廖威?張昌林?李田
【摘要】目的 通過(guò)研究人臍帶間充質(zhì)干細(xì)胞(hucMSCs)培養(yǎng)上清對(duì)M1型巨噬細(xì)胞的影響,探討其作用機(jī)制。方法 選擇小鼠單核巨噬細(xì)胞白血病細(xì)胞系(RAW264.7)巨噬細(xì)胞,將其種植于6孔板中,待匯合度約70%時(shí)進(jìn)行處理。配制含50%hucMSCs培養(yǎng)上清的高糖DMEM條件培養(yǎng)基(CM)。巨噬細(xì)胞分成3組,blank組用2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h后更換2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h,DMEM組用2 ml含200 ng/ml脂多糖(LPS)的高糖DMEM培養(yǎng)基刺激24 h后更換2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h,CM組用2 ml含200 ng/ml LPS的高糖DMEM培養(yǎng)基刺激24 h后更換2 ml CM培養(yǎng)24 h。收集各組培養(yǎng)上清和巨噬細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。利用PKH67染色劑進(jìn)行CM中含細(xì)胞膜的成分染色(綠),DAPI染色劑進(jìn)行巨噬細(xì)胞胞核染色(藍(lán)),通過(guò)熒光顯微鏡觀(guān)察巨噬細(xì)胞吞噬hucMSCs-CM中含細(xì)胞膜成分的情況。應(yīng)用實(shí)時(shí)熒光定量PCR(RT-qPCR)和流式細(xì)胞多因子分析技術(shù)分析促炎因子TNF-α和抗炎因子IL-10表達(dá)水平的改變。應(yīng)用流式細(xì)胞術(shù)鑒定經(jīng)處理后巨噬細(xì)胞表型。結(jié)果 在hucMSCs上清中,熒光顯微鏡下觀(guān)察到RAW264.7吞噬CM中膜性成分且數(shù)量隨時(shí)間增加而增加。在巨噬細(xì)胞極化實(shí)驗(yàn)中,RT-qPCR結(jié)果提示CM組抗炎因子IL-10 mRNA相對(duì)表達(dá)量低于DMEM組,且促炎因子TNF-α mRNA相對(duì)表達(dá)量低于blank組和DMEM組(P均< 0.05)。流式細(xì)胞術(shù)多因子分析結(jié)果中,CM組抗炎因子IL-10水平低于DMEM組,促炎因子TNF-α水平低于blank組和DMEM組(P均< 0.05)。流式細(xì)胞術(shù)鑒定結(jié)果中,CM處理的RAW264.7中的F4/80+CD206+CD86-巨噬細(xì)胞即M2型巨噬細(xì)胞比例高于DMEM組。結(jié)論 巨噬細(xì)胞可能通過(guò)吞噬hucMSCs培養(yǎng)上清中膜性成分誘導(dǎo)M1型巨噬細(xì)胞向M2型巨噬細(xì)胞極化,從而促進(jìn)抗炎反應(yīng)。
【關(guān)鍵詞】人臍帶間充質(zhì)干細(xì)胞;巨噬細(xì)胞極化;炎癥;腫瘤壞死因子-α;白介素-10
Effect and mechanism of human umbilical cord mesenchymal stem cell culture supernatant on M1-type macrophages Liao Wei, Zhang Changlin, Li Tian. Department of Gynecology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
Corresponding author, Li Tian, E-mail: sandylitian@ 126. com
