后功能恢復(fù)的更深層次作用機制提供依據(jù)。
[1] PASKAL A M, PASKAL W, PIETRUSKI P, et al. Polyethylene glycol: the future of posttraumatic nerve repair? systemic review[J]. International Journal of Molecular Sciences,2019,20(6):1478.
[2] ZHANG C, MA Z, HUO B, et al. Diffusional plasticity induced by electroacupuncture intervention in rat model of peripheral nerve injury[J]. Journal of Clinical Neuroscience,2019,69:250-256.
[3] HU L N, TIAN J X, GAO W, et al. Electroacupuncture and moxibustion promote regeneration of injured sciatic nerve through Schwann cell proliferation and nerve growth factor secretion[J]. Neural Regeneration Research,2018,13(3):477-483.
[4] 葉曉春,邵水金,國海東,等.電針對坐骨神經(jīng)損傷大鼠腦源性神經(jīng)營養(yǎng)因子的影響[J].中國中醫(yī)藥信息雜志,2017,24(6):60-63.
[5] 邵水金,單寶枝,嚴振國.電針、中藥促進大鼠坐骨神經(jīng)損傷的神經(jīng)再生研究[J].中國針灸,2003,23(7):417-420.
[6] MEHRYAB F, RABBANI S, SHAHHOSSEINI S, et al. Exosomes as a next-generation drug delivery system:An update on drug loading approaches, characterization, and clinical application challenges[J]. Acta Biomaterialia,2020,113:42-62.
[7] 金婷婷,柳維林,李鉆芳,等.電針曲池、足三里對缺血再灌注大鼠缺血側(cè)運動皮層小膠質(zhì)細胞與外泌體蛋白的影響及機制[J].中國康復(fù), 2019,34(8):395-398.
[8] 李牧洋,王婷婷,陳波,等.電針足三里-環(huán)跳穴對不同狀態(tài)大鼠血清外泌體表達的影響[J].陜西中醫(yī),2019,40(2):139-142.
[9] LOPEZ VERRILLI M A, PICOU F, COURT F A. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system[J]. Glia,2013,61(11):1795-1806.
[10] FR?HLICH D, KUO W P, FRüHBEIS C, et al. Multifaceted effects of oligodendroglial exosomes on neurons:impact on neuronal firing rate, signal transduction and gene regulation[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2014, 369(1652):20130510.
[11] 王韋江,王園園,范金鵬,等.神經(jīng)生長因子包埋鞘內(nèi)不同灌注時長對大鼠坐骨神經(jīng)功能的影響[J].疑難病雜志,2018,17(5):498-502.
[12] ZHANG D, YAO Y, DUAN Y, et al. Surface-anchored graphene oxide nanosheets on cell-scale micropatterned poly (d,l-lactide-co- caprolactone) conduits promote peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces,2020,12(7):7915-7930.
[13] WANG T, LI B, WANG Z, et al. miR-155-5p promotes dorsal root ganglion neuron axonal growth in an inhibitory microenvironment via the cAMP/PKA pathway[J]. International Journal of Biological Sciences,2019,15(7):1557-1570.
[14] BOISSONNAS A, LOUBOUTIN F, LAVIRON M, et al. Imaging resident and recruited macrophage contribution to Wallerian degeneration[J]. Journal of Experimental Medicine,2020,217(11):e20200471.
[15] 邵水金.周圍神經(jīng)損傷的針灸療法[J].現(xiàn)代康復(fù),2000,4(11):1616-1617.
[16] 章明星,劉陽陽,劉建衛(wèi),等.電針治療周圍神經(jīng)損傷的臨床研究進展[J].光明中醫(yī),2016,31(8):1196-1199.
[17] 馬力穎,宮樹豐.近20年針灸治療周圍神經(jīng)損傷實驗研究的文獻計量學(xué)分析[J].針灸臨床雜志,2012,28(4):48-50.