【Abstract】Objective To evaluate the effect and investigate the mechanism of human umbilical cord mesenchymal stem cells (hucMSCs) culture supernatant on M1-type macrophages. Methods The mouse macrophage-like cell line RAW264.7 was used as the macrophage cell line, planted in the 6-well plate and treated when the confluence reached approximately 70%. Conditional DMEM medium (CM) containing 50% hucMSCs culture supernatant was prepared. Macrophages were divided into three groups. In the blank group, the cells were cultured in 2 ml DMEM medium for 24 h and then cultured in 2 ml fresh DMEM medium for 24 h. In the DMEM group, the cells were cultured in 2 ml DMEM medium containing 200 ng/ml LPS for 24 h, followed by 24-h culture in 2 ml fresh DMEM medium. In the CM group, the cells were cultured in 2 ml DMEM medium containing 200 ng/ml LPS for 24 h and subsequently cultured in 2 ml fresh CM medium for 24 h. The culture medium and macrophages from each group were gathered for subsequent experiments. Substances having cell membrane components in CM were subject to PKH67 staining (green) and RAW264 with DAPI staining (blue). The phagocytosis of cell membrane components in hucMSCs-CM by macrophages was observed under fluorescence microscope. The expression levels of pro-inflammatory factor TNF-α and anti-inflammatory factor IL-10 were analyzed by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and flow cytometry multi-factor analysis. The phenotype of macrophages was identified by flow cytometry. Results Fluorescence microscopy revealed that RAW264.7 phagocytosis substances containing cell membrane components in the CM group were increased with time in the hucMSCs supernanant. In macrophage polarization experiment, RT-qPCR indicated that the expression level of anti-inflammatory factor interleukin-10 (IL-10) mRNA in the CM group was significantly lower than that in the DMEM group, and the expression level of tumor necrosis factor-α (TNF-α) mRNA, a proinflammatory mediator, was significantly lower compared with those in the blank and DMEM groups (all P < 0.05). Flow cytometry multi-factor analysis showed that the expression level of anti-inflammatory factor IL-10 in the CM group was remarkably lower than that in the DMEM group, and the expression level of pro-inflammatory factor TNF-α mRNA was significantly lower than those in the blank and DMEM groups (all P < 0.05). Flow cytometry analysis showed that the proportion of F4/80+CD206+CD86- type M2 macrophages in the CM group was higher compared with that in the DMEM group. Conclusion Macrophages may induce the polarization of M1-type macrophages into M2-type macrophages by phagocytosis of the membranous components in the hucMSCs culture supernanant, thereby promoting the anti-inflammatory response.
【Key words】Human umbilical cord mesenchymal stem cells (hucMSCs);Macrophage polarization;
Inflammation;Tumor necrosis factor-α (TNF-α);Interleukin-10(IL-10)
巨噬細(xì)胞源于單核細(xì)胞,屬于吞噬細(xì)胞的一種,介入非特異性免疫和特異性免疫2個(gè)免疫過(guò)程。巨噬細(xì)胞因外界刺激因素的不同而發(fā)生不同表型改變或轉(zhuǎn)化。如脂多糖(LPS)和TNF-α可以刺激巨噬細(xì)胞向M1型巨噬細(xì)胞方向極化,即經(jīng)典活化型;IL-4和IL-13可以誘導(dǎo)巨噬細(xì)胞向M2型巨噬細(xì)胞極化即替代活化型,兩者生物學(xué)功能有著完全不同的作用[1]。一般認(rèn)為M1型巨噬細(xì)胞具有促炎作用,巨噬細(xì)胞過(guò)度的M1型極化將會(huì)引起過(guò)度的炎癥反應(yīng),從而導(dǎo)致組織愈合不良甚至惡化;但也會(huì)出現(xiàn)良好的結(jié)局,如抗腫瘤作用[2-3]。
M2型巨噬細(xì)胞引起的抗炎作用,可促進(jìn)組織修復(fù)[4]。在這些作用中,大家尤其關(guān)注M2巨噬細(xì)胞的抗炎作用,已有多項(xiàng)研究通過(guò)其抗炎作用達(dá)到治療疾病的目的,如肝臟病、腎臟病等[5]。間充質(zhì)干細(xì)胞(MSC)因?yàn)閬?lái)源簡(jiǎn)單方便,且擁有低免疫原性和調(diào)節(jié)炎癥反應(yīng)的特性,成為了以細(xì)胞為基礎(chǔ)的異體移植治療方法的研究熱點(diǎn)[6]。MSC可能主要通過(guò)其強(qiáng)大的免疫調(diào)節(jié)作用改善局部炎癥環(huán)境,從而促進(jìn)組織修復(fù)[7]。有研究者指出,MSC通過(guò)細(xì)胞外囊泡途徑起到各種效應(yīng)如炎癥環(huán)境改變等和治療各種疾病[8-10]。巨噬細(xì)胞是否可以通過(guò)吞噬人臍帶間充質(zhì)干細(xì)胞(hucMSCs)培養(yǎng)上清里的某些成分如膜性成分,從而影響巨噬細(xì)胞極化趨勢(shì)和促進(jìn)抗炎反應(yīng)?目前仍未有定論。為此,本研究探究巨噬細(xì)胞是否通過(guò)吞噬hucMSCs培養(yǎng)上清組成的條件培養(yǎng)基(CM)中的膜性成分,誘導(dǎo)巨噬細(xì)胞發(fā)生M1型向M2型極化,為hucMSCs在臨床應(yīng)用上提供基礎(chǔ)實(shí)驗(yàn)證據(jù)。
材料與方法
一、細(xì)胞來(lái)源
hucMSCs購(gòu)自博雅(Boyalife)干細(xì)胞公司。巨噬細(xì)胞RAW264.7由中山大學(xué)附屬腫瘤醫(yī)院鄧務(wù)國(guó)課題組贈(zèng)與。
二、主要試劑