[18] 邵水金,單寶枝,嚴振國.電針對大鼠坐骨神經(jīng)損傷后的修復(fù)作用[J].中國康復(fù)醫(yī)學(xué)雜志,1997,12(4):42-43.
[19] 邵水金,單寶枝,姜俊,等.電針和補陽還五湯治療大鼠坐骨神經(jīng)損傷的比較研究[J].中西醫(yī)結(jié)合學(xué)報,2003,1(1):54-56.
[20] HE C, ZHENG S, LUO Y, et al. Exosome theranostics:biology and translational medicine[J]. Theranostics,2018,8(1):237-255.
[21] PUSIC A D, KRAIG R P. Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination[J]. Glia,2014,62(2):284-299.
[22] SIMEOLI R, MONTAGUE K, JONES H R, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma[J]. Nature Communications,2017, 8(1):1-17.
[23] LOPEZ-LEAL R. Schwann cell exosomes mediate neuron–glia communication and enhance axonal regeneration[J]. Cellular and Molecular Neurobiology,2016,36(3):429-436.
[24] ZHOU H, LI X, YIN Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Research & Therapy,2020,11(1):1-18.
[25] ZHU L, ZANG J, LIU B, et al. Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes[J]. Journal of Cellular Physiology,2020,235(10):7392-7409.
[26] XU F, ZHONG J Y, LIN X, et al. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner[J]. Journal of Pineal Research, 2020,68(3):e12631.
[27] TABATADZE N, SAVONENKO A, SONG H, et al. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice[J]. Journal of Neuroscience Research,2010, 88(13):2940-2951.
[28] DINKINS M B, DASGUPTA S, WANG G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease[J]. Neurobiology of Aging, 2014,35(8):1792-1800.
[29] 陳波,李牧洋,邢立瑩,等.穴位局部外泌體參與針刺鎮(zhèn)痛效應(yīng)啟動的研究(英文)[J]. World Journal of Acupuncture-Moxibustion,2018, 28(4):263-267.
Effect of Electroacupuncture on Functional Recovery of Rats after Sciatic Nerve Injury Based on Regulating the Release of Exosomes
LIU Yupu, YANG Yiduo, ZHAO Tiantian, LI Han, ZHAO Yue, GUO Haidong, SHAO Shuijin
To observe the effects of inhibiting the level of serum exosomes on the treatment of rat sciatic nerve injury by electroacupuncture; To explore whether electroacupuncture can promote the functional recovery of rats after sciatic nerve injury by regulating the release of exosomes.The sciatic nerve injury model rats were constructed, grouped for electroacupuncture treatment and drug intervention. Intraperitoneal injection of GW4869 was used to inhibit the release of exosomes. The general condition of the affected foot of the rats was observed; the footprint analysis was used to evaluate the sciatic nerve function index, the nerve conduction velocity ratio and the gastrocnemius wet weight ratio were used to evaluate the sciatic nerve function recovery; immunofluorescence staining of NF200 and MBP were used to label axons and myelin sheaths to evaluate nerve regeneration and repair.After inhibiting the level of serum exosomes, the efficacy of electroacupuncture on sciatic nerve injury in rats was affected. Compared with the model group, the electroacupuncture group had a significant effect on promoting functional recovery of rats after sciatic nerve injury. Compared with the electroacupuncture group, the electroacupuncture+ GW4869 group had serious plantar ulcers, and the sciatic nerve function index, sciatic nerve function recovery, and nerve regeneration and repair were poor.Electroacupuncture can promote the functional recovery of rats after sciatic nerve injury by regulating the release of exosomes.
sciatic nerve injury; electroacupuncture; exosomes; functional recovery; rats
R245
A
1005-5304(2021)02-0049-05
10.19879/j.cnki.1005-5304.202007415
國家自然科學(xué)基金(81873357)
邵水金,E-mail:shaoshuijin@163.com
(收稿日期:2020-07-21)
(修回日期:2020-07-31;編輯:華強)