包括DMEM培養(yǎng)基、DMEM-F12培養(yǎng)基(Gibco),MSC專(zhuān)用血清(BI),胎牛血清(FBS,廣州信欣生物科技公司),青鏈霉素雙抗溶液(Gibco),Trizol RNA提取試劑盒、逆轉(zhuǎn)錄試劑盒、實(shí)時(shí)熒光定量PCR(RT-qPCR)試劑盒(北京天根生物科技公司),LEGEND plexTM Multi-Analyte Flow Assay Kit流式多因子分析試劑盒和炎癥因子TNF-α、IL-10相關(guān)抗體,流式細(xì)胞術(shù)試劑盒、巨噬細(xì)胞相關(guān)抗體F4/80-PE、CD206-APC和CD86-FITC(北京達(dá)科為公司),DAPI即用型染色溶液(索萊寶),PKH67染色試劑盒、脂多糖(廣州賽國(guó)生物科技有限公司)。
三、方 法
1. hucMSCs-CM制備
待第3~5代的hucMSCs匯合度約80%時(shí),棄培養(yǎng)基,用磷酸鹽緩沖液(PBS)清洗2遍,加入無(wú)血清DMEM培養(yǎng)基饑餓培養(yǎng)48 h,收集培養(yǎng)上清經(jīng)4℃、3000×g離心1 h,將離心的上清移至新離心管。配制含50%培養(yǎng)上清的CM:離心的上清和等體積DMEM培養(yǎng)基混勻,加入10%FBS和1%青鏈霉素雙抗溶液,-80℃凍存。需用時(shí),4℃解凍。
2. RAW264.7細(xì)胞極化實(shí)驗(yàn)
2.1 RAW264.7細(xì)胞吞噬含細(xì)胞膜成分實(shí)驗(yàn)
20 μl PKH67染色溶液加入10 ml CM(不含F(xiàn)BS)配制成工作液,4℃保存?zhèn)溆?。將RAW264.7巨噬細(xì)胞種植于培養(yǎng)皿中,待匯合度達(dá)到約70%時(shí)進(jìn)行處理。更換成2 ml含100 ng/ml LPS常規(guī)培養(yǎng)基24 h后,PBS清洗2次,加入2 ml經(jīng)PKH67標(biāo)記的CM繼續(xù)培養(yǎng)。在第1、2、3、4 h行熒光顯微鏡觀(guān)察。
2.2巨噬細(xì)胞RAW264.7處理
用含10%FBS、1%青鏈霉素雙抗的DMEM培養(yǎng)基培養(yǎng)擴(kuò)增。將RAW264.7巨噬細(xì)胞種植于6孔板中,待匯合度達(dá)到約60% ~ 70%時(shí)進(jìn)行處理。將巨噬細(xì)胞分成3組,組別:blank組用2 ml常規(guī)配制高糖DMEM培養(yǎng)基培養(yǎng)24 h后棄培養(yǎng)基,PBS清洗2次,添加2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h,DMEM組用2 ml含200 ng/ml LPS的高糖DMEM培養(yǎng)基刺激24 h后,PSB清洗2次,添加2 ml常規(guī)配制高糖DMEM培養(yǎng)基培養(yǎng)24 h,CM組用2 ml含200 ng/ml LPS的高糖DMEM培養(yǎng)基刺激24 h后,PBS清洗2次,添加2 ml CM培養(yǎng)24 h。
收集3組培養(yǎng)的上清和RAW264.7細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
2.3細(xì)胞炎癥因子mRNA表達(dá)量
分別按Trizol RNA提取試劑盒說(shuō)明書(shū)、逆轉(zhuǎn)錄試劑盒說(shuō)明書(shū)、RT-qPCR試劑盒說(shuō)明書(shū)提取經(jīng)處理的RAW264.7細(xì)胞的總RNA,進(jìn)行逆轉(zhuǎn)錄和RT-qPCR實(shí)驗(yàn)。引物序列見(jiàn)表1。
2.4 流式多因子分析術(shù)檢測(cè)上清炎癥因子
按Multi-Analyte Flow Assay Kit流式多因子分析試劑盒說(shuō)明書(shū)檢測(cè)上述組別的RAW264.7細(xì)胞上清抗炎因子IL-10和促炎因子TNF-α水平。
2.5 RAW264.7細(xì)胞表型鑒定
將RAW264.7巨噬細(xì)胞種植于6孔板中,待匯合度達(dá)到約70%時(shí)進(jìn)行處理。其中LPS組更換成2 ml含200 ng/ml LPS的DMEM培養(yǎng)基培養(yǎng)24 h后,PBS清洗2次,加入2 ml含200 ng/ml LPS的DMEM培養(yǎng)基繼續(xù)培養(yǎng)24 h;CM組更換成2 ml含200 ng/ml LPS的DMEM培養(yǎng)基培養(yǎng)24 h后,PBS清洗2次,加入2 ml CM培養(yǎng)24 h。按流式細(xì)胞術(shù)試劑盒說(shuō)明書(shū)將各組的RAW264.7細(xì)胞制作成樣品并上機(jī)檢測(cè)。
四、統(tǒng)計(jì)學(xué)處理
采用SPSS 25.0分析實(shí)驗(yàn)數(shù)據(jù),正態(tài)分布的計(jì)量資料以表示,2組間的比較采用兩獨(dú)立樣本t檢驗(yàn),多個(gè)樣本均數(shù)采用單因素方差分析,兩兩比較采用Tukey法。α= 0.05。
結(jié)果
一、RAW264.7細(xì)胞吞噬hucMSCs條件培養(yǎng)基中膜性成分
熒光顯微鏡下,CM處理1 h時(shí),細(xì)胞核染色劑DAPI標(biāo)記巨噬細(xì)胞RAW264.7細(xì)胞核(藍(lán)色,藍(lán)箭頭)上未黏附細(xì)胞膜染色劑PKH67標(biāo)記的膜性成分(綠色,綠箭頭);2 h時(shí),RAW264.7胞核上開(kāi)始有膜性成分黏附;至3、4 h時(shí),巨噬細(xì)胞RAW264.7胞核上膜性成分黏附數(shù)量明顯增加,見(jiàn)圖1。
二、RAW264.7細(xì)胞極化
RT-qPCR顯示,與blank組相比,CM組的IL-10 mRNA相對(duì)表達(dá)量(t = 6.230,P = 0.003)、TNF-α mRNA相對(duì)表達(dá)量(t = 12.250,P < 0.001)均較低;與blank組相比,DMEM組的IL-10 mRNA相對(duì)表達(dá)量較低(t = 10.144,P < 0.001),TNF-α的mRNA相對(duì)表達(dá)量較高(t = 14.011,P < 0.001);與DMEM組相比,CM組的IL-10 mRNA相對(duì)表達(dá)量較高(t = 16.620,P < 0.001),TNF-α mRNA相對(duì)表達(dá)量較低(t = 15.386,P < 0.001),見(jiàn)圖2A。流式細(xì)胞術(shù)多因子分析檢測(cè)結(jié)果顯示,3組IL-10水平比較差異有統(tǒng)計(jì)學(xué)意義(F = 104.006,P < 0.001),其中DMEM組低于CM組低(P = 0.002),CM組低于blank組(P < 0.001),DMEM組低于blank組(P < 0.001);3組TNF-α水平比較差異亦有統(tǒng)計(jì)學(xué)意義(F = 165.251,P < 0.001),其中DMEM組高于CM組(P < 0.001),CM組高于blank組(P = 0.001),DMEM組高于blank組(P < 0.001),見(jiàn)圖2B。流式細(xì)胞術(shù)細(xì)胞鑒定結(jié)果顯示,LPS組中F4/80+CD86+CD206-細(xì)胞(M1)占99.21%、F4/80+CD86-CD206+細(xì)胞(M2)占0.01%,CM組中F4/80+CD86+CD206-細(xì)胞(M1)占63.23%、F4/80+CD86-CD206+細(xì)胞(M2)占20.92%,見(jiàn)圖2C。
討論
MSC可以通過(guò)其強(qiáng)大的免疫調(diào)節(jié)作用誘導(dǎo)巨噬細(xì)胞形成具有抗炎作用的M2型巨噬細(xì)胞[11]。多項(xiàng)研究應(yīng)用RAW264.7巨噬細(xì)胞成功制備炎癥模型[12-14]。因此本研究采用RAW264.7細(xì)胞作為研究對(duì)象,通過(guò)觀(guān)察RAW264.7細(xì)胞經(jīng)過(guò)處理前后細(xì)胞表型和炎癥因子的改變,從而判斷巨噬細(xì)胞極性的改變。
RT-qPCR結(jié)果中,CM組和DMEM組中IL-10 mRNA相對(duì)表達(dá)量均下降,說(shuō)明200 ng/ml LPS刺激RAW264.7細(xì)胞24 h后,可以下調(diào)RAW264.7細(xì)胞表達(dá)抗炎因子IL-10,但CM組和DMEM組對(duì)比,CM組IL-10 mRNA相對(duì)表達(dá)量低于DMEM組,說(shuō)明LPS可以促進(jìn)炎癥反應(yīng),而hucMSCs培養(yǎng)上清可以起到抗炎作用,將炎癥環(huán)境向M2巨噬細(xì)胞的炎癥環(huán)境轉(zhuǎn)換。
流式多因子分析技術(shù)檢測(cè)結(jié)果可見(jiàn)CM組和DMEM組分泌的IL-10水平趨勢(shì)和RT-qPCR相應(yīng)結(jié)果的趨勢(shì)一致,IL-10分泌均減少但CM組低于DMEM組。對(duì)于TNF-α水平,CM組低于DMEM組。由此,流式多因子分析結(jié)果進(jìn)一步驗(yàn)證hucMSCs培養(yǎng)上清的抗炎作用。
流式細(xì)胞術(shù)鑒定結(jié)果中,LPS組的大部分RAW264.7細(xì)胞表面抗原表達(dá)F4/80+CD86+CD206-,即M1型巨噬細(xì)胞,而極少表達(dá)F4/80+CD86-CD206+的細(xì)胞,即基本沒(méi)有M2型巨噬細(xì)胞。CM組中,細(xì)胞表面抗原為F4/80+CD86+CD206-細(xì)胞占63.23%,F(xiàn)4/80+CD86-CD206+細(xì)胞占20.92%,說(shuō)明含50% hucMSCs培養(yǎng)上清的CM誘導(dǎo)趨于M1型的RAW264.7向M2型趨勢(shì)極化。
李志偉等[15]應(yīng)用骨髓MSCs培養(yǎng)液成功誘導(dǎo)RAW264.7細(xì)胞向M2型極化,但該文中IL-10 mRNA表達(dá)量是增加的,de Witte等[16]研究結(jié)果中IL-10表達(dá)量也是增加。但本研究中IL-10并未體現(xiàn)出明顯增加效果,可能與LPS處理時(shí)間、濃度和hucMSCs-CM處理時(shí)間和濃度有關(guān),另外不同來(lái)源的間充質(zhì)干細(xì)胞,其作用也有一定差異性[17]。雖然IL-10的表達(dá)稍有不同,但其趨勢(shì)最終都體現(xiàn)出M2型巨噬細(xì)胞的抗炎作用。另外,hucMSCs培養(yǎng)上清引起巨噬細(xì)胞發(fā)生極化改變的具體成分是活性生長(zhǎng)因子或細(xì)胞外囊泡(EV)或兩者共同作用。其中EV的作用受到科研人員的關(guān)注。本研究在RAW264.7巨噬細(xì)胞吞噬CM中膜性成分實(shí)驗(yàn)中,通過(guò)PKH67標(biāo)記CM中的膜性成分,可見(jiàn)在1 h時(shí),DAPI染的RAW264.7胞核未見(jiàn)PKH67標(biāo)記的膜性成分黏附。隨著時(shí)間增加,RAW264.7胞核有越來(lái)越多的膜性成分黏附。說(shuō)明RAW264.7吞噬了CM中的膜性成分并呈現(xiàn)時(shí)間依賴(lài)性。顯然,巨噬細(xì)胞具有吞噬功能。也有學(xué)者報(bào)道RAW264.7可以吞噬藥物[18]。因此筆者推測(cè)其也可能吞噬hucMSCs CM中的膜性成分。Kim等[19]證明了巨噬細(xì)胞可以吞噬細(xì)胞來(lái)源的外泌體,并呈時(shí)間、濃度依賴(lài)性。所以引起M1型巨噬細(xì)胞向M2型巨噬細(xì)胞極化的改變可能是因M1型巨噬細(xì)胞吞噬了hucMSCs-CM中的膜性成分,該膜性成分有可能是EV。EV按其直徑從小到大可分為外泌體、細(xì)胞微泡和凋亡小體[20]。其中外泌體最受關(guān)注。外泌體可以存在于原核生物和真核生物,具有與母系細(xì)胞相似的生物學(xué)功能[21]。而且將外泌體注射至體內(nèi),不引起溶血、過(guò)敏等不良反應(yīng),具有更低的免疫原性[22]。也有研究顯示外泌體可以改變巨噬細(xì)胞極化狀態(tài)[20]。
綜上所述,巨噬細(xì)胞可能通過(guò)吞噬hucMSCs培養(yǎng)上清中的膜性成分從M1型狀態(tài)向M2型狀態(tài)極化,起到抗炎作用。但本研究并沒(méi)有證實(shí)膜性成分和更深一步去研究具體機(jī)制,是研究的不足,今后將開(kāi)展更進(jìn)一步的研究探索其作用機(jī)制。
參 考 文 獻(xiàn)
[1] Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology, 2018, 154(2):186-195.
[2] Seraphim PM, Leal EC, Moura J, Gon?alves P, Gon?alves JP, Carvalho E. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing. Life Sci, 2020, 254:117813.
[3] Eom YW, Akter R, Li W, Lee S, Hwang S, Kim J, Cho MY. M1 macrophages promote trail expression in adipose tissue-derived stem cells, which suppresses colitis-associated colon cancer by increasing apoptosis of CD133+ cancer stem cells and decreasing m2 macrophage population. Int J Mol Sci, 2020, 21(11):3887.
[4] Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 2018, 156:16-27.
[5] Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int, 2019, 95(4):760-773.
[6] Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell, 2018, 22(6):824-833.
[7] Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int, 2016, 2016:4285215.
[8] Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, Zheng SG, Fu QL. Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis, 2020, 11(6):409.
[9] Danieli P, Malpasso G, Ciuffreda MC, Cervio E, Calvillo L, Copes F, Pisano F, Mura M, Kleijn L, de Boer RA, Viarengo G, Rosti V, Spinillo A, Roccio M, Gnecchi M. Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med, 2015, 4(5):448-458.
[10] Guo L, Lai P, Wang Y, Huang T, Chen X, Geng S, Huang X, Luo C, Wu S, Ling W, Huang L, Du X, Weng J. Extracellular vesicles derived from mesenchymal stem cells prevent skin fibrosis in the cGVHD mouse model by suppressing the activation of macrophages and B cells immune response. Int Immunopharmacol, 2020, 84:106541.
[11] Heo JS, Choi Y, Kim HO. Adipose-derived mesenchymal stem cells promote m2 macrophage phenotype through exosomes. Stem Cells Int, 2019, 2019:7921760.
[12] Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci, 2017, 18(2):336.
[13] Essandoh K, Li Y, Huo J, Fan GC. Mirna-mediated macr-ophage polarization and its potential role in the regulation of inflammatory response. Shock, 2016 , 46(2):122-131.
[14] Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine, 2018, 105:63-72.
[15] 李志偉,周號(hào)悅,劉湘粵,何漪,丁小鳳,胡靈玉. 骨髓間充質(zhì)干細(xì)胞培養(yǎng)液促進(jìn)STAT3磷酸化誘導(dǎo)Raw264.7細(xì)胞向M2型極化. 激光生物學(xué)報(bào),2020,29(2):153-160.
[16] de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS, O'Flynn L, Elliman SJ, Roy D, Betjes MGH, Newsome PN, Baan CC, Hoogduijn MJ. Immunomodulation by therapeutic mesenchymal stromal cells(MSC) is triggered through phagocytosis of msc by monocytic cells. Stem Cells, 2018, 36(4):602-615.
[17] Yi X, Chen F, Liu F, Peng Q, Li Y, Li S, Du J, Gao Y, Wang Y. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res Ther, 2020, 11(1):183.
[18] 秦露平,呂杰,李建芳,謝良駿,蔣永濼,程木華. 吡格列酮對(duì)A549肺癌細(xì)胞及RAW264.7巨噬細(xì)胞18F-FDG攝取影響的實(shí)驗(yàn)研究. 新醫(yī)學(xué),2019,50(3):188-191.
[19] Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh), 2019, 6(20):1900513.
[20] Tong F, Mao X, Zhang S, Xie H, Yan B, Wang B, Sun J, Wei L. HPV + HNSCC-derived exosomal miR-9 induces macrophage M1 polarization and increases tumor radiosensitivity. Cancer Lett, 2020, 478:34-44.
[21] Yá?ez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kr?mer-Albers EM, Laitinen S, L?sser C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, L?tvall J, Man?ek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger ?, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015, 4:27066.
[22] Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, Qian H, Zhu W, Xu W. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy, 2016, 18(3):413-422.
(收稿日期:2020-08-12)
(本文編輯:林燕薇